
High Performance Computing Technology(1)

Introduction to parallel computing and systems

M. Sato

Basic Computational Biology

2Lecture on Basic Computational Biology

Contents

 What is HPC

 Parallel Computing

 Basics of Parallel computing

 Next
 Parallel Programming
 Trends of High Performance Comptuing

What is HPC ?
 Today’s science (domain science) is driven by three elements

 – Experiment
 – Theory
 – Computation (Simulation)

 In many of these problems, computation performance and
capacity are required to be larger and larger
 – Floating point operation speed
 – Memory capacity (amount)
 – Memory bandwidth (memory speed)
 – Network bandwidth (network speed)
 – Disk (2nd storage) capacity

 “High Performance” does not mean only the speed but also
capacity and bandwidth

3Lecture on Basic Computational Biology

4

Computational science
 Large-scale simulations using supercomputers
 Critical and cutting-edge methodology in all of science and engineering disciplines
 The third “pillar” in modern science and technology

What computational science can do ...
 To explore complex phenomenon which

cannot be solved by "paper and pencil"
 Particle physics to explore origin of materials
 Phenomenon caused by aggregation of DNAs and

protein

 To explore phenomenon which cannot be
solve by experiment
 Origin of universe
 Global Warming of the earth

 To analyze a large set of data "big data"
 Genome informatics

 To reduce the cost by replacing expensive
experiments
 car crash Simulation
 CFD to design air craft

First principal method: computer simulation based on
only computation without "experimental parameters.
But it may require a huge computations

"First principal computation"…

 Schrödinger equation

 "first principle calculation(computation)" in
computational material

6

7

How to make Computer fast ...
 Metric of speed of computation: arithmetic operations (floating point)

per second
 MFLOPS: Millions of FLoating Point OPerationS.
 GFLOPS： 109 ops， TFLOPS： 1012 ops， PFLOPS： 1015 pos、Exa

 ① By making electric circuit work fast
 Increasing clock speed
(Frequency of processors used
in PC: 2～3GHz)
 Using fast transistor

8

History of hardware of supercomputers
 1983: 1 GFLOPS，1996:1 TFLOPS…
 Before 1990's, the main stream of "supercomputer" was

vector supercomputer

 Rapid progress of microprocessor (all components in a
chip) used for PC --- "killer micro"
 Moore's Low: integration (density) of transistor increase double

per 1.5 year
 ４００４(first microproessor、1971、750KHz) ８００８(1972、500KHz、

Intel) ８０８０(1974、2MHz、Intel)
 Pentium 4 (2000、～3.2GHz)

 Clock speed increased from 1MHz to
1GHz in the last three decades

9

To make computer fast …

 ② By good mechanisms (architecture) in computer
 mechanism to execute many instruction at a time (in one

clock ...)
 Vector supercomputer: a computer with computing unit to

execute vector computation frequently used in scientific
computation
（1980's）

Fujitsu VPP500

Fujitsu VPP5000 NEC SX-5

NEC SX-4

10

To make computer fast …

 ③ by using many computer at a time
 Parallel computers, parallel processing ...
 This is a main stream in supercomputer！

 You can find 2 or 3 processors in a ＰＣ or
"smart phone"!

11

Moore’s Law re-interpreted

 Progress of clock
speed stops after
2000's

 Still increasing the
number of transistors

 Multicore
 Core (computer) in

onechip
 double in the number of

cores every 18 months

12

TOP 500 List: How to measure (rank)
performance of supercomputers

http://www.top500.org/

 Ranked by the performance of benchmark program
"LINPACK"
 LINPACK solves a huge size of linear equations
 the size is more than 10 millions

 Different from the performance of "real" applications
 It does not necessarily reflect the performance of "real"

applications

 The power consumption is indicated since 2008
 The power saving is import now !

13

ＴＯＰ500：全世界のスパコンランキング５００位

 Top1はいろいろ変動しているが、
sumとtop500は、ほぼ一直線

 これは、ムーアの法則だけでは
なく、台数効果、つまり並列処理

 ５年ぐらいで１位は500位落ちる
 今のPCは1990年のスパコンと同

じ
 2017年ごろには1ExaF

Top500の性能 ＝ Moore’s Law × 並列度

14Lecture on Basic Computational Biology

Very simple example of parallel computing for high performance
for(i=0;i<1000; i++)

S += A[i]

1 2 3 4 1000

+ S

1 2 1000250 251 500 501 750 751

+ + + +

+ S

Sequential computation

Parallel computation

Processor１ Processor ２ プProcessor ３ Processor ４

15Lecture on Basic Computational Biology

Shared memory multi-processor system

CPU CPU CPU CPU

ＭＥＭ

BUS

Multiple CPUs share
main memory

Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
in main memory.

Enterprise Server
SMP Multi-core

processors

16Lecture on Basic Computational Biology

Distributed memory multi-processor

CPU CPU

CPU CPU

MEM

MEM MEM

MEM

Network

System with several
computer of CPU and
memory, connected by
network.

Thread executed in each
computer communicate
with each other by
exchanging data
(message) via network.タ

PC Cluster
AMP Multi-core processor

17

京コンピュータ “The K computer"

18

Facts of the K computer

 The number of racks (boxes) 864

 the number of chips 82,944

 The number of cores (computers) 663,552

 Linpack perf

10.51PF

(Power 12.66MW)

2011/11月

Amdahl’s low
 Question: How much do parallel

computers became fast by increasing
the number of processors???

19

ジーン・アムダール（Gene Amdahl、
1922年11月16日 - ）は、アメリカ人の
コンピュータアーキテクトで、企業家あ
る。彼の業績はIBMおよび彼の創設し
た会社(特にアムダール社)における、
メインフレームの設計である。並列コン
ピューティングの基本的な理論としてア
ムダールの法則がよく知られている。
(wikipediaより)

20Lecture on Basic Computational Biology

Speedup by parallel computing：”Amdahl’s low”
 Amdahl’s low

 Suppose execution time of sequential part T1, ratio of sequential
part α, execution time by parallel computing using p processors Tp
is (no more than) Tp = α＊T1 + (1-α)＊T1/p

 Since some part must be executed sequentially, speedup is limited
by the sequential part.

Exec
time

sequential
part

parallel
part

Sequential
execution

Parallel Execution
by p processors

1/p

Breaking ”Amdahl’s low”
 "Gustafson's low"： what about performance of real apps?

 The fraction of parallel part often depends on the size of problem
 For example, n-times larger problem to be solve by n-times larger parallel computers.
 Weak scaling – Scaling with constant size per processor ← in the case of large scale

scientific applications
 Strong scaling －Scaling with constant size problem ← We need fast one-processor.

exec
time

seq
exec

parallel
comp by n proc

seq exec
of n-times

large problem

paralle exec
of n-times

large problem

How different between the K computer and your PC?

 The processors (computer) used are almost the same!
 Even slow clock for the K computer, but some enhancement in

computing unit.

 The K computer consists of many "processors"
 80,000 chip、0.64 M cores
 Fast network between processors is required!

 The programmer is forced to make parallel program to make
use of many processors
 The program running on the PC (sequential program) does not run

fast !

22

Parallel computing
 For efficient parallel processing, certain “granularity” of parallel processing

unit and enough degree of parallelisms are necessary
 Ordinary (non-scientific) applications are not sufficient to satisfy these

conditions naturally
 ex. “Word” or “Excel” applications do not have parallelism nor large amount of

computation in a second
 Various scientific computations satisfy these conditions, and there are much

requirement of solving these problems (especially for high-end domain
science)

 Large scale parallel processing is naturally getting along with HPC
 So many numerical algorithms have been developed for scientific

computation which is enable on parallel systems
 In many cases, matrix computation is essential, but direct solution is more

effective in some cases

23Lecture on Basic Computational Biology

24

Why parallelization needs?
4 times speedup by using 4 cores!

25

Parallel Processing and Distributed Processing

 parallel processing is defined as a technology to
process/compute faster by using many processors
simultaneously
 HPC(High Performance Computing)

 scientific simulation "supercomputing"
 HTC (High Throughput Computing)

 processing a huge amount of data "big data"

 Distributed processing is referred as a technology to
process/compute by using many processors, but it federate
several functions executed in different computers to
provide high-level services.
 Distributed objects ...
 RMI , J2EE, Jini…

Some terminologies
 Node – A standalone "computer in a box". Usually comprised of

multiple CPUs/processors/cores. Nodes are networked together
to comprise a parallel system.

 Task – A logically discrete section of computational work. A
parallel program consists of multiple tasks running on multiple
processors.

 Communications – Parallel tasks typically need to exchange
data. There are several ways this can be accomplished, such
as through a shared memory bus or over a network.

 Synchronization – The coordination of parallel tasks in real
time, very often associated with communications. Often
implemented by establishing a synchronization point with an
applications where a task may not proceed further until another
task(s) reaches the same or logically equivalent point.

26Lecture on Basic Computational Biology

Some terminologies
 Granularity – in parallel computing, granularity is a

qualitative measure of the ratio of computation to
communication.
 Coarse : relatively large amount of computational work are

done between communication events
 Fine: relatively samll amount of computational work are done

between communication events

 Parallel overhead – The amount of time required to
coordinate parallel tasks, as opposed to doing useful work.
Parallel overhead can include factors such as:
 Task start-up time
 Synchronization
 Data communications
 Software overhead imposed by parallel compiler, libs, tools,

...
 Task terminations

27Lecture on Basic Computational Biology

28

Overhead of parallel execution

If comm or
Sync is required

Loads of each
proc

is different

Some terminologies
 Scalability – Refers to a parallel system's (hardware and/or

software) ability to demonstrate a proportionate increase in
parallel speedup with the addition of more processors. Factors
that contribute to scalability include:
 Hardware – particularly memory-cpu bandwidth and network

communications
 Application algorithm
 Parallel overhead related
 Characteristics of your coding and apps.

29Lecture on Basic Computational Biology

Metric of Performance of Parallel Systems
 Speed up

 T : execution time by 1 processor
 T(p) : execution time by p processors
 s(p)=T/T(p)

s(p)を: speedup by processor p. if s(p) is more than 1, the speed of
computation increases

 Ideally it should be s(p)=p （p台のプロセッサを投入した結果、p倍の速
度が得られた）

number of processor : p

s(p)

s(p)=p is ideal
⇒ linear speed-up

pの増加に従いsaturation
する（多くの場合）

これでも十分（性能が単調増加）

30

Metric of Performance of Parallel Systems
 Efficiency

 Speedup is not useful since s(p) depends on p
 Suppose 「s(p)=p is ideal」, this metric is defined as how much

this ideal is archived.
 e(p)=s(p)/p

e(p) does not depend on p. It is good if it is close to 1

e(p)

e(p)=1が理想
⇒ linear speed-up

pの増加に従いsaturation
する（多くの場合）

これでも十分
（効率が低下しない）

processor p

1

31

Data Parallel Model
 The data parallel models demonstrates the followings:

 Most of the parallel work focuses on performing operations on a data
sets. The data set is typically organized into common structure, such as
an array or cube.

 A set of task work collectively
on the same data structure, however,
each task works on different
partition of the same data structure.
 Tasks perform the same
operation on their partition
of work

32Lecture on Basic Computational Biology

Example of data parallel model

 domain decomposition
 Divide the space of simulation

into uniform grids
 Perform the same

computation on each gird,
sometimes with interaction of
neighbor

 example:

for(t=0; t < T; t++){
for(i=0; i < N; i++)

a[i] = b[i-1] + 2*b[i] + b[i+1];
for(i=0; i < N; i++)

b[i] = a[i];
} simulation space

grid for computational
unit

b[…] の部分で自分 (i) 以外
のインデックスが出てくる 33

Simple Heat Equation
 Most problems in parallel computing require communication among the

tasks. A number of common problem require communications "neibhbor"
task. (stencil computations)

 A finite difference scheme is employed to solve the heat equations
numerically on a square regions.

 For the fully explicit problem, a time stepping algorithm is used. The
element of a 2-dimensional array represent the temperature at the point on
the square.

34Lecture on Basic Computational Biology

Simple Heat Equation
 The entire array is partitioned and distributed as subarray to all

task. Each task owns a portion of the total array.
 send slave read of u1 to neighbor processor
 receive u1
 compute u2 at each processor
 update u1 with u2
 repeat the above computation until

the condition is satisfied.

35Lecture on Basic Computational Biology

do iy = 2, ny-1
do ix = 2, nx-1
u2(ix,iy) = u1(ix,iy)+

cx*(u1(ix+1),y)+u1(ix+1,iy)-2*u1(ix,iy))+
cy*(u1(ix,iy+1)+u1(ix,iy-1)-2*(ix,iy))

end do
end do

Pipeline
 Breaking a task into steps performed by different processors

unit, with inputs streams through, much like assemble lines
 Example: signal processing

36

master/worker parallel processing
 one master processor and several worker processors
 A pool of work in master processor.
 master pick up one work to send the work to a worker.
 When worker finish the given work, then it return the result

and receive next work

master:: worker::
// give a job to each worker while(1){
while(1){ // receive a job from master

// receive a worker’s result // process the job
// give the next job to that worker // send the result to master

} }

37

master/worker parallel processing
 It is effective parallel processing when each work have

different load --> load balancing

．．．

job pool (EP)⇒バラつきがある

38

master
worker#1

worker#2

worker#3

worker#N

．
．
．

．
．
．

Load Balancing
 Load Balancing refers to the practice of distributing work among tasks so

that all tasks kept busy all of the time. It can be considered a
minimization of task idle time.

 Load balancing is important to parallel programs for performance. For
example, if all tasks are subject to a barrier sync point, the slowest task
will determine the overall performance.

 How to achieve load balance:
 Equally partition the work
each tasks receive.
 Use dynamic work assignment

 Master-Worker

39

Example： Molecular Dynamics with cut-off radius
 MD (Molecular Dynamics)

 Compute interaction between P particles in n-
dimensional space.

 Interaction may be force between particles
 If the force is effective only within near fields,

cut-off distance can be assumed.

 To save the computations, only computation
within the cut-off radius should be done, not
all-to-all interaction,
 Space is divided into cell by "domain

decomposition" assigned to each node, and each
node computes particles within the assigned cell
⇒ If the size of cell is larger than the cut-off
radius, nodes may communicate only with nodes
of neighbor cells （cell mapping method）

particle

cut-off radius

40

cell

Example： Molecular Dynamics with cut-off
 Particles moves by the force of interaction from

other particles, as steps go. As a result, it may
happens that many particles moves into a certain
cell. (condense)

 In the case that cell is assigned to nodes in one-
to-one manner, load imbalance may occur.

 In order to keep load balance, the number of
particles computed by nodes should be balanced
rather than the number of cells.

 Methods:
 Method 1) Periodically, the number of cells are re-

assigned (adjusted) according to the density of
particles in the cell (the number of particle/cell)

 Method 2) If the number of cells is far more than
the number of nodes, use cyclic mapping rather
than block mapping.

 Method 3) Use particle mapping, not cell mapping.

heavy-loaded cell

light-loaded cell

41

Example： Molecular Dynamics with cut-off
 Method 1)

To re-assign cells to nodes, a large amount of data should be
exchanged (needs much comm) Since assignment will be irregular, the
communication pattern is not neighbor communication.

 Method 2)
Cyclic mapping is a simple way to take a good load balance. But, the
communication pattern is not neighbor communication.

 Method 3)
To keep track which nodes each particle is assigned to, the table to
manage the index table of the assignment between particles and
nodes, resulting a complicated and expensive computation and
communications.

⇒ No best solution for all cases.
 Depends on the characteristics of phenomenon to be solved (how

particle behaves, or what potential force.).
 It may important to keep load balancing in the case of heavily load

imbalance. 42

