Basic Computational Biology

High Performance Computing Technology(1)

Introduction to parallel computing and systems

M. Sato

Contents
= What is HPC

= Parallel Computing

= Basics of Parallel computing

s Next
= Parallel Programming
= Trends of High Performance Comptuing

Lecture on Basic Computational Biology

What is HPC ?

= Today’s science (domain science) is driven by three elements
= — Experiment
= — Theory
= — Computation (Simulation)

= In many of these problems, computation performance and
capacity are required to be larger and larger
= — Floating point operation speed
= — Memory capacity (amount)
= — Memory bandwidth (memory speed)
= — Network bandwidth (network speed)
= — Disk (2nd storage) capacity
= "High Performance” does not mean only the speed but also
capacity and bandwidth

Lecture on Basic Computational Biology

Computational science

= Large-scale simulations using supercomputers
= Critical and cutting-edge methodology in all of science and engineering disciplines
= The third “pillar” in modern science and technology

supercomputers

climate

structure
CFD

Nano materials g 5
‘
’,,
. - TLL

Particles and unive

Experiment/
observation

Protein analysis

Relativity
(Einstein)

Particle accelerators astronomy

4

Meson theory o
(Yukawa) Renormalization theory

(Tomonaga) Cillision experiments

What computational science can do ...

B To explore complex phenomenon which
cannot be solved by "paper and pencil”
= Particle physics to explore origin of materials

= Phenomenon caused by aggregation of DNAs and
protein

B To explore phenomenon which cannot be
solve by experiment

= Origin of universe
= Global Warming of the earth

B To analyze a large set of data "big data"
= Genome informatics

B To reduce the cost by replacing expensive
experiments
= car crash Simulation
= CFD to design air craft

First principal method: computer simulation based on
only computation without "experimental parameters.
But it may require a huge computations

"First principal computation®...

= Schrddinger equation

he d°
2m dx*

Hy =Ly #2-|

= "first principle calculation(computation)" in
computational material

+ V(x) |y

How to make Computer fast ...

Metric of speed of computation: arithmetic operations (floating point)
per second

MFLOPS: Millions of FLoating Point OPerationS.
GFLOPS: 10° ops, TFLOPS: 1012 ops, PFLOPS: 10! pos. Exa

@ By making electric circuit work fast
= Increasing clock speed
(Frequency of processors used
in PC: 2~3GHz)
= Using fast transistor

History of hardware of supercomputers

= 1983: 1 GFLOPS, 1996:1 TFLOPS...

= Before 1990's, the main stream of "supercomputer" was
vector supercomputer

= Rapid progress of microprocessor (all components in a
chip) used for PC --- "killer micro"

= Moore's Low: integration (density) of transistor increase double
per 1.5 year

= 4004 (first microproessor, 1971, 750KHz) 8008(1972. 500KHz,
Intel) 8080(1974. 2MHz. Intel)

= Pentium 4 (2000, ~3.2GHz)

= Clock speed increased from 1MHz to
1GHz in the last three decades:

To make computer fast ...

= (@ By good mechanisms (architecture) in computer

= mechanism to execute many instruction at a time (in one
clock ...)

= Vector supercomputer: a computer with computing unit to
execute vector computation frequently used in scientific
computation

(1980's)

G [

Fujitsu VPP5000

NEC SX-5

FUJltSU VPP500 NEC SX-4
9

To make computer fast ...

= 3 by using many computer at a time
« Parallel computers, parallel processing ...
= This is @ main stream in supercomputer !

= You can find 2 or 3 processors in a PC or
"smart phone"!

10

Moore’s Law re-interpreted

10,000,000

= Progress of clock I8
speed stops after | | 7.
2000's //

= Still increasing the
number of transistors

100,000

10,000

1,000

= Multicore

= Core (computer) in "
onechip

= double in the number of
cores every 18 months

100

= Transistors (000) | —
* Clock Speed (MHz)
4 Power (W)

@ PerfiClock (ILP)

0
1970 1975 1880 1985 1990 1985 2000 2005 2010

11

TOP 500 List: How to measure (rank)
performance of supercomputers
http://www.top500.0rg/

= Ranked by the performance of benchmark program
"LINPACK"

= LINPACK solves a huge size of linear equations
« the size is more than 10 millions

= Different from the performance of "real" applications

= It does not necessarily reflect the performance of "real”
applications

= The power consumption is indicated since 2008
= The power saving is import now !

12

TOP500: & 5% 50011

Top500MtEEE = Moore’s Law X

™ n r- &= = m 1] N~ = Lo
a) q &= D o o o = g
Tl al Ll o o 3 D o = L o
apoe - -— = ™ | ™ J oy J oy

hitp="www lop300 .oy

TopliFWLAWLAZEEIL TLISHAY,
sumé&top500(&. (RIF—E#R

hlE. L—7D:XBRIfZIFTIE
. BEHR., DFY A H
S5ECHIVT14LIX500461% 55
'éid)PC(1990 M R/\aV EMFE

100FAxs
-
10 FAms o ¥00
B Sum
| FRops — 1 Tread
Line
100 THops e 500 Trend
v Line
E 10 THms — Sum Trend
Line
=
=
j -~
a

2017F T A< 1ExaF

it 51| B

Very simple example of parallel computing for high performance
for(1=0;1<1000; 1++)

Sequential computation

1| B 3] |4

S += A[i]

....................... 1000

NN NN

Parallel computation

\ ’@*S

251

S

3

essor 2

\@roce

R

\

750

751

Processor 1 K@SW

Lecture on Basic Computational Biology

14

Shared memory multi-processor system

CPU

CPU

CPU

CPU

Lecture on Basic Computational Biology

& Multiple CPUs share
main memory

€ Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
IN Main memory.

€ Enterprise Server
4 SMP Multi-core
Processors

15

Distributed memory multi-processor

CPU

_\W

Network

TIVAN
b

Lecture on Basic Computational Biology

€ System with several
computer of CPU and
memory, connected by
network.

€ Thread executed in each
computer communicate
with each other by
exchanging data
(message) via network.2

€ PC Cluster
€ AMP Multi-core processor

16

RAEa1—%4 “The K computer”

ORIKEN

17

Facts of the K computer

= The number of racks (boxes) 864

s the number of chips 82,944

s The number of cores (computers) 663,552

s Linpack perf
10.91PF
(Power 12.66MW)
2011/11 A

Amdahl’s low

= Question: How much do parallel
computers became fast by increasing
the number of processors???

o—2 7 LF—)L (Gene Amdahl.
1922F 118168 -)IX. 7A)AAD
AVE1—37—FXTILC.EERH
B, HDEBIXIBMB LURDAIZRL
& GFICT7 LI —ILD)IZE TS,
AMUITU—LDERETTHDH, MFH[O
Eoa—T420 OEERWLGTERELTT
LF—I)LDEBIN BN TS,
(wikipediakY)

Speedup by parallel computing: “Amdahl’s low”

= Amdahl’s low

= Suppose execution time of sequential part T,, ratio of sequential
part a, execution time by parallel computing using p processors T,
is (no more than) T, = a* T, + (1-a) *T,/p

= Since some part must be executed sequentially, speedup is limited
by the sequential part.

\
Exec \\
. \
tme parallel 1/p
part,
\
‘ N
= sequential
- - part
Sequential Parallel Execution
execution by p processors

Lecture on Basic Computational Biology 20

Breaking “Amdahl’s low”

= 'Gustafson's low": what about performance of real apps?

The fraction of parallel part often depends on the size of problem
For example, n-times larger problem to be solve by n-times larger parallel computers.

Weak scaling — Scaling with constant size per processor < in the case of large scale
scientific applications

Strong scaling —Scaling with constant size problem <« We need fast one-processor.

\
\
\
\
\
\
\
Y
. e E
seq parallel seq exec paralle exec
exec comp by n proc of n-times of n-times

large problem large problem

How different between the K computer and your PC?

= The processors (computer) used are almost the same!

= Even slow clock for the K computer, but some enhancement in
computing unit.

= The K computer consists of many "processors"
= 80,000 chip. 0.64 M cores
= Fast network between processors is required!

= The programmer is forced to make parallel program to make
use of many processors

= The program running on the PC (sequential program) does not run
fast |

22

Parallel computing

For efficient parallel processing, certain “granularity” of parallel processing
unit and enough degree of parallelisms are necessary

Ordinary (non-scientific) applications are not sufficient to satisfy these
conditions naturally
= ex. "Word” or “"Excel” applications do not have parallelism nor large amount of
computation in a second
Various scientific computations satisfy these conditions, and there are much
requirement of solving these problems (especially for high-end domain
science)

Large scale parallel processing is naturally getting along with HPC

So many numerical algorithms have been developed for scientific
computation which is enable on parallel systems

In many cases, matrix computation is essential, but direct solution is more
effective in some cases

Lecture on Basic Computational Biology 23

Why parallelization needs?
4 times speedup by using 4 cores!

1 core 4 cores

parallellzatmn I I I I

Using 4 cores, the execution
time is 1/4 of the single core
time

Time

24

Parallel Processing and Distributed Processing

= parallel processing is defined as a technology to
process/compute faster by using many processors
simultaneously

=« HPC(High Performance Computing)
= Scientific simulation "supercomputing”

=« HTC (High Throughput Computing)
= processing a huge amount of data "big data"

= Distributed processing is referred as a technology to
process/compute by using many processors, but it federate
several functions executed in different computers to
provide high-level services.
= Distributed objects ...
= RMI, J2EE, Jini...

25

Some terminologies

Node — A standalone "computer in a box". Usually comprised of
multiple CPUs/processors/cores. Nodes are networked together
to comprise a parallel system.

Task — A logically discrete section of computational work. A
parallel program consists of multiple tasks running on multiple
Processors.

Communications — Parallel tasks typically need to exchange
data. There are several ways this can be accomplished, such
as through a shared memory bus or over a network.

Synchronization — The coordination of parallel tasks in real
time, very often associated with communications. Often
implemented by establishing a synchronization point with an
applications where a task may not proceed further until another
task(s) reaches the same or logically equivalent point.

Lecture on Basic Computational Biology 26

Some terminologies

= Granularity — in parallel computing, granularity is a
qualitative measure of the ratio of computation to
communication.

= Coarse : relatively large amount of computational work are
done between communication events

= Fine: relatively samll amount of computational work are done
between communication events A

2w}

= Parallel overhead — The amount of time required to
coordinate parallel tasks, as opposed to doing useful work.
Parallel overhead can include factors such as:
= Task start-up time
Synchronization
Data communications
Software overhead imposed by parallel compiler, libs, tools,

awi}

¥

communication
computation

Task terminations

Lecture on Basic Computational Biology 27

Wallclock time

Overhead of parallel execution

Serial Parallel - Without Parallel - With
Execution communication If commor ¢ommunication

Sync is required
4
= 1

Perfect Load Balancing Loads of each Load Imbalance

I I proc

is dlf'feient

>
[

28

Some terminologies

Scalability — Refers to a parallel system's (hardware and/or
software) ability to demonstrate a proportionate increase in
parallel speedup with the addition of more processors. Factors
that contribute to scalability include:

= Hardware — particularly memory-cpu bandwidth and network
communications

= Application algorithm
= Parallel overhead related
= Characteristics of your coding and apps.

Lecture on Basic Computational Biology 29

Metric of Performance of Parallel Systems

= Speed up

= T : execution time by 1 processor
= 7(p) : execution time by p processors

= S(p)=1/T(p)

s(p)z speedup by processor p. if s(p)is more than 1, the speed of
computation increases

= Ideally it should be s(p)=p (PEDOTOEYHZEIRALI-FHER. pED=E

EhFEont:)

s(p)

s(p)=p is ideal -
= linear speed-up NTHT 5 (MEREAVEER M)

pDEINIZHEL Ysaturation
95(Z<DFE)

number of processor : p
30

Metric of Performance of Parallel Systems

= Efficiency

= Speedup is not useful since s(p)depends on p

= Suppose ['s(p)=p is ideall, this metric is defined as how much
this ideal is archived.

= e(p)=s(pyp
e(p) does not depend on p. It is good if it is close to 1

e(p)=1H"E4E
= linear speed-up

1
NTH T

e(p) (IENMETLAELY)

pDIENNIZHEL vsaturation
95 (ZLDIHFE)

processor p

31

Data Parallel Model

= The data parallel models demonstrates the followings:

= Most of the parallel work focuses on performing operations on a data
sets. The data set is typically organized into common structure, such as
an array or cube.

= A set of task work collectively
on the same data structure, however,

each task works on different array A
partition of the same data structure. 4 — - _

= Tasks perform the same
operation on their partition

of work do i=26,50 do i=m,n
A(i)=B(i)*delta A(i)=B(i)*delta
end do end do

task 1 task 2 task n

Lecture on Basic Computational Biology 32

Example of data parallel model

= domain decomposition " Problem Data Set

= Divide the space of simulation
into uniform grids

= Perform the same
computation on each gird,
sometimes with interaction of
neighbor

= example:

grid for computational
unit

VA i

77 77

for(t=0; t < T; t++){
for(i=0; i < N; i++)
a[i] = b[i-1] + 2*b[i] + b[i+1];
for(i=0; i < N; i++)
b[i] = a[il; .
y bl...] DEATES (1) LY gimulation space
DATIIDANHTLS 33

Simple Heat Equation

= Most problems in parallel computing require communication among the
tasks. A number of common problem require communications "neibhbor"
task. (stencil computations)

= A finite difference scheme is employed to solve the heat equations
numerically on a square regions.

= For the fully explicit problem, a time stepping algorithm is used. The
element of a 2-dimensional array represent the temperature at the point on
the square.

UH’,_'," = UX,}I’

+C *(Uyqy *Upgy 27U,)

+ C}, - (Ux,}ﬁj + Ux,},_j -2" Ux,},) .

U x,y+1

Ux1y | Uxy U x+1,y

U x,y-1

Lecture on Basic Computational Biology

Simple Heat Equation

= The entire array is partitioned and distributed as subarray to all
task. Each task owns a portion of the total array.
= send slave read of ul to neighbor processor
= receive ul
= compute u2 at each processor
= update ul with u2
= repeat the above computation until
the condition is satisfied.

doiy = 2, ny-1
do ix = 2, nx-1
u2(ix,iy) = ul(ix,iy)+
cx*(ul(ix+1),y)+ul(ix+1,iy)-2*ul(ix,iy))+
cy*(ul(ix,iy+1)+ul(ix,iy-1)-2*(ix,iy))
end do
end do

Lecture on Basic Computational Biology 35

Pipeline

= Breaking a task into steps performed by different processors
unit, with inputs streams through, much like assemble lines

= Example: signal processing
to P5 I I to P1
' +—

P1 P2 P3 P4

time
Plants
Herbivores
Carnivores

data

36

time

master/worker parallel processing

one master processor and several worker processors
A pool of work in master processor.
master pick up one work to send the work to a worker.

When worker finish the given work, then it return the result
and receive next work

master:: worker::

// give a job to each worker while(1){

while(1){ // receive a job from master
// receive a worker’s result // process the job
// give the next job to that worker // send the result to master

¥ }

37

master/worker parallel processing

= It is effective parallel processing when each work have
different load --> load balancing

job pool (EP)=/\Z2ZhH 5
38

Load Balancing

Load Balancing refers to the practice of distributing work among tasks so
that all tasks kept busy all of the time. It can be considered a
minimization of task idle time.

Load balancing is important to parallel programs for performance. For
example, if all tasks are subject to a barrier sync point, the slowest task
will determine the overall performance.

How to achieve load balance:
= Equally partition the work
each tasks receive.
= Use dynamic work assignment
« Master-Worker

time

Example: Molecular Dynamics with cut-off radius

= MD (Molecular Dynamics)

=« Compute interaction between P particles in n-
dimensional space.

= Interaction may be force between particles

« If the force is effective only within near fields, o
cut-off distance can be assumed. °

o

cut-off radius

® 4
= T0 save the computations, only computation f'J .
within the cut-off radius should be done, not e | o 7L L

) : cell
all-to-all interaction, *

= Space is divided into cell by "domain
decomposition" assigned to each node, and each
node computes particles within the assigned cell particle
= If the size of cell is larger than the cut-off
radius, nodes may communicate only with nodes
of neighbor cells (cell mapping method)

40

Example: Molecular Dynamics with cut-off

Particles moves by the force of interaction from
other particles, as steps go. As a result, it may
happens that many particles moves into a certain
cell. (condense)

In the case that cell is assigned to nodes in one-
to-one manner, load imbalance may occur.

In order to keep load balance, the number of
particles computed by nodes should be balanced
rather than the number of cells.

Methods:

= Method 1) Periodically, the number of cells are re-
assigned (adjusted) according to the density of
particles in the cell (the number of particle/cell)

=« Method 2) If the number of cells is far more than
the number of nodes, use cyclic mapping rather
than block mapping.

= Method 3) Use particle mapping, not cell mapping.

light-loaded cell

heavy-loaded cell

41

Example: Molecular Dynamics with cut-off

Method 1)

To re-assign cells to nodes, a large amount of data should be
exchanged (needs much comm) Since assignment will be irregular, the
communication pattern is not neighbor communication.

Method 2)
Cyclic mapping is a simple way to take a good load balance. But, the
communication pattern is not neighbor communication.

Method 3)

To keep track which nodes each particle is assigned to, the table to
manage the index table of the assignment between particles and
nodes, resulting a complicated and expensive computation and
communications.

= No best solution for all cases.

Depends on the characteristics of phenomenon to be solved (how
particle behaves, or what potential force.).

It may important to keep load balancing in the case of heavily load
imbalance.

