
High Performance Computing Technology(1)

Introduction to parallel computing and systems

M. Sato

Basic Computational Biology

2Lecture on Basic Computational Biology

Contents

 What is HPC

 Parallel Computing

 Basics of Parallel computing

 Next
 Parallel Programming
 Trends of High Performance Comptuing

What is HPC ?
 Today’s science (domain science) is driven by three elements

 – Experiment
 – Theory
 – Computation (Simulation)

 In many of these problems, computation performance and
capacity are required to be larger and larger
 – Floating point operation speed
 – Memory capacity (amount)
 – Memory bandwidth (memory speed)
 – Network bandwidth (network speed)
 – Disk (2nd storage) capacity

 “High Performance” does not mean only the speed but also
capacity and bandwidth

3Lecture on Basic Computational Biology

4

Computational science
 Large-scale simulations using supercomputers
 Critical and cutting-edge methodology in all of science and engineering disciplines
 The third “pillar” in modern science and technology

What computational science can do ...
 To explore complex phenomenon which

cannot be solved by "paper and pencil"
 Particle physics to explore origin of materials
 Phenomenon caused by aggregation of DNAs and

protein

 To explore phenomenon which cannot be
solve by experiment
 Origin of universe
 Global Warming of the earth

 To analyze a large set of data "big data"
 Genome informatics

 To reduce the cost by replacing expensive
experiments
 car crash Simulation
 CFD to design air craft

First principal method: computer simulation based on
only computation without "experimental parameters.
But it may require a huge computations

"First principal computation"…

 Schrödinger equation

 "first principle calculation(computation)" in
computational material

6

7

How to make Computer fast ...
 Metric of speed of computation: arithmetic operations (floating point)

per second
 MFLOPS: Millions of FLoating Point OPerationS.
 GFLOPS： 109 ops， TFLOPS： 1012 ops， PFLOPS： 1015 pos、Exa

 ① By making electric circuit work fast
 Increasing clock speed
(Frequency of processors used
in PC: 2～3GHz)
 Using fast transistor

8

History of hardware of supercomputers
 1983: 1 GFLOPS，1996:1 TFLOPS…
 Before 1990's, the main stream of "supercomputer" was

vector supercomputer

 Rapid progress of microprocessor (all components in a
chip) used for PC --- "killer micro"
 Moore's Low: integration (density) of transistor increase double

per 1.5 year
 ４００４(first microproessor、1971、750KHz) ８００８(1972、500KHz、

Intel) ８０８０(1974、2MHz、Intel)
 Pentium 4 (2000、～3.2GHz)

 Clock speed increased from 1MHz to
1GHz in the last three decades

9

To make computer fast …

 ② By good mechanisms (architecture) in computer
 mechanism to execute many instruction at a time (in one

clock ...)
 Vector supercomputer: a computer with computing unit to

execute vector computation frequently used in scientific
computation
（1980's）

Fujitsu VPP500

Fujitsu VPP5000 NEC SX-5

NEC SX-4

10

To make computer fast …

 ③ by using many computer at a time
 Parallel computers, parallel processing ...
 This is a main stream in supercomputer！

 You can find 2 or 3 processors in a ＰＣ or
"smart phone"!

11

Moore’s Law re-interpreted

 Progress of clock
speed stops after
2000's

 Still increasing the
number of transistors

 Multicore
 Core (computer) in

onechip
 double in the number of

cores every 18 months

12

TOP 500 List: How to measure (rank)
performance of supercomputers

http://www.top500.org/

 Ranked by the performance of benchmark program
"LINPACK"
 LINPACK solves a huge size of linear equations
 the size is more than 10 millions

 Different from the performance of "real" applications
 It does not necessarily reflect the performance of "real"

applications

 The power consumption is indicated since 2008
 The power saving is import now !

13

ＴＯＰ500：全世界のスパコンランキング５００位

 Top1はいろいろ変動しているが、
sumとtop500は、ほぼ一直線

 これは、ムーアの法則だけでは
なく、台数効果、つまり並列処理

 ５年ぐらいで１位は500位落ちる
 今のPCは1990年のスパコンと同

じ
 2017年ごろには1ExaF

Top500の性能 ＝ Moore’s Law × 並列度

14Lecture on Basic Computational Biology

Very simple example of parallel computing for high performance
for(i=0;i<1000; i++)

S += A[i]

1 2 3 4 1000

+ S

1 2 1000250 251 500 501 750 751

+ + + +

+ S

Sequential computation

Parallel computation

Processor１ Processor ２ プProcessor ３ Processor ４

15Lecture on Basic Computational Biology

Shared memory multi-processor system

CPU CPU CPU CPU

ＭＥＭ

BUS

Multiple CPUs share
main memory

Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
in main memory.

Enterprise Server
SMP Multi-core

processors

16Lecture on Basic Computational Biology

Distributed memory multi-processor

CPU CPU

CPU CPU

MEM

MEM MEM

MEM

Network

System with several
computer of CPU and
memory, connected by
network.

Thread executed in each
computer communicate
with each other by
exchanging data
(message) via network.タ

PC Cluster
AMP Multi-core processor

17

京コンピュータ “The K computer"

18

Facts of the K computer

 The number of racks (boxes) 864

 the number of chips 82,944

 The number of cores (computers) 663,552

 Linpack perf

10.51PF

(Power 12.66MW)

2011/11月

Amdahl’s low
 Question: How much do parallel

computers became fast by increasing
the number of processors???

19

ジーン・アムダール（Gene Amdahl、
1922年11月16日 - ）は、アメリカ人の
コンピュータアーキテクトで、企業家あ
る。彼の業績はIBMおよび彼の創設し
た会社(特にアムダール社)における、
メインフレームの設計である。並列コン
ピューティングの基本的な理論としてア
ムダールの法則がよく知られている。
(wikipediaより)

20Lecture on Basic Computational Biology

Speedup by parallel computing：”Amdahl’s low”
 Amdahl’s low

 Suppose execution time of sequential part T1, ratio of sequential
part α, execution time by parallel computing using p processors Tp
is (no more than) Tp = α＊T1 + (1-α)＊T1/p

 Since some part must be executed sequentially, speedup is limited
by the sequential part.

Exec
time

sequential
part

parallel
part

Sequential
execution

Parallel Execution
by p processors

1/p

Breaking ”Amdahl’s low”
 "Gustafson's low"： what about performance of real apps?

 The fraction of parallel part often depends on the size of problem
 For example, n-times larger problem to be solve by n-times larger parallel computers.
 Weak scaling – Scaling with constant size per processor ← in the case of large scale

scientific applications
 Strong scaling －Scaling with constant size problem ← We need fast one-processor.

exec
time

seq
exec

parallel
comp by n proc

seq exec
of n-times

large problem

paralle exec
of n-times

large problem

How different between the K computer and your PC?

 The processors (computer) used are almost the same!
 Even slow clock for the K computer, but some enhancement in

computing unit.

 The K computer consists of many "processors"
 80,000 chip、0.64 M cores
 Fast network between processors is required!

 The programmer is forced to make parallel program to make
use of many processors
 The program running on the PC (sequential program) does not run

fast !

22

Parallel computing
 For efficient parallel processing, certain “granularity” of parallel processing

unit and enough degree of parallelisms are necessary
 Ordinary (non-scientific) applications are not sufficient to satisfy these

conditions naturally
 ex. “Word” or “Excel” applications do not have parallelism nor large amount of

computation in a second
 Various scientific computations satisfy these conditions, and there are much

requirement of solving these problems (especially for high-end domain
science)

 Large scale parallel processing is naturally getting along with HPC
 So many numerical algorithms have been developed for scientific

computation which is enable on parallel systems
 In many cases, matrix computation is essential, but direct solution is more

effective in some cases

23Lecture on Basic Computational Biology

24

Why parallelization needs?
4 times speedup by using 4 cores!

25

Parallel Processing and Distributed Processing

 parallel processing is defined as a technology to
process/compute faster by using many processors
simultaneously
 HPC(High Performance Computing)

 scientific simulation "supercomputing"
 HTC (High Throughput Computing)

 processing a huge amount of data "big data"

 Distributed processing is referred as a technology to
process/compute by using many processors, but it federate
several functions executed in different computers to
provide high-level services.
 Distributed objects ...
 RMI , J2EE, Jini…

Some terminologies
 Node – A standalone "computer in a box". Usually comprised of

multiple CPUs/processors/cores. Nodes are networked together
to comprise a parallel system.

 Task – A logically discrete section of computational work. A
parallel program consists of multiple tasks running on multiple
processors.

 Communications – Parallel tasks typically need to exchange
data. There are several ways this can be accomplished, such
as through a shared memory bus or over a network.

 Synchronization – The coordination of parallel tasks in real
time, very often associated with communications. Often
implemented by establishing a synchronization point with an
applications where a task may not proceed further until another
task(s) reaches the same or logically equivalent point.

26Lecture on Basic Computational Biology

Some terminologies
 Granularity – in parallel computing, granularity is a

qualitative measure of the ratio of computation to
communication.
 Coarse : relatively large amount of computational work are

done between communication events
 Fine: relatively samll amount of computational work are done

between communication events

 Parallel overhead – The amount of time required to
coordinate parallel tasks, as opposed to doing useful work.
Parallel overhead can include factors such as:
 Task start-up time
 Synchronization
 Data communications
 Software overhead imposed by parallel compiler, libs, tools,

...
 Task terminations

27Lecture on Basic Computational Biology

28

Overhead of parallel execution

If comm or
Sync is required

Loads of each
proc

is different

Some terminologies
 Scalability – Refers to a parallel system's (hardware and/or

software) ability to demonstrate a proportionate increase in
parallel speedup with the addition of more processors. Factors
that contribute to scalability include:
 Hardware – particularly memory-cpu bandwidth and network

communications
 Application algorithm
 Parallel overhead related
 Characteristics of your coding and apps.

29Lecture on Basic Computational Biology

Metric of Performance of Parallel Systems
 Speed up

 T : execution time by 1 processor
 T(p) : execution time by p processors
 s(p)=T/T(p)

s(p)を: speedup by processor p. if s(p) is more than 1, the speed of
computation increases

 Ideally it should be s(p)=p （p台のプロセッサを投入した結果、p倍の速
度が得られた）

number of processor : p

s(p)

s(p)=p is ideal
⇒ linear speed-up

pの増加に従いsaturation
する（多くの場合）

これでも十分（性能が単調増加）

30

Metric of Performance of Parallel Systems
 Efficiency

 Speedup is not useful since s(p) depends on p
 Suppose 「s(p)=p is ideal」, this metric is defined as how much

this ideal is archived.
 e(p)=s(p)/p

e(p) does not depend on p. It is good if it is close to 1

e(p)

e(p)=1が理想
⇒ linear speed-up

pの増加に従いsaturation
する（多くの場合）

これでも十分
（効率が低下しない）

processor p

1

31

Data Parallel Model
 The data parallel models demonstrates the followings:

 Most of the parallel work focuses on performing operations on a data
sets. The data set is typically organized into common structure, such as
an array or cube.

 A set of task work collectively
on the same data structure, however,
each task works on different
partition of the same data structure.
 Tasks perform the same
operation on their partition
of work

32Lecture on Basic Computational Biology

Example of data parallel model

 domain decomposition
 Divide the space of simulation

into uniform grids
 Perform the same

computation on each gird,
sometimes with interaction of
neighbor

 example:

for(t=0; t < T; t++){
for(i=0; i < N; i++)

a[i] = b[i-1] + 2*b[i] + b[i+1];
for(i=0; i < N; i++)

b[i] = a[i];
} simulation space

grid for computational
unit

b[…] の部分で自分 (i) 以外
のインデックスが出てくる 33

Simple Heat Equation
 Most problems in parallel computing require communication among the

tasks. A number of common problem require communications "neibhbor"
task. (stencil computations)

 A finite difference scheme is employed to solve the heat equations
numerically on a square regions.

 For the fully explicit problem, a time stepping algorithm is used. The
element of a 2-dimensional array represent the temperature at the point on
the square.

34Lecture on Basic Computational Biology

Simple Heat Equation
 The entire array is partitioned and distributed as subarray to all

task. Each task owns a portion of the total array.
 send slave read of u1 to neighbor processor
 receive u1
 compute u2 at each processor
 update u1 with u2
 repeat the above computation until

the condition is satisfied.

35Lecture on Basic Computational Biology

do iy = 2, ny-1
do ix = 2, nx-1
u2(ix,iy) = u1(ix,iy)+

cx*(u1(ix+1),y)+u1(ix+1,iy)-2*u1(ix,iy))+
cy*(u1(ix,iy+1)+u1(ix,iy-1)-2*(ix,iy))

end do
end do

Pipeline
 Breaking a task into steps performed by different processors

unit, with inputs streams through, much like assemble lines
 Example: signal processing

36

master/worker parallel processing
 one master processor and several worker processors
 A pool of work in master processor.
 master pick up one work to send the work to a worker.
 When worker finish the given work, then it return the result

and receive next work

master:: worker::
// give a job to each worker while(1){
while(1){ // receive a job from master

// receive a worker’s result // process the job
// give the next job to that worker // send the result to master

} }

37

master/worker parallel processing
 It is effective parallel processing when each work have

different load --> load balancing

．．．

job pool (EP)⇒バラつきがある

38

master
worker#1

worker#2

worker#3

worker#N

．
．
．

．
．
．

Load Balancing
 Load Balancing refers to the practice of distributing work among tasks so

that all tasks kept busy all of the time. It can be considered a
minimization of task idle time.

 Load balancing is important to parallel programs for performance. For
example, if all tasks are subject to a barrier sync point, the slowest task
will determine the overall performance.

 How to achieve load balance:
 Equally partition the work
each tasks receive.
 Use dynamic work assignment

 Master-Worker

39

Example： Molecular Dynamics with cut-off radius
 MD (Molecular Dynamics)

 Compute interaction between P particles in n-
dimensional space.

 Interaction may be force between particles
 If the force is effective only within near fields,

cut-off distance can be assumed.

 To save the computations, only computation
within the cut-off radius should be done, not
all-to-all interaction,
 Space is divided into cell by "domain

decomposition" assigned to each node, and each
node computes particles within the assigned cell
⇒ If the size of cell is larger than the cut-off
radius, nodes may communicate only with nodes
of neighbor cells （cell mapping method）

particle

cut-off radius

40

cell

Example： Molecular Dynamics with cut-off
 Particles moves by the force of interaction from

other particles, as steps go. As a result, it may
happens that many particles moves into a certain
cell. (condense)

 In the case that cell is assigned to nodes in one-
to-one manner, load imbalance may occur.

 In order to keep load balance, the number of
particles computed by nodes should be balanced
rather than the number of cells.

 Methods:
 Method 1) Periodically, the number of cells are re-

assigned (adjusted) according to the density of
particles in the cell (the number of particle/cell)

 Method 2) If the number of cells is far more than
the number of nodes, use cyclic mapping rather
than block mapping.

 Method 3) Use particle mapping, not cell mapping.

heavy-loaded cell

light-loaded cell

41

Example： Molecular Dynamics with cut-off
 Method 1)

To re-assign cells to nodes, a large amount of data should be
exchanged (needs much comm) Since assignment will be irregular, the
communication pattern is not neighbor communication.

 Method 2)
Cyclic mapping is a simple way to take a good load balance. But, the
communication pattern is not neighbor communication.

 Method 3)
To keep track which nodes each particle is assigned to, the table to
manage the index table of the assignment between particles and
nodes, resulting a complicated and expensive computation and
communications.

⇒ No best solution for all cases.
 Depends on the characteristics of phenomenon to be solved (how

particle behaves, or what potential force.).
 It may important to keep load balancing in the case of heavily load

imbalance. 42

