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Supercomputers in US around 2021-2023

 Frontier (ORNL, 2021), El Capitan (LLNL/SNL, 2023?) 
− AMD CPU + AMD GPU

 Aurora (ANL, 2022)
− Intel CPU + Intel GPU (Xe)

 NERSC-9 Perlmutter (LBNL/NERSC)
− AMD CPU + NVIDIA GPU

 All US supercomputers have (different!) GPUs! Targeting to ExaFLOPS
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OpenCL
 Programming language for general purpose GPU computing.
 While C for CUDA is proprietary by NVIDIA, OpenCL is 

targeting cross-platform environments.
− Only only for GPU such as NVIDIA and AMD(ATI), but also for 

conventional multicore CPU and many-core,  such as Cell Broadband 
Engine(Cell B.E) and Intel MIC

 The point is that it targets for data parallel program by GPU 
and also for task-parallel of multi-core.

 What is different from CUDA?：Similar programming mode 
for kernel, but different in execution environment.
− OpenCL is supported to other GPU such as AMD and Intel
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Kernel and Memory model

 xxx
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Execution Environment of OpenCL

Sep. 2021 Advanced Course in Massively Parallel Computing 6



Example

 Saxpy kernel

__kernel void saxpy(
__global float* restrict arrayX,
__global float* restrict arrayY,
const float a
)

{
unsigned int i = get_global_id(0);
arrayY[i] += arrayX[i]*a; 

}
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int main(int argc, char **argv)
{

cl_device_id devId;
cl_context context = NULL;
cl_command_queue cmdQueue = NULL;
cl_program prog = NULL;
cl_kernel kern0 = NULL;
cl_platform_id platformId =  NULL;
cl_uint numDevices;
cl_uint numPlatforms;
cl_int ret;
cl_event event0;
cl_mem clxArray, clyArray;
size_t globalWorkSize[3] = {1};
size_t localWorkSize[3]  = {1};
const char options[] = "";
cl_int binStat;
FILE *fp;
char filename[] = "./saxpy.aocx";
struct stat st;
unsigned char *programBin = NULL;
size_t programBinLength;
unsigned int size;
float a;
double start, end, elapsed;
float *xArray;
float *yArray;

….

Declaration of 
OpenCL context and
Related variable
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ret = clGetPlatformIDs(1, &platformId, &numPlatforms);
if (ret != CL_SUCCESS) {

…
exit(-1);

}

ret = clGetDeviceIDs(platformId, CL_DEVICE_TYPE_ALL, 1, &devId, &numDevices);
if (ret != CL_SUCCESS) {

….
exit(-1);

}

context = clCreateContext(NULL, 1, &devId, NULL, NULL, &ret);
cmdQueue = clCreateCommandQueue(context, devId, 0, &ret);

clxArray = clCreateBuffer(context, CL_MEM_READ_WRITE | 
CL_MEM_COPY_HOST_PTR, sizeof(float)*size, xArray, &ret);

clyArray = clCreateBuffer(context, CL_MEM_READ_WRITE | 
CL_MEM_COPY_HOST_PTR, sizeof(float)*size, yArray, &ret);

prog = clCreateProgramWithBinary(context, 1, &devId, 
&programBinLength, (const unsigned char **)&programBin, &binStat, &ret)

if (ret != CL_SUCCESS) {
fprintf(stderr, "[%d] ", ret);
fprintf(stderr, "[error] clCreateProgramWithBinary¥n");
exit(-1);

}

clBuildProgram(prog, 1, &devId, options, NULL, NULL);

Platform

Device

Context Command Que

Allocation  
GPU memory

Program 
(kernel)
Registrat
And Build
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// Create CL Kernel
kern0 = clCreateKernel(prog, "saxpy", &ret);
// set kernel args
ret = clSetKernelArg(kern0, 0, sizeof(cl_mem), &clxArray);
ret = clSetKernelArg(kern0, 1, sizeof(cl_mem), &clyArray);
ret = clSetKernelArg(kern0, 2, sizeof(float), &a);

//enqueuetask
/*
ret = clEnqueueTask(cmdQueue,kern0,0,NULL, &event0);
*/
globalWorkSize[0] = size;
ret = clEnqueueNDRangeKernel(cmdQueue,kern0,

1,                // work dimention
NULL,             // global work offset
globalWorkSize,   // global work size
localWorkSize,    // local work size
0,                // num of depending events
NULL,             // pointer to depending event list
&event0           // event
);

if (ret != CL_SUCCESS) {
…
exit(-1);

}
clWaitForEvents(1, &event0);

Create Kernel

Set arguments

Enqueue with 
NDRange

Wait for completion
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// get results
ret = clEnqueueReadBuffer(cmdQueue,clyArray,true,

0,sizeof(float)*size,yArray,0,NULL,NULL);
if (ret != CL_SUCCESS) {

…
exit(-1);

}

clReleaseEvent(event0);
clFlush(cmdQueue);
clFinish(cmdQueue);
clReleaseKernel(kern0);
clReleaseCommandQueue(cmdQueue);
clReleaseContext(context);
free(programBin);

// … end …

Get results

Finalizing …

Many API calls are required to do the same 
kernel call in CUDA. Func <<< >>>> (,,,)
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SYCL

 One source code for host and GPUs
 SYCL offers simple abstractions to core OpenCL 

features. 
− Rather than just putting C++ classes on top of OpenCL 

objects, these abstractions have been designed with C++ 
and Object Oriented programming paradigms in mind.

 A great reduction over bare OpenCL C, and even 
the C++ wrappers! 
− Note also that the kernel is inlined with the code: The 

kernel is still valid C++ code, and we can still run it on the 
host if there is no device available or if we want to debug 
it.
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SYCL example

 https://www.codeplay.com/portal/sycl-tutorial-1-the-
vector-addition
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#include <sycl.hpp>

using namespace cl::sycl

#define TOL (0.001) // tolerance used in floating point comparisons
#define LENGTH (1024) // Length of vectors a, b and c

int main() {
std::vector h_a(LENGTH); // a vector
std::vector h_b(LENGTH); // b vector
std::vector h_c(LENGTH); // c vector
std::vector h_r(LENGTH, 0xdeadbeef); // d vector (result)
// Fill vectors a and b with random float values
int count = LENGTH;
for (int i = 0; i < count; i++) {

h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
h_c[i] = rand() / (float)RAND_MAX;

}
{
// Device buffers
buffer d_a(h_a);
buffer d_b(h_b);
buffer d_c(h_c);
buffer d_r(h_d);
queue myQueue;
command_group(myQueue, [&]()
{
// Data accessors
auto a = d a.get access<access::read>();
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#include <sycl.hpp>

using namespace cl::sycl

#define TOL (0.001) // tolerance used in floating point comparisons
#define LENGTH (1024) // Length of vectors a, b and c

int main() {
std::vector h_a(LENGTH); // a vector
std::vector h_b(LENGTH); // b vector
std::vector h_c(LENGTH); // c vector
std::vector h_r(LENGTH, 0xdeadbeef); // d vector (result)
// Fill vectors a and b with random float values
int count = LENGTH;
for (int i = 0; i < count; i++) {

h_a[i] = rand() / (float)RAND_MAX;
h_b[i] = rand() / (float)RAND_MAX;
h_c[i] = rand() / (float)RAND_MAX;

}
{
// Device buffers
buffer d_a(h_a);
buffer d_b(h_b);
buffer d_c(h_c);
buffer d_r(h_d);
queue myQueue;
command_group(myQueue, [&]()
{
// Data accessors
auto a = d a.get access<access::read>();

   

The first thing to write in SYCL is the 
inclusion of the SYCL headers, providing the 
templates and class definitions to interact 
with the runtime library. All SYCL classes 
and objects are defined in 
the cl::sycl namespace

Data shared between host and 
device is defined using the SYCL 
buffer class . 

• The class provides different 
constructors to initialize the 
data from various sources. In 
this case, we use a constructor 
from STL Vectors, which 
transfers data ownership to the 
SYCL runtime.

• SYCL buffers do not require 
read/write information, as this 
is defined on a per-kernel 
basis via the accessor class.

The next thing we need is a queue 
to enqueue our kernels. 

In OpenCL we will need to set up 
all the other related classes on 
our own; but using SYCL we can use 
the default constructor of the 
queue class to automatically 
target the first OpenCL-enabled 
device available.
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command_group(myQueue, [&]()
{
// Data accessors
auto a = d_a.get_access<access::read>();
auto b = d_b.get_access<access::read>();
auto c = d_c.get_access<access::read>();
auto r = d_r.get_access<access::write>(); 
// Kernel
parallel_for(count, kernel_functor([ = ](id<> item) {

int i = item.get_global(0);
r[i] = a[i] + b[i] + c[i];
}));

});
}
// Test the results
int correct = 0;
float tmp;
for (int i = 0; i < count; i++) {

tmp = h_a[i] + h_b[i] + h_c[i]; // assign element i of a+b+c to tmp
tmp -= h_r[i]; // compute deviation of expected and output result
if (tmp * tmp < TOL * TOL) // correct if square deviation is less th
// tolerance squared
{

correct++;
} else {

printf(" tmp %f h_a %f h_b %f h_c %f h_r %f ¥n", tmp, h_a[i  
h_c[i], h_r[i]);

}
}
// i  lt
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command_group(myQueue, [&]()
{
// Data accessors
auto a = d_a.get_access<access::read>();
auto b = d_b.get_access<access::read>();
auto c = d_c.get_access<access::read>();
auto r = d_r.get_access<access::write>(); 
// Kernel
parallel_for(count, kernel_functor([ = ](id<> item) {

int i = item.get_global(0);
r[i] = a[i] + b[i] + c[i];
}));

});
}
// Test the results
int correct = 0;
float tmp;
for (int i = 0; i < count; i++) {

tmp = h_a[i] + h_b[i] + h_c[i]; // assign element i of a+b+c to tmp
tmp -= h_r[i]; // compute deviation of expected and output result
if (tmp * tmp < TOL * TOL) // correct if square deviation is less th
// tolerance squared
{

correct++;
} else {

printf(" tmp %f h_a %f h_b %f h_c %f h_r %f ¥n", tmp, h_a[i  
h_c[i], h_r[i]);

}
}
// i  lt

Once we have created the queue 
object, we can enqueue kernels. 
Together with the code itself, we 
need additional information to 
enqueue and run the kernel, such as 
the parameters and the dependencies 
that a certain kernel may have on 
other kernels. All that information 
is grouped in command_group object .
• In this case we create an 

anonymous command group object.
The constructor receives the queue 
where we want to run the kernel, and 
a lambda or functor which contains 
the kernel and the associated 
accessors.

The accessor class characterizes the 
access of the kernel to the data it 
requires, i.e. if it is read, write, 
read/write, or many other access 
modes. Accessors are just templated 
objects that can be created from 
different types. 
This allows the device compiler to 
generate more efficient code, and 
the runtime to schedule different 
command groups as efficiently as 
possible.
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command_group(myQueue, [&]()
{
// Data accessors
auto a = d_a.get_access<access::read>();
auto b = d_b.get_access<access::read>();
auto c = d_c.get_access<access::read>();
auto r = d_r.get_access<access::write>(); 
// Kernel
parallel_for(count, kernel_functor([ = ](id<> item) {

int i = item.get_global(0);
r[i] = a[i] + b[i] + c[i];
}));

});
}
// Test the results
int correct = 0;
float tmp;
for (int i = 0; i < count; i++) {

tmp = h_a[i] + h_b[i] + h_c[i]; // assign element i of a+b+c to tmp
tmp -= h_r[i]; // compute deviation of expected and output result
if (tmp * tmp < TOL * TOL) // correct if square deviation is less th
// tolerance squared
{

correct++;
} else {

printf(" tmp %f h_a %f h_b %f h_c %f h_r %f ¥n", tmp, h_a[i  
h_c[i], h_r[i]);

}
}
// i  lt

To run the vector addition in 
parallel for each element of the 
three different vectors, so we use 
the parallel_for statement to 
execute the kernel a certain number 
of times. The parallel_for statement 
is one of the different ways you can 
launch kernels in SYCL. 

The first parameter of the 
parallel_for is the number of work-
items to use, in this case we use 
one work-item per number of elements 
in the vector. The second parameter 
is the kernel itself, provided as a 
kernel_functor instance. 
kernel_functor is a convenience 
class that enables creating the 
kernel instance from different 
sources, such as legacy OpenCL 
kernels or, as is the case in this 
sample, a simple C++11 lambda.

The lambda used for parallel_for
expects an id parameter, which is 
the class that represents the 
current work-item. It features 
methods to get detailed information 
from it, such as local or work group 
info or global work group info. In 
this case, the contents of the 
lambda represent what will be 
executed for each work-item.
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Comment on sample code

 The first thing to write in SYCL is the inclusion of the SYCL 
headers, providing the templates and class definitions to interact 
with the runtime library. All SYCL classes and objects are 
defined in the cl::sycl namespace

 Data shared between host and device is defined using the SYCL 
buffer class . 
− The class provides different constructors to initialize the data from various 

sources. In this case, we use a constructor from STL Vectors, which 
transfers data ownership to the SYCL runtime.

− SYCL buffers do not require read/write information, as this is defined on 
a per-kernel basis via the accessor class.

 The next thing we need is a queue to enqueue our kernels. 
− In OpenCL we will need to set up all the other related classes on our own; 

but using SYCL we can use the default constructor of the queue class to 
automatically target the first OpenCL-enabled device available.Sep. 2021 Advanced Course in Massively Parallel Computing 19



Comment on sample code

 Once we have created the queue object, we can enqueue kernels. Together 
with the code itself, we need additional information to enqueue and run the 
kernel, such as the parameters and the dependencies that a certain kernel may 
have on other kernels. All that information is grouped in command_group
object .

 In this case we create an anonymous command group object.
 The constructor receives the queue where we want to run the kernel, and a 

lambda or functor which contains the kernel and the associated accessors.
 The accessor class characterizes the access of the kernel to the data it requires, 

i.e. if it is read, write, read/write, or many other access modes. Accessors are 
just templated objects that can be created from different types. 

 This allows the device compiler to generate more efficient code, and the 
runtime to schedule different command groups as efficiently as possible.
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Comment on sample code

 To run the vector addition in parallel for each element of the three different 
vectors, so we use the parallel_for statement to execute the kernel a certain 
number of times. The parallel_for statement is one of the different ways you 
can launch kernels in SYCL. 

 The first parameter of the parallel_for is the number of work-items to use, in 
this case we use one work-item per number of elements in the vector. The 
second parameter is the kernel itself, provided as a kernel_functor instance. 
kernel_functor is a convenience class that enables creating the kernel instance 
from different sources, such as legacy OpenCL kernels or, as is the case in this 
sample, a simple C++11 lambda.

 The lambda used for parallel_for expects an id parameter, which is the class 
that represents the current work-item. It features methods to get detailed 
information from it, such as local or work group info or global work group 
info. In this case, the contents of the lambda represent what will be executed 
for each work-item.
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Comment on sample code

 In this case the contents of the kernel are pretty much equal to the ones used 
in classic OpenCL, but we can access local scalar variables from the kernel 
without adding additional code.

 Also, we can call host functions and methods from inside the kernel, and we 
use templates and other fancy features inside. 

 The host will wait so that the data can be copied back to the host when the 
ownership of the buffer is transferred at the end of the scope.
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Using factor
template<typename TYPE>
class vadd_params
{
private:

buffer<TYPE, 1> * m_va;
buffer<TYPE, 1> * m_vb;
buffer<TYPE, 1> * m_vc;
unsigned int m_nelems;

public:
vadd_params( buffer<TYPE, 1> * va,

buffer<TYPE, 1> * vb,
buffer<TYPE, 1> * vc,
unsigned int nelems

):
m_va(va), m_vb(vb), m_vc(vc), m_nelems(nelems) { };
void operator()()
{

auto ptrA = m_va->template get_access<access::read>();
auto ptrB = m_vb->template get_access<access::read>();
auto ptrC = m_vc->template get_access<access::read_write>();
parallel_for(m_nelems, kernel_lambda<class vadd_params_kernel>
([=] (id<1> i) { 

ptrC[i] = ptrA[i] + ptrB[i]; 
} 

));
}
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Using factor
template<typename TYPE>
class vadd_params
{
private:

buffer<TYPE, 1> * m_va;
buffer<TYPE, 1> * m_vb;
buffer<TYPE, 1> * m_vc;
unsigned int m_nelems;

public:
vadd_params( buffer<TYPE, 1> * va,

buffer<TYPE, 1> * vb,
buffer<TYPE, 1> * vc,
unsigned int nelems

):
m_va(va), m_vb(vb), m_vc(vc), m_nelems(nelems) { };
void operator()()
{

auto ptrA = m_va->template get_access<access::read>();
auto ptrB = m_vb->template get_access<access::read>();
auto ptrC = m_vc->template get_access<access::read_write>();
parallel_for(m_nelems, kernel_lambda<class vadd_params_kernel>
([=] (id<1> i) { 

ptrC[i] = ptrA[i] + ptrB[i]; 
} 

));
}

The functor is instantiated for 
floats and passed to the 
constructor of the command group, 
which enqueues it on the given 
queue. 

• Although we only use floats in 
this sample (as we are following 
the tutorial), we could be using 
any type. The compiler will take 
care of creating the various 
implementations for us.
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Main program
const unsigned NELEMS = 1024u;
(...)
{ /* A: Create scope */
buffer<float, 1> bufA(h_A.data(), h_A.size());
buffer<float, 1> bufB(h_B.data(), h_B.size());
buffer<float, 1> bufC(h_C.data(), h_C.size());
buffer<float, 1> bufD(h_D.data(), h_D.size());
buffer<float, 1> bufE(h_E.data(), h_E.size());
buffer<float, 1> bufF(h_F.data(), h_F.size());
buffer<float, 1> bufG(h_G.data(), h_G.size());  
/* The default constructor will use a default selector */
queue myQueue; 
/* Now we create the command group objects to enqueue the command group
* objects with different parameters.
*/

command_group(myQueue, vadd_params<float>(&bufA, &bufB, &bufC, NELEMS))
command_group(myQueue, vadd_params<float> (&bufE, &bufC, &bufD, NELEMS)
command_group(myQueue, vadd_params<float> (&bufG, &bufD, &bufF, NELEMS)

} /* B: Will wait until execution here */
(...)Sep. 2021 Advanced Course in Massively Parallel Computing 25



Main program
const unsigned NELEMS = 1024u;
(...)
{ /* A: Create scope */
buffer<float, 1> bufA(h_A.data(), h_A.size());
buffer<float, 1> bufB(h_B.data(), h_B.size());
buffer<float, 1> bufC(h_C.data(), h_C.size());
buffer<float, 1> bufD(h_D.data(), h_D.size());
buffer<float, 1> bufE(h_E.data(), h_E.size());
buffer<float, 1> bufF(h_F.data(), h_F.size());
buffer<float, 1> bufG(h_G.data(), h_G.size());  
/* The default constructor will use a default selector */
queue myQueue; 
/* Now we create the command group objects to enqueue the command group
* objects with different parameters.
*/

command_group(myQueue, vadd_params<float>(&bufA, &bufB, &bufC, NELEMS))
command_group(myQueue, vadd_params<float> (&bufE, &bufC, &bufD, NELEMS)
command_group(myQueue, vadd_params<float> (&bufG, &bufD, &bufF, NELEMS)

} /* B: Will wait until execution here */
(...)

The three command groups will 
then be executed in order. When 
the execution reaches the end of 
the block statement at B, the 
destructor of the buffers will 
trigger the copying back of the 
result. 

• Note also that we are not copying 
data in and out for each kernel, 
and the runtime will take care of 
copying the data required for 
each kernel.
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 The functor is instantiated for floats and passed to the 
constructor of the command group, which enqueues it on the 
given queue. 
− Although we only use floats in this sample (as we are following the 

tutorial), we could be using any type. The compiler will take care of 
creating the various implementations for us.

 The three command groups will then be executed in order. 
When the execution reaches the end of the block statement at 
B, the destructor of the buffers will trigger the copying back 
of the result. 
− Note also that we are not copying data in and out for each kernel, and 

the runtime will take care of copying the data required for each 
kernel.
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OneAPI

 For Intel CPU, GPU, FPGA, and AI accelerators
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OneAPI

 Data Parallel C++ Language for Direct 
Programming : an evolution of C++ that incorporates 
SYCL*.
− It allows code reuse across hardware targets and enables high 

productivity and performance across CPU, GPU, and FPGA 
architectures, while permitting accelerator-specific tuning.

 Libraries for API-Based Programming
− including deep learning, math, and video processing—
− include pre-optimized, domain-specific functions to 

accelerate compute-intense workloads on Intel® CPUs and 
GPUs

 Advanced Analysis and Debug Tools
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OpenACC

 A spin-off activity from OpenMP ARB for 
supporting accelerators such as GPGPU and MIC

 NVIDIA, Cray Inc., the Portland Group (PGI), and 
CAPS enterprise

 Directive to specify the code offloaded to GPU.
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OpenACC Online Course recording

 https://www.openacc.org/events/openacc-online-
course-2018
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A simple example
#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}
}
}

direction copy copyin copyout
Host->device ○ ○

Device->Host ○ ○

device
host

copy a,b

copy c
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A simple example
#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}
}
}

execute iterations
like CUDA kernel
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Matrix Multiply in OpenACC
#define N 1024

void main(void)
{
double a[N][N], b[N][N], c[N][N];
int i,j;
// ... setup data ...

#pragma acc parallel loop copyin(a, b) copyout(c)
for(i = 0; i < N; i++){

#pragma acc loop
for(j = 0; j < N; j++){
int k;
double sum = 0.0;
for(k = 0; k < N; k++){
sum += a[i][k] * b[k][j];
}
c[i][j] = sum;

}
}

}
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Stencil Code (Laplace Solver) in OpenACC
#define XSIZE 1024
#define YSIZE 1024
#define ITER 100
int main(void){

int x, y, iter;
double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
// setup ...

#pragma acc data copy(u, uu)
{
for(iter = 0; iter < ITER; iter++){
//old <- new

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){

#pragma acc loop
for(y = 1; y < YSIZE-1; y++)

uu[x][y] = u[x][y];
}
//update

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){

#pragma acc loop
for(y = 1; y < YSIZE-1; y++)

u[x][y] = (uu[x-1][y] + uu[x+1][y] 
+ uu[x][y-1] + uu[x][y+1]) / 4.0;

}}
} //acc data end

}

Sep. 2021 Advanced Course in Massively Parallel Computing 35



Performance of OpenACC code
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OpenMP 4.0
 Released July 2013

− http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
− A document of examples is expected to release soon

 Changes from 3.1 to 4.0 (Appendix E.1): 
− Accelerator: 2.9
− SIMD extensions: 2.8
− Places and thread affinity: 2.5.2, 4.5
− Taskgroup and dependent tasks: 2.12.5, 2.11
− Error handling: 2.13
− User-defined reductions: 2.15
− Sequentially consistent atomics: 2.12.6
− Fortran 2003 support
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Accelerator (2.9): offloading
 Execution Model: Offload data 

and code to accelerator
 target construct creates tasks to 

be executed by devices
 Aims to work with wide variety 

of accs
− GPGPUs, MIC, DSP, FPGA, etc
− A target could be even a remote 

node, intentionally
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#pragma omp target
{

/* it is like a new task 
* executed on a remote device */

{
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target and map examples
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Kokkos

 C++ template library for both CPU 
(SIMD/Multicore) and GPU

 Background: All US exascale systems will have GPUs 
 Pushed by US ECP (Exascale Computing Project)

 Online Resources:
− Primary Kokkos GitHub Organization

 https://github.com/kokkos:
− Lecture Series:

 https://github.com/kokkos/kokkos-tutorials/
 Find the slides shown in this lecture in later pages
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Final remarks

 GPGPU is a good solution for apps which can be parallelized for GPU.
− It can be very good esp. when the app fits into one GPU.
− If the apps needs more than one GPU, the cost of communication will 

kill performance. (in case of HPC)

 Programming in CUDA is still difficult ...
− Performance tuning, memory layout ...
− OpenACC and OpenMP will help you!

 GPU is now a main device to accelerate many kinds of computing
− Not only NVIDA, but also AMD and Intel
− Kokkos is supposed to support a variety of GPU and also CPU

 Many programming models and environments are proposedSep. 2021 Advanced Course in Massively Parallel Computing 57
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