
GPU Programming (2)

M. Sato

RIKEN R-CCS
and University of Tsukuba

Sep. 2021 Advanced Course in Massively Parallel Computing 1

Contents

 Cuda (NVIDIA)
 HIP(AMD)
 OpenCL
 SYCL
 OneAPI (Intel ?)

 OpenACC
 OpenMP

 C++ template programming
− Kokkos
− Raja
Sep. 2021 Advanced Course in Massively Parallel Computing 2

Supercomputers in US around 2021-2023

 Frontier (ORNL, 2021), El Capitan (LLNL/SNL, 2023?)
− AMD CPU + AMD GPU

 Aurora (ANL, 2022)
− Intel CPU + Intel GPU (Xe)

 NERSC-9 Perlmutter (LBNL/NERSC)
− AMD CPU + NVIDIA GPU

 All US supercomputers have (different!) GPUs! Targeting to ExaFLOPS

Sep. 2021 Advanced Course in Massively Parallel Computing 3

OpenCL
 Programming language for general purpose GPU computing.
 While C for CUDA is proprietary by NVIDIA, OpenCL is

targeting cross-platform environments.
− Only only for GPU such as NVIDIA and AMD(ATI), but also for

conventional multicore CPU and many-core, such as Cell Broadband
Engine(Cell B.E) and Intel MIC

 The point is that it targets for data parallel program by GPU
and also for task-parallel of multi-core.

 What is different from CUDA?：Similar programming mode
for kernel, but different in execution environment.
− OpenCL is supported to other GPU such as AMD and Intel
Sep. 2021 Advanced Course in Massively Parallel Computing 4

Kernel and Memory model

 xxx

Sep. 2021 Advanced Course in Massively Parallel Computing 5

Execution Environment of OpenCL

Sep. 2021 Advanced Course in Massively Parallel Computing 6

Example

 Saxpy kernel

__kernel void saxpy(
__global float* restrict arrayX,
__global float* restrict arrayY,
const float a
)

{
unsigned int i = get_global_id(0);
arrayY[i] += arrayX[i]*a;

}

Sep. 2021 Advanced Course in Massively Parallel Computing 7

int main(int argc, char **argv)
{

cl_device_id devId;
cl_context context = NULL;
cl_command_queue cmdQueue = NULL;
cl_program prog = NULL;
cl_kernel kern0 = NULL;
cl_platform_id platformId = NULL;
cl_uint numDevices;
cl_uint numPlatforms;
cl_int ret;
cl_event event0;
cl_mem clxArray, clyArray;
size_t globalWorkSize[3] = {1};
size_t localWorkSize[3] = {1};
const char options[] = "";
cl_int binStat;
FILE *fp;
char filename[] = "./saxpy.aocx";
struct stat st;
unsigned char *programBin = NULL;
size_t programBinLength;
unsigned int size;
float a;
double start, end, elapsed;
float *xArray;
float *yArray;

….

Declaration of
OpenCL context and
Related variable

Sep. 2021 Advanced Course in Massively Parallel Computing 8

ret = clGetPlatformIDs(1, &platformId, &numPlatforms);
if (ret != CL_SUCCESS) {

…
exit(-1);

}

ret = clGetDeviceIDs(platformId, CL_DEVICE_TYPE_ALL, 1, &devId, &numDevices);
if (ret != CL_SUCCESS) {

….
exit(-1);

}

context = clCreateContext(NULL, 1, &devId, NULL, NULL, &ret);
cmdQueue = clCreateCommandQueue(context, devId, 0, &ret);

clxArray = clCreateBuffer(context, CL_MEM_READ_WRITE |
CL_MEM_COPY_HOST_PTR, sizeof(float)*size, xArray, &ret);

clyArray = clCreateBuffer(context, CL_MEM_READ_WRITE |
CL_MEM_COPY_HOST_PTR, sizeof(float)*size, yArray, &ret);

prog = clCreateProgramWithBinary(context, 1, &devId,
&programBinLength, (const unsigned char **)&programBin, &binStat, &ret)

if (ret != CL_SUCCESS) {
fprintf(stderr, "[%d] ", ret);
fprintf(stderr, "[error] clCreateProgramWithBinary¥n");
exit(-1);

}

clBuildProgram(prog, 1, &devId, options, NULL, NULL);

Platform

Device

Context Command Que

Allocation
GPU memory

Program
(kernel)
Registrat
And Build

Sep. 2021 Advanced Course in Massively Parallel Computing 9

// Create CL Kernel
kern0 = clCreateKernel(prog, "saxpy", &ret);
// set kernel args
ret = clSetKernelArg(kern0, 0, sizeof(cl_mem), &clxArray);
ret = clSetKernelArg(kern0, 1, sizeof(cl_mem), &clyArray);
ret = clSetKernelArg(kern0, 2, sizeof(float), &a);

//enqueuetask
/*
ret = clEnqueueTask(cmdQueue,kern0,0,NULL, &event0);
*/
globalWorkSize[0] = size;
ret = clEnqueueNDRangeKernel(cmdQueue,kern0,

1, // work dimention
NULL, // global work offset
globalWorkSize, // global work size
localWorkSize, // local work size
0, // num of depending events
NULL, // pointer to depending event list
&event0 // event
);

if (ret != CL_SUCCESS) {
…
exit(-1);

}
clWaitForEvents(1, &event0);

Create Kernel

Set arguments

Enqueue with
NDRange

Wait for completion

Sep. 2021 Advanced Course in Massively Parallel Computing 10

// get results
ret = clEnqueueReadBuffer(cmdQueue,clyArray,true,

0,sizeof(float)*size,yArray,0,NULL,NULL);
if (ret != CL_SUCCESS) {

…
exit(-1);

}

clReleaseEvent(event0);
clFlush(cmdQueue);
clFinish(cmdQueue);
clReleaseKernel(kern0);
clReleaseCommandQueue(cmdQueue);
clReleaseContext(context);
free(programBin);

// … end …

Get results

Finalizing …

Many API calls are required to do the same
kernel call in CUDA. Func <<< >>>> (,,,)

Sep. 2021 Advanced Course in Massively Parallel Computing 11

SYCL

 One source code for host and GPUs
 SYCL offers simple abstractions to core OpenCL

features.
− Rather than just putting C++ classes on top of OpenCL

objects, these abstractions have been designed with C++
and Object Oriented programming paradigms in mind.

 A great reduction over bare OpenCL C, and even
the C++ wrappers!
− Note also that the kernel is inlined with the code: The

kernel is still valid C++ code, and we can still run it on the
host if there is no device available or if we want to debug
it.

Sep. 2021 Advanced Course in Massively Parallel Computing 12

SYCL example

 https://www.codeplay.com/portal/sycl-tutorial-1-the-
vector-addition

Sep. 2021 Advanced Course in Massively Parallel Computing 13

https://www.codeplay.com/portal/sycl-tutorial-1-the-vector-addition

#include <sycl.hpp>

using namespace cl::sycl

#define TOL (0.001) // tolerance used in floating point comparisons
#define LENGTH (1024) // Length of vectors a, b and c

int main() {
std::vector h_a(LENGTH); // a vector
std::vector h_b(LENGTH); // b vector
std::vector h_c(LENGTH); // c vector
std::vector h_r(LENGTH, 0xdeadbeef); // d vector (result)
// Fill vectors a and b with random float values
int count = LENGTH;
for (int i = 0; i < count; i++) {

h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
h_c[i] = rand() / (float)RAND_MAX;

}
{
// Device buffers
buffer d_a(h_a);
buffer d_b(h_b);
buffer d_c(h_c);
buffer d_r(h_d);
queue myQueue;
command_group(myQueue, [&]()
{
// Data accessors
auto a = d a.get access<access::read>();

Sep. 2021 Advanced Course in Massively Parallel Computing 14

#include <sycl.hpp>

using namespace cl::sycl

#define TOL (0.001) // tolerance used in floating point comparisons
#define LENGTH (1024) // Length of vectors a, b and c

int main() {
std::vector h_a(LENGTH); // a vector
std::vector h_b(LENGTH); // b vector
std::vector h_c(LENGTH); // c vector
std::vector h_r(LENGTH, 0xdeadbeef); // d vector (result)
// Fill vectors a and b with random float values
int count = LENGTH;
for (int i = 0; i < count; i++) {

h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
h_c[i] = rand() / (float)RAND_MAX;

}
{
// Device buffers
buffer d_a(h_a);
buffer d_b(h_b);
buffer d_c(h_c);
buffer d_r(h_d);
queue myQueue;
command_group(myQueue, [&]()
{
// Data accessors
auto a = d a.get access<access::read>();

The first thing to write in SYCL is the
inclusion of the SYCL headers, providing the
templates and class definitions to interact
with the runtime library. All SYCL classes
and objects are defined in
the cl::sycl namespace

Data shared between host and
device is defined using the SYCL
buffer class .

• The class provides different
constructors to initialize the
data from various sources. In
this case, we use a constructor
from STL Vectors, which
transfers data ownership to the
SYCL runtime.

• SYCL buffers do not require
read/write information, as this
is defined on a per-kernel
basis via the accessor class.

The next thing we need is a queue
to enqueue our kernels.

In OpenCL we will need to set up
all the other related classes on
our own; but using SYCL we can use
the default constructor of the
queue class to automatically
target the first OpenCL-enabled
device available.

Sep. 2021 Advanced Course in Massively Parallel Computing 15

command_group(myQueue, [&]()
{
// Data accessors
auto a = d_a.get_access<access::read>();
auto b = d_b.get_access<access::read>();
auto c = d_c.get_access<access::read>();
auto r = d_r.get_access<access::write>();
// Kernel
parallel_for(count, kernel_functor([=](id<> item) {

int i = item.get_global(0);
r[i] = a[i] + b[i] + c[i];
}));

});
}
// Test the results
int correct = 0;
float tmp;
for (int i = 0; i < count; i++) {

tmp = h_a[i] + h_b[i] + h_c[i]; // assign element i of a+b+c to tmp
tmp -= h_r[i]; // compute deviation of expected and output result
if (tmp * tmp < TOL * TOL) // correct if square deviation is less th
// tolerance squared
{

correct++;
} else {

printf(" tmp %f h_a %f h_b %f h_c %f h_r %f ¥n", tmp, h_a[i
h_c[i], h_r[i]);

}
}
// i lt

Sep. 2021 Advanced Course in Massively Parallel Computing 16

command_group(myQueue, [&]()
{
// Data accessors
auto a = d_a.get_access<access::read>();
auto b = d_b.get_access<access::read>();
auto c = d_c.get_access<access::read>();
auto r = d_r.get_access<access::write>();
// Kernel
parallel_for(count, kernel_functor([=](id<> item) {

int i = item.get_global(0);
r[i] = a[i] + b[i] + c[i];
}));

});
}
// Test the results
int correct = 0;
float tmp;
for (int i = 0; i < count; i++) {

tmp = h_a[i] + h_b[i] + h_c[i]; // assign element i of a+b+c to tmp
tmp -= h_r[i]; // compute deviation of expected and output result
if (tmp * tmp < TOL * TOL) // correct if square deviation is less th
// tolerance squared
{

correct++;
} else {

printf(" tmp %f h_a %f h_b %f h_c %f h_r %f ¥n", tmp, h_a[i
h_c[i], h_r[i]);

}
}
// i lt

Once we have created the queue
object, we can enqueue kernels.
Together with the code itself, we
need additional information to
enqueue and run the kernel, such as
the parameters and the dependencies
that a certain kernel may have on
other kernels. All that information
is grouped in command_group object .
• In this case we create an

anonymous command group object.
The constructor receives the queue
where we want to run the kernel, and
a lambda or functor which contains
the kernel and the associated
accessors.

The accessor class characterizes the
access of the kernel to the data it
requires, i.e. if it is read, write,
read/write, or many other access
modes. Accessors are just templated
objects that can be created from
different types.
This allows the device compiler to
generate more efficient code, and
the runtime to schedule different
command groups as efficiently as
possible.

Sep. 2021 Advanced Course in Massively Parallel Computing 17

command_group(myQueue, [&]()
{
// Data accessors
auto a = d_a.get_access<access::read>();
auto b = d_b.get_access<access::read>();
auto c = d_c.get_access<access::read>();
auto r = d_r.get_access<access::write>();
// Kernel
parallel_for(count, kernel_functor([=](id<> item) {

int i = item.get_global(0);
r[i] = a[i] + b[i] + c[i];
}));

});
}
// Test the results
int correct = 0;
float tmp;
for (int i = 0; i < count; i++) {

tmp = h_a[i] + h_b[i] + h_c[i]; // assign element i of a+b+c to tmp
tmp -= h_r[i]; // compute deviation of expected and output result
if (tmp * tmp < TOL * TOL) // correct if square deviation is less th
// tolerance squared
{

correct++;
} else {

printf(" tmp %f h_a %f h_b %f h_c %f h_r %f ¥n", tmp, h_a[i
h_c[i], h_r[i]);

}
}
// i lt

To run the vector addition in
parallel for each element of the
three different vectors, so we use
the parallel_for statement to
execute the kernel a certain number
of times. The parallel_for statement
is one of the different ways you can
launch kernels in SYCL.

The first parameter of the
parallel_for is the number of work-
items to use, in this case we use
one work-item per number of elements
in the vector. The second parameter
is the kernel itself, provided as a
kernel_functor instance.
kernel_functor is a convenience
class that enables creating the
kernel instance from different
sources, such as legacy OpenCL
kernels or, as is the case in this
sample, a simple C++11 lambda.

The lambda used for parallel_for
expects an id parameter, which is
the class that represents the
current work-item. It features
methods to get detailed information
from it, such as local or work group
info or global work group info. In
this case, the contents of the
lambda represent what will be
executed for each work-item.

Sep. 2021 Advanced Course in Massively Parallel Computing 18

Comment on sample code

 The first thing to write in SYCL is the inclusion of the SYCL
headers, providing the templates and class definitions to interact
with the runtime library. All SYCL classes and objects are
defined in the cl::sycl namespace

 Data shared between host and device is defined using the SYCL
buffer class .
− The class provides different constructors to initialize the data from various

sources. In this case, we use a constructor from STL Vectors, which
transfers data ownership to the SYCL runtime.

− SYCL buffers do not require read/write information, as this is defined on
a per-kernel basis via the accessor class.

 The next thing we need is a queue to enqueue our kernels.
− In OpenCL we will need to set up all the other related classes on our own;

but using SYCL we can use the default constructor of the queue class to
automatically target the first OpenCL-enabled device available.Sep. 2021 Advanced Course in Massively Parallel Computing 19

Comment on sample code

 Once we have created the queue object, we can enqueue kernels. Together
with the code itself, we need additional information to enqueue and run the
kernel, such as the parameters and the dependencies that a certain kernel may
have on other kernels. All that information is grouped in command_group
object .

 In this case we create an anonymous command group object.
 The constructor receives the queue where we want to run the kernel, and a

lambda or functor which contains the kernel and the associated accessors.
 The accessor class characterizes the access of the kernel to the data it requires,

i.e. if it is read, write, read/write, or many other access modes. Accessors are
just templated objects that can be created from different types.

 This allows the device compiler to generate more efficient code, and the
runtime to schedule different command groups as efficiently as possible.

Sep. 2021 Advanced Course in Massively Parallel Computing 20

Comment on sample code

 To run the vector addition in parallel for each element of the three different
vectors, so we use the parallel_for statement to execute the kernel a certain
number of times. The parallel_for statement is one of the different ways you
can launch kernels in SYCL.

 The first parameter of the parallel_for is the number of work-items to use, in
this case we use one work-item per number of elements in the vector. The
second parameter is the kernel itself, provided as a kernel_functor instance.
kernel_functor is a convenience class that enables creating the kernel instance
from different sources, such as legacy OpenCL kernels or, as is the case in this
sample, a simple C++11 lambda.

 The lambda used for parallel_for expects an id parameter, which is the class
that represents the current work-item. It features methods to get detailed
information from it, such as local or work group info or global work group
info. In this case, the contents of the lambda represent what will be executed
for each work-item.

Sep. 2021 Advanced Course in Massively Parallel Computing 21

Comment on sample code

 In this case the contents of the kernel are pretty much equal to the ones used
in classic OpenCL, but we can access local scalar variables from the kernel
without adding additional code.

 Also, we can call host functions and methods from inside the kernel, and we
use templates and other fancy features inside.

 The host will wait so that the data can be copied back to the host when the
ownership of the buffer is transferred at the end of the scope.

Sep. 2021 Advanced Course in Massively Parallel Computing 22

Using factor
template<typename TYPE>
class vadd_params
{
private:

buffer<TYPE, 1> * m_va;
buffer<TYPE, 1> * m_vb;
buffer<TYPE, 1> * m_vc;
unsigned int m_nelems;

public:
vadd_params(buffer<TYPE, 1> * va,

buffer<TYPE, 1> * vb,
buffer<TYPE, 1> * vc,
unsigned int nelems

):
m_va(va), m_vb(vb), m_vc(vc), m_nelems(nelems) { };
void operator()()
{

auto ptrA = m_va->template get_access<access::read>();
auto ptrB = m_vb->template get_access<access::read>();
auto ptrC = m_vc->template get_access<access::read_write>();
parallel_for(m_nelems, kernel_lambda<class vadd_params_kernel>
([=] (id<1> i) {

ptrC[i] = ptrA[i] + ptrB[i];
}

));
}

Sep. 2021 Advanced Course in Massively Parallel Computing 23

Using factor
template<typename TYPE>
class vadd_params
{
private:

buffer<TYPE, 1> * m_va;
buffer<TYPE, 1> * m_vb;
buffer<TYPE, 1> * m_vc;
unsigned int m_nelems;

public:
vadd_params(buffer<TYPE, 1> * va,

buffer<TYPE, 1> * vb,
buffer<TYPE, 1> * vc,
unsigned int nelems

):
m_va(va), m_vb(vb), m_vc(vc), m_nelems(nelems) { };
void operator()()
{

auto ptrA = m_va->template get_access<access::read>();
auto ptrB = m_vb->template get_access<access::read>();
auto ptrC = m_vc->template get_access<access::read_write>();
parallel_for(m_nelems, kernel_lambda<class vadd_params_kernel>
([=] (id<1> i) {

ptrC[i] = ptrA[i] + ptrB[i];
}

));
}

The functor is instantiated for
floats and passed to the
constructor of the command group,
which enqueues it on the given
queue.

• Although we only use floats in
this sample (as we are following
the tutorial), we could be using
any type. The compiler will take
care of creating the various
implementations for us.

Sep. 2021 Advanced Course in Massively Parallel Computing 24

Main program
const unsigned NELEMS = 1024u;
(...)
{ /* A: Create scope */
buffer<float, 1> bufA(h_A.data(), h_A.size());
buffer<float, 1> bufB(h_B.data(), h_B.size());
buffer<float, 1> bufC(h_C.data(), h_C.size());
buffer<float, 1> bufD(h_D.data(), h_D.size());
buffer<float, 1> bufE(h_E.data(), h_E.size());
buffer<float, 1> bufF(h_F.data(), h_F.size());
buffer<float, 1> bufG(h_G.data(), h_G.size());
/* The default constructor will use a default selector */
queue myQueue;
/* Now we create the command group objects to enqueue the command group
* objects with different parameters.
*/

command_group(myQueue, vadd_params<float>(&bufA, &bufB, &bufC, NELEMS))
command_group(myQueue, vadd_params<float> (&bufE, &bufC, &bufD, NELEMS)
command_group(myQueue, vadd_params<float> (&bufG, &bufD, &bufF, NELEMS)

} /* B: Will wait until execution here */
(...)Sep. 2021 Advanced Course in Massively Parallel Computing 25

Main program
const unsigned NELEMS = 1024u;
(...)
{ /* A: Create scope */
buffer<float, 1> bufA(h_A.data(), h_A.size());
buffer<float, 1> bufB(h_B.data(), h_B.size());
buffer<float, 1> bufC(h_C.data(), h_C.size());
buffer<float, 1> bufD(h_D.data(), h_D.size());
buffer<float, 1> bufE(h_E.data(), h_E.size());
buffer<float, 1> bufF(h_F.data(), h_F.size());
buffer<float, 1> bufG(h_G.data(), h_G.size());
/* The default constructor will use a default selector */
queue myQueue;
/* Now we create the command group objects to enqueue the command group
* objects with different parameters.
*/

command_group(myQueue, vadd_params<float>(&bufA, &bufB, &bufC, NELEMS))
command_group(myQueue, vadd_params<float> (&bufE, &bufC, &bufD, NELEMS)
command_group(myQueue, vadd_params<float> (&bufG, &bufD, &bufF, NELEMS)

} /* B: Will wait until execution here */
(...)

The three command groups will
then be executed in order. When
the execution reaches the end of
the block statement at B, the
destructor of the buffers will
trigger the copying back of the
result.

• Note also that we are not copying
data in and out for each kernel,
and the runtime will take care of
copying the data required for
each kernel.

Sep. 2021 Advanced Course in Massively Parallel Computing 26

 The functor is instantiated for floats and passed to the
constructor of the command group, which enqueues it on the
given queue.
− Although we only use floats in this sample (as we are following the

tutorial), we could be using any type. The compiler will take care of
creating the various implementations for us.

 The three command groups will then be executed in order.
When the execution reaches the end of the block statement at
B, the destructor of the buffers will trigger the copying back
of the result.
− Note also that we are not copying data in and out for each kernel, and

the runtime will take care of copying the data required for each
kernel.

Sep. 2021 Advanced Course in Massively Parallel Computing 27

OneAPI

 For Intel CPU, GPU, FPGA, and AI accelerators

Sep. 2021 Advanced Course in Massively Parallel Computing 28

OneAPI

 Data Parallel C++ Language for Direct
Programming : an evolution of C++ that incorporates
SYCL*.
− It allows code reuse across hardware targets and enables high

productivity and performance across CPU, GPU, and FPGA
architectures, while permitting accelerator-specific tuning.

 Libraries for API-Based Programming
− including deep learning, math, and video processing—
− include pre-optimized, domain-specific functions to

accelerate compute-intense workloads on Intel® CPUs and
GPUs

 Advanced Analysis and Debug Tools
Sep. 2021 Advanced Course in Massively Parallel Computing 29

OpenACC

 A spin-off activity from OpenMP ARB for
supporting accelerators such as GPGPU and MIC

 NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

 Directive to specify the code offloaded to GPU.

Sep. 2021 Advanced Course in Massively Parallel Computing 30

OpenACC Online Course recording

 https://www.openacc.org/events/openacc-online-
course-2018

Sep. 2021 Advanced Course in Massively Parallel Computing 31

https://www.openacc.org/events/openacc-online-course-2018

A simple example
#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}
}
}

direction copy copyin copyout
Host->device ○ ○

Device->Host ○ ○

device
host

copy a,b

copy c

Sep. 2021 Advanced Course in Massively Parallel Computing 32

A simple example
#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}
}
}

execute iterations
like CUDA kernel

Sep. 2021 Advanced Course in Massively Parallel Computing 33

Matrix Multiply in OpenACC
#define N 1024

void main(void)
{
double a[N][N], b[N][N], c[N][N];
int i,j;
// ... setup data ...

#pragma acc parallel loop copyin(a, b) copyout(c)
for(i = 0; i < N; i++){

#pragma acc loop
for(j = 0; j < N; j++){
int k;
double sum = 0.0;
for(k = 0; k < N; k++){
sum += a[i][k] * b[k][j];
}
c[i][j] = sum;

}
}

}
Sep. 2021 Advanced Course in Massively Parallel Computing 34

Stencil Code (Laplace Solver) in OpenACC
#define XSIZE 1024
#define YSIZE 1024
#define ITER 100
int main(void){

int x, y, iter;
double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
// setup ...

#pragma acc data copy(u, uu)
{
for(iter = 0; iter < ITER; iter++){
//old <- new

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){

#pragma acc loop
for(y = 1; y < YSIZE-1; y++)

uu[x][y] = u[x][y];
}
//update

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){

#pragma acc loop
for(y = 1; y < YSIZE-1; y++)

u[x][y] = (uu[x-1][y] + uu[x+1][y]
+ uu[x][y-1] + uu[x][y+1]) / 4.0;

}}
} //acc data end

}

Sep. 2021 Advanced Course in Massively Parallel Computing 35

Performance of OpenACC code

0

20

40

60

80

100

120

1K 2K 3K 4K 5K 6K 7K 8K

cpu1core

cray(128)

matrix multiplyexec time

size

Sep. 2021 Advanced Course in Massively Parallel Computing 36

0

20

40

60

80

100

120

1K 2K 3K 4K 5K 6K 7K 8K

cpu1core

cray(128)

Performance of OpenACC code

laplaceexec time

size

Sep. 2021 Advanced Course in Massively Parallel Computing 37

OpenMP 4.0
 Released July 2013

− http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
− A document of examples is expected to release soon

 Changes from 3.1 to 4.0 (Appendix E.1):
− Accelerator: 2.9
− SIMD extensions: 2.8
− Places and thread affinity: 2.5.2, 4.5
− Taskgroup and dependent tasks: 2.12.5, 2.11
− Error handling: 2.13
− User-defined reductions: 2.15
− Sequentially consistent atomics: 2.12.6
− Fortran 2003 support

38slide by Yonghong@UH
Sep. 2021 Advanced Course in Massively Parallel Computing

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Accelerator (2.9): offloading
 Execution Model: Offload data

and code to accelerator
 target construct creates tasks to

be executed by devices
 Aims to work with wide variety

of accs
− GPGPUs, MIC, DSP, FPGA, etc
− A target could be even a remote

node, intentionally

39

Main
Memory

Application
data

target

Application
data

acc. cores

Copy in
remote

data

Copy out
remote

data

Tasks
offloaded

to
accelerator

#pragma omp target
{

/* it is like a new task
* executed on a remote device */

{

slide by Yonghong@UH
Sep. 2021 Advanced Course in Massively Parallel Computing

target and map examples

40slide by Yonghong@UH
Sep. 2021 Advanced Course in Massively Parallel Computing

Kokkos

 C++ template library for both CPU
(SIMD/Multicore) and GPU

 Background: All US exascale systems will have GPUs
 Pushed by US ECP (Exascale Computing Project)

 Online Resources:
− Primary Kokkos GitHub Organization

 https://github.com/kokkos:
− Lecture Series:

 https://github.com/kokkos/kokkos-tutorials/
 Find the slides shown in this lecture in later pages

Sep. 2021 Advanced Course in Massively Parallel Computing 41

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/

Sep. 2021 Advanced Course in Massively Parallel Computing 42

Sep. 2021 Advanced Course in Massively Parallel Computing 43

Sep. 2021 Advanced Course in Massively Parallel Computing 44

Sep. 2021 Advanced Course in Massively Parallel Computing 45

Sep. 2021 Advanced Course in Massively Parallel Computing 46

Sep. 2021 Advanced Course in Massively Parallel Computing 47

Sep. 2021 Advanced Course in Massively Parallel Computing 48

Sep. 2021 Advanced Course in Massively Parallel Computing 49

Sep. 2021 Advanced Course in Massively Parallel Computing 50

Sep. 2021 Advanced Course in Massively Parallel Computing 51

Sep. 2021 Advanced Course in Massively Parallel Computing 52

Sep. 2021 Advanced Course in Massively Parallel Computing 53

Sep. 2021 Advanced Course in Massively Parallel Computing 54

Sep. 2021 Advanced Course in Massively Parallel Computing 55

Sep. 2021 Advanced Course in Massively Parallel Computing 56

Final remarks

 GPGPU is a good solution for apps which can be parallelized for GPU.
− It can be very good esp. when the app fits into one GPU.
− If the apps needs more than one GPU, the cost of communication will

kill performance. (in case of HPC)

 Programming in CUDA is still difficult ...
− Performance tuning, memory layout ...
− OpenACC and OpenMP will help you!

 GPU is now a main device to accelerate many kinds of computing
− Not only NVIDA, but also AMD and Intel
− Kokkos is supposed to support a variety of GPU and also CPU

 Many programming models and environments are proposedSep. 2021 Advanced Course in Massively Parallel Computing 57

	GPU Programming (2)
	Contents
	Supercomputers in US around 2021-2023
	OpenCL
	Kernel and Memory model
	Execution Environment of OpenCL
	Example
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	SYCL
	SYCL example
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	Comment on sample code
	Comment on sample code
	Comment on sample code
	Comment on sample code
	Using factor
	Using factor
	Main program
	Main program
	スライド番号 27
	OneAPI
	OneAPI
	OpenACC
	OpenACC Online Course recording
	A simple example
	A simple example
	Matrix Multiply in OpenACC
	Stencil Code (Laplace Solver) in OpenACC
	Performance of OpenACC code
	Performance of OpenACC code
	OpenMP 4.0
	Accelerator (2.9): offloading	
	target and map examples
	Kokkos
	スライド番号 42
	スライド番号 43
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	スライド番号 51
	スライド番号 52
	スライド番号 53
	スライド番号 54
	スライド番号 55
	スライド番号 56
	Final remarks

