
Hadoop MapReduce on Gfarm File System

Shunsuke Mikami
College of Information
Sciences, University of

Tsukuba
mikami@hpcs.cs.tsukuba.ac.jp

Kazuki Ohta
Department of Information

Science, University of Tokyo
kzk@il.is.s.u-tokyo.ac.jp

Osamu Tatebe
Department of Computer

Science, University of Tsukuba
tatebe@cs.tsukuba.ac.jp

Abstract

MapReduce is a promising parallel programming
model for processing large data sets. This paper
discusses the design and implementation of Hadoop-
Gfarm plugin to enable access to the Gfarm file system
by Hadoop MapReduce applications. The
performance evaluation shows it has comparable
performance to the Hadoop native HDFS. The Gfarm
file system has advantage since it supports not only
MapReduce applications but also POSIX and MPI-IO
applications.

1. Introduction

MapReduce [1] is a parallel programming model for
processing large data sets. Hadoop [2] is an up-and-
coming open source implementation of MapReduce,
which utilizes the Hadoop Distributed File System
(HDFS) [3] to store input and output data. HDFS does
not support the POSIX semantics since it is not
required by MapReduce workloads. It does not
support file modification after once closed and writes
to a single file by multiple clients. MapReduce
workloads always create new files and do not change
contents of existing files. This means the storage
space of HDFS can be used only by Hadoop
MapReduce workloads but not by other workloads
including legacy POSIX applications and MPI-IO
applications.

Gfarm file system [4] is a global distributed file
system that is conformable to the POSIX semantics. It
has a similar architecture to the HDFS and the Google
File System in terms of federating local file systems on
compute nodes. This paper discusses the design and
implementation of a Hadoop-Gfarm plugin that
enables access to the Gfarm file system from Hadoop
MapReduce applications. Hadoop’s data location
aware process scheduling also benefits the Gfarm file

system to improve I/O performance of MapReduce
applications. Performance evaluation using micro
benchmarks and typical MapReduce applications
shows that the Gfarm file system has comparable
performance to the HDFS. The Gfarm file system has
advantage since it supports not only MapReduce
applications but also POSIX and MPI-IO applications.

2. Implementation of Hadoop-Gfarm

plugin

Hadoop has a modular architecture to easily extend
functionality of common features. The Hadoop
Common is a set of common utilities that support the
other Hadoop subprojects. It includes FileSystem
interface to support various kinds of file systems.
Hadoop-Gfarm plug-in [5] implements this interface to
enable access to the Gfarm file system through the
Java Native Interface. It contains not only common
filesystem APIs such as open, read, write and mkdir
but also getFileBlockLocations to expose the data
location of file replicas. Using this interface, Hadoop
MapReduce allocates tasks near input data.

3. Performance Evaluation

Table 1 shows the machine specification of the
cluster node, each node is connected using dual trunks
of Gigabit Ethernet. At first, the write performance is
evaluated by the Teragen program that generates 10-
byte random keys and 90-byte random values. Figure
1 shows the write performance when each map task
generates 5-GB data. HDFS is a little bit faster than the
Gfarm using 8 client nodes and more. Although we
need to figure out the reason further, one of the reasons
is the HDFS does not flush data before closing the file.
Currently, the HDFS does not support the flush
operation, which means it cannot guarantee the success
of file writes.

Figure 2 shows the read performance when the map
task reads data that the Teragen outputs. Gfarm w/
affinity is result with the data aware scheduling. Gfarm
w/o affinity is result without the scheduling. The data
location aware scheduling impacts the read
performance, which improves 55% of the read
performance in the case of 16 nodes. HDFS is slightly
better than the Gfarm.

Figure 3 shows the performance of grep of the same
input data. The result is similar to the read
performance. It is understandable because grep is read
intensive-application.

Figure 4 shows the performance to sort the same
input data by key. HDFS is a little bit faster than the
Gfarm, although both show scalable performance
when the number of clients increases.

Table 1. Machine specification

Figure 1. Write performance

Figure 2. Read performance

Figure 3. Grep performance

Figure 4. Sort performance

4. Summary

We have developed Hadoop-Gfarm plug-in to
enable access to the Gfarm file system by Hadoop
MapReduce applications. The performance result
shows that Gfarm has comparable performance to the
HDFS and both show scalable performance in terms of
the number of clients. Gfarm has advantage such that
it can be used by not only MapReduce jobs but also
POSIX and MPI-IO applications.

Our future work includes the evaluation by variety
of applications in wide area environment.

5. References

[1] Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Proceedings of OSDI '04,
2004.

[2] Hadoop. Apache Hadoop. http://hadoop.apache.org

[3] Borthakur, D., “The Hadoop Distributed File System:
Architecture and Design”,
http://hadoop.apache.org/common/docs/current/hdfs_design.
html

[4] Osamu Tatebe, Noriyuki Soda, Youhei Morita, Satoshi
Matsuoka, Satoshi Sekiguchi, “Gfarm v2: A Grid file system
that supports high-performance distributed and parallel data
computing,” Proceedings of CHEP ‘04, 2004.

[5] Kazuki Ohta, Shunsuke Mikami. Hadoop-Gfarm.
https://gfarm.svn.sourceforge.net/svnroot/gfarm/gfarm_hado
op/trunk/

CPU 2.33GHz Quadcore Xeon E5410 (2
sockets)

Memory 32 GB
OS Linux 2.6.18-6-amd64 SMP
Disk Hitachi HUA72101 1TB

