GPU Programming (2)

M. Sato

RIKEN R-CCS
and University of Tsukuba

Sep. 2021 Advanced Course in Massively Parallel Computing

O O O O 0O

O

Contents

Cuda (NVIDIA)
HIP(AMD)
OpenCL

SYCL

OneAPI (Intel ?)

OpenACC
OpenMP

C++ template programming
— Kokkos

— Raja
Sep. 2021 Advanced Course in Massively Parallel Computing

Supercomputers in US around 2021-2023

o Frontier (ORNL, 2021), El Capitan (LLNL/SNL, 2023?)
— AMD CPU + AMD GPU

o0 Aurora (ANL, 2022)
— Intel CPU + Intel GPU (Xe)

0 NERSC-9 Perimutter (LBNL/NERSC)
— AMD CPU + NVIDIA GPU

o All US supercomputers have (different!) GPUs! Targeting to ExaFLOPS

Upcoming Generation: Programming Models OpenMP 5, CUDA, HIP and DPC++ depending on machine

s iR

NERSC Perlmutter ORNMNL Frontier AML Aurora LLNL El Capitan
AMD CPU / NVIDIA GPU AMD CPU/ AMD GPU Xeon CPUs [Intel GPUs AMD CPU / AMD GPU
CUDA / OpenMPF 5 1< HIP / OpenMP 519 DPC++ / OpenMP 51¢ HIP / OpenMP 5 19

Sep. 2021 Advanced Course in Massively Parallel Computing 3

OpenCL

o0 Programming language for general purpose GPU computing.

0 While C for CUDA is proprietary by NVIDIA, OpenCL is
targeting cross-platform environments.

— Only only for GPU such as NVIDIA and AMD(ATI), but also for
conventional multicore CPU and many-core, such as Cell Broadband
Engine(Cell B.E) and Intel MIC

o0 The point is that it targets for data parallel program by GPU
and also for task-parallel of multi-core.

o0 What is different from CUDA? : Similar programming mode
for kernel, but different in execution environment.

— OpenCL is supported to other GPU such as AMD and Intel
Sep. 2021 Advanced Course in Massively Parallel Computing 4

Kernel and Memory model

OpenCL Neéemory Model

Private Memory
- Per work-item

Local Memory
- Shared within a workgroup (16Kb)
Local Global/Constant Memory
- Not synchronized

Host Memory Global/Constant Memory
- On the CPU

Host Memory

Data Parallel
work-item work-item
(W Sp#5, . w, Syr&}) — (W S48, . Wy Syhsy?
5.8 =10.9) 5. 8,0 = (5,01, 0) kernel wvoid
| dp mul (global const float *a,
- . . : wark-group si =
: " : global const float *b,
B global float *result)
work-item work-item
size Gy, fw Sy Wi Syas) Wy S48, W Bes,) {
R || eS| et s int id = get _global_id(0) ;
= —— B result[id] = a[id] * b[id];
NDHRange size G,

}
Sep. 2021 Advanced Course in Massivelyf,arqggbgmutmg mul over “n” worR-items

Execution Environment of OpenCL

OpenCL

] .

Context

¢

¢

¢

$

Programs Kernels Memory Objects Command Queues
__kernel void ‘ ap_mul ImagEE ,II‘ Buffers
dp_mul{global const float *a, dp_mul
global const float *b, CPU program binary arg[0] value
global float *c) j——
intid = get_global () dp_mul arg[1] value
] = _g a | | ; G ¥
C-[Id] = a[ﬂ] * b[ld]; i program blnarjr |
arg[] value GPU

Example

0 Saxpy kernel

__kernel void saxpy(
__global float* restrict arrayX,
__global float* restrict arrayy,
const float a

)

unsigned int 1 = get_global _1d(0);
arrayY[1] += arrayX[i1]*a;

Sep. 2021 Advanced Course in Massively Parallel Computing

int main(int argc, char **argv)

{

Sep. 2021

cl _device id devld;
cl _context context = NULL;

cl_command_queue cmdQueue = NULL;
cl_program prog = NULL;
cl _kernel kernO = NULL;
cl_platform_id platformld = NULL;

cl _uint numDevices;

cl _uint numPlatforms;

cl_iInt ret;

cl _event eventO;

cl_mem clxArray, clyArray;
size_t globalWorkSize[3] = {1};

size_t localWorkSize[3] {1};
const char options[] = "";

cl_int binStat;

FILE *fp;

char filename[] = "./saxpy.aocx";

struct stat st;

unsigned char *programBin = NULL;
size_t programBinLength;

unsigned iInt size;

float a;

double start, end, elapsed;

float *xArray;

float *yArray;

Declaration of
OpenCL context and
Related variable

Advanced Course in Massively Parallel Computing 8

ret = clGetPlatformIDs(1, &platformld, &numPlatforms);

if (ret !'= CL_SUCCESS) {

exit(-1):
}

Platform

ret = clGetDevicelDs(platformld, CL_DEVICE TYPE ALL, 1, &devld, &numDevices)

if (ret '= CL_SUCCESS) {

exit(-1):

¥ Context

context = clCreateContext(NULL, 1, &devid, NULL, NULL, &ret

Device

Command Que

cmdQueue = clCreateCommandQueue(context, devld, 0, &ret); Allocation

cIxArray

clCreateBuffer(context, CL_MEM_READ WRITE |

GPU memory

CL_MEM_COPY_HOST_PTR, sizeof(float)*size, xArray, &ret);

clyArray

clCreateBuffer(context, CL_MEM_READ WRITE |

CL_MEM_COPY_HOST_PTR, sizeof(float)*size, yArray, &ret);
prog = clCreateProgramWithBinary(context, 1, &devid,
&programBinLength, (const unsigned char **)&programBin, &binStat, &ret)

iT (ret '= CL_SUCCESS) {
fprintf(stderr, "[%d] ', ret);

Program

fprintf(stderr, "[error] clCreateProgramWithBinary¥n')j (kerne|)

exit(-1);
+

Sepc 28211 1dProgram(ppegranckd Goleelid Mapitagmsal) Comphitikd-) ;

Registrat
And Builc

// Create CL Kernel

kernO = clCreateKernel(prog, 'saxpy", &ret); Create Kernel

// set kernel args

ret = clSetKernelArg(kernO, 0, sizeof(cl_mem), &clxArray);

ret = clSetkKernelArg(kernO, 1, sizeof(cl_mem), &clyArray);

ret = clSetKernelArg(kernO, 2, sizeof(float), &a);

//enqueuetask Set arguments
/*

ret = clEnqueueTask(cmdQueue,kern0,0,NULL, &eventO);

*/

globalWorkSize[0] = size;
ret = clEnqueueNDRangeKernel (cmdQueue,kernoO,

1, // work dimention

NULL, // global work offset
globalWorkSize, // global work size

localWorkSize, // local work size

0, // num of depending events

NULL, // pointer to depending event list
&eventO // event

)-

Enqueue with
NDRange

if (ret !'= CL_SUCCESS) {

éxit(—l);
}
clWaitForEvents(l, &event0); Wait for comp letion

Sep. 2021 Advanced Course in Massively Parallel Computing 10

// get results

ret = clEnqueueReadBuffer(cmdQueue,clyArray,true,
O,si1zeof(float)*size,yArray,O0,NULL,NULL);

iIT (ret = CL_SUCCESS) {

exit(-1): Get results

}

clReleaseEvent(eventO);
clFlush(cmdQueue); Final izing
clFinish(cmdQueue) ;
clReleaseKernel (kern0);
clReleaseCommandQueue(cmdQueue) ;
clReleaseContext(context);
free(programBin);

// .. end ..

Many APl calls are required to do the same
kernel call 1n CUDA. Func <<< >>>> (,,,)

Sep. 2021 Advanced Course in Massively Parallel Computing

11

SYCL

0 One source code for host and GPUSs

0 SYCL offers simple abstractions to core OpenCL
features.

— Rather than just putting C++ classes on top of OpenCL
objects, these abstractions have been designed with C++
and Object Oriented programming paradigms in mind.

0 A great reduction over bare OpenCL C, and even

the C++ wrappers!

— Note also that the kernel is inlined with the code: The
kernel is still valid C++ code, and we can still run it on the
host if there is no device available or if we want to debug
It

Sep. 2021 Advanced Course in Massively Parallel Computing 12

SYCL example

0 https://www.codeplay.com/portal/sycl-tutorial-1-the-
vector-addition

Sep. 2021 Advanced Course in Massively Parallel Computing 13

https://www.codeplay.com/portal/sycl-tutorial-1-the-vector-addition

#include <sycl.hpp>
using namespace cl::sycl

= #define TOL (0.001) // tolerance used in floating point comparisons
#define LENGTH (1024) // Length of vectors a, b and c

int main() {
std: :vector h_a(LENGTH); // a vector
std: :vector h_b(LENGTH); // b vector
std: :vector h_c(LENGTH); // c vector
std::vector h_r(LENGTH, Oxdeadbeef); // d vector (result)
// Fill vectors a and b with random float values
Int count = LENGTH;
for (int 1 = 0; 1 < count; 1++) {

h_aJi1] = rand() /7 (float)RAND_ MAX;
h_b[1] = rand() /7 (float)RAND_MAX;
h_c[1] = rand() /7 (float)RAND_MAX;
+
{

// Device buffers
buffer d_a(h_a);
buffer d _b(h_b);
buffer d _c(h_c);
buffer d _r(h_d);
queue myQueue;
command_group(myQueue, [&]O
Sep. 20%1/ Data acces éAodl\,/gnced Course in Massively Parallel Computing
auto a = d a.aget access<access:--read>0)-

#include <sycl.hpp>
Y PP Data shared between host and

using namespace cl::sycl device 1s defined using the SYCL

— udefine ToL (0.001) s/ | The fi|Puffer class .)]
#define LENGTH (1024) / jnclus « The class provides different
I constructors to initialize the
int mainQ) { templa data from various sources. In
std::vector h {WIth t) -
std: :vector h | and ob this case, we use a (_:onstructor
std: :vector h_{ the cl from STL Vectors, which
std::vector h_|_ transfers data ownership to the
// Fill vectors a and_h -
]icnt zquntﬁ L(E)NGTH: The next thing we need 1Is a queue
or iInt 1 = o1 <
h a[i] = raj LO €nqueue our kernels. 5
h_b[i] = rarn In OpenCL we will need to set up
h_c[i1] = ran all the other related classes on
% our own; but using SYCL we can use [_
// Device buffers the default constructor of the
buffer d_a(h_a); queue class to automatically
El‘jgg: 3—222—85 target the first OpenCL-enabled
buffer d_r(h_d): device available.

queue myQueue;
command_group(myQueue, [&]O

Sep. 20%1/ Data acces éAodl\,/gnced Course in Massively Parallel Computing 15
auto a = d a.aget access<access:--read>0)-

command_group(myQueue, [&]0O

{

// Data accessors

auto a = d_a.get _access<access::read>();
auto b = d_b.get access<access::read>();
auto ¢ = d_c.get _access<access::read>();
auto r = d_r.get _access<access::write>();
// Kernel

parallel _for(count, kernel functor([= J(id<> i1tem) {

;
}

int 1 = 1tem.get _global(0);
r[i] = a[i1] + b[1] + c[i];
):

// Test the results

iInt correct = O;

float tmp;

for (int 1 = 0; 1 < count; i1++) {

Sep. 2021

F 7

tmp h_a[1] + h_b[1] + h_c[1]; // assign element 1 of atb+c to tmp
tmp -= h_r[1]; // compute deviation of expected and output result
if (tmp * tmp < TOL * TOL) // correct if square deviation is less tf
// tolerance squared

{
correct++;

} else {
printf("" tmp %f h_a %F h_ b %F h_c %F h_r %f ¥n", tmp, h_a[i
h_c[il, h_r[i]);

s Advanced Course in Massively Parallel Computing 16

B a

command_group(myQueue,

{

// Data accessors

auto a = d_a.get _access<acce
auto b = d_b.get access<acce
auto ¢ = d_c.get _access<acce
auto r = d_r.get _access<acce
// Kernel

parallel for(count, kernel 1

[&10

Once we have created the queue
object, we can enqueue kernels.
Together with the code i1tself, we
need additional information to
engqueue and run the kernel,

int 1 = 1tem.get gl |
r[i] = a[i] + b[i] | that a certain kernel may have on
_) other kernels. All that information
i)’ 1S grouped In command group object
7/ Test the results The accessor class characterizes the
int corre Thé‘constxllaccess of the kernel to the data i1t
Tloat tmp! requires, i.e. if it is read, write,
for (int {where we wa _
N read/write, or many other access
a lambda on _
U the kernel modes. Accessors are just templated
i objects that can be created from
/| aCCessors. -
¢ different types.
correctl This allows the device compiler to
}else { generate more efficient code, and
printf(l the runtime to schedule different
hclil, comma efficiently as
Sep. 2021 } Advanced Cpurse In %siveg/ lﬁB?Computm y 17

F 7

such as
the parameters and the dependencies

‘mp

.

B a

POSSI

command_group(myQueue, [&]0O

{

// Data accessors

auto a
auto b
auto c
auto r

//

Kernel

d_a.get _access<access::read>();
d _b.get access<access::read>();
d_c.get _access<access::read>();
d _r.get _access<access::write>();

parallel _for(count, kernel functor([= J(id<> i1tem) {

;

3
//

int correct = |
float tmp;

int 1

r[i] =

P)s

= item.get_global(0);

afi] + b[1] + c[1];

The first parameter of the
e~ BB~ Aoy o #hn vl ~AF

Test the ref

£ = e

for

Sep. 20

To run ti
parallel
three dij
the para
execute

of times

IS one O

The lambda used for parallel for
expects an i1d parameter, which is
the class that represents the
current work-1tem. 1t features
methods to get detailed information
from 1t, such as local or work group
info or global work group info. In

1this case, the contents of the

lambda represent what will be
executed for each work-i1tem.

work-
use
lements
ameter
1 as a

this

daunch kergels i

hSRMON8sjved Parlilepdogp@ihg 11l lambda. 18

‘mp

.

B a

Comment on sample code

0 The first thing to write in SYCL is the inclusion of the SYCL
headers, providing the templates and class definitions to interact
with the runtime library. All SYCL classes and objects are
defined in the cl::sycl namespace

o0 Data shared between host and device is defined using the SYCL
buffer class .

— The class provides different constructors to initialize the data from various
sources. In this case, we use a constructor from STL Vectors, which
transfers data ownership to the SYCL runtime.

— SYCL buffers do not require read/write information, as this is defined on
a per-kernel basis via the accessor class.

o0 The next thing we need Is a queue to enqueue our kernels.

— In OpenCL we will need to set up all the other related classes on our own;
but using SYCL we can use the default constructor of the queue class to

saygnatically targgt the [rst QRenGl wnabled dfyice available.

Comment on sample code

Once we have created the queue object, we can enqueue kernels. Together
with the code itself, we need additional information to enqueue and run the
kernel, such as the parameters and the dependencies that a certain kernel may
have on other kernels. All that information is grouped in command_group
object .

In this case we create an anonymous command group object.

The constructor receives the gueue where we want to run the kernel, and a
lambda or functor which contains the kernel and the associated accessors.

The accessor class characterizes the access of the kernel to the data it requires,
l.e. if It Is read, write, read/write, or many other access modes. Accessors are
just templated objects that can be created from different types.

This allows the device compiler to generate more efficient code, and the
runtime to schedule different command groups as efficiently as possible.

Sep. 2021 Advanced Course in Massively Parallel Computing 20

Comment on sample code

o To run the vector addition in parallel for each element of the three different
vectors, so we use the parallel _for statement to execute the kernel a certain
number of times. The parallel_for statement is one of the different ways you
can launch kernels in SYCL.

o The first parameter of the parallel_for is the number of work-items to use, Iin
this case we use one work-item per number of elements in the vector. The
second parameter is the kernel itself, provided as a kernel _functor instance.
kernel _functor is a convenience class that enables creating the kernel instance
from different sources, such as legacy OpenCL kernels or, as is the case In this
sample, a simple C++11 lambda.

o The lambda used for parallel for expects an id parameter, which is the class
that represents the current work-item. It features methods to get detailed
iInformation from it, such as local or work group info or global work group
info. In this case, the contents of the lambda represent what will be executed
for each work-item.

Sep. 2021 Advanced Course in Massively Parallel Computing 21

Comment on sample code

o0 In this case the contents of the kernel are pretty much equal to the ones used
In classic OpenCL, but we can access local scalar variables from the kernel

without adding additional code.
0 Also, we can call host functions and methods from inside the kernel, and we
use templates and other fancy features inside.

o The host will wait so that the data can be copied back to the host when the
ownership of the buffer is transferred at the end of the scope.

Sep. 2021 Advanced Course in Massively Parallel Computing 22

Using factor

template<typename TYPE>
class vadd_ params

{ -

private:
buffer<TYPE, 1> * m_va;
buffer<TYPE, 1> * m_vb;
buffer<TYPE, 1> * m_vcC;
unsigned iInt m_nelems;

public:

vadd_params(buffer<TYPE, 1> * va,
buffer<TYPE, 1> * vb,
buffer<TYPE, 1> * vc,
unsigned int nelems
):
m_va(va), m_vb(vb), m vc(vc), m_nelems(nelems) { };
void operator(OQO
{
auto ptrA = m_va->template get access<access::read>();
auto ptrB = m_vb->template get access<access::read>();
auto ptrC = m_vc->template get access<access::read write>();
parallel _for(m_nelems, kernel lambda<class vadd params kernel>
(=] (id<1> 1) {
ptrC[i] = ptrA[i] + ptrB[i];
Sep. 2021 ¥ Advanced Course in Massively Parallel Computing 23
)):

The functor i1s instantiated for
floats and passed to the
constructor of the command group,
which enqueues 1t on the given

U

Y -

template<typename TYPE>

class vadd_params queue.

{1 . « Although we only use floats in

private: - -
buffer<TYPE, 1> * m_va: this samp!e (as we are followEng
buffer<TYPE, 1> * m_vb; the tutorial), we could be using
buffer<TYPE, 1> * m_vc; any type. The compiler will take

Sublic: unsigned Int m_nelems; care of creating the various
vadd_params(buffer<TYPE, implementations for us.

buffer<TYPE, 1> * vb,
buffer<TYPE, 1> * vc,
unsigned int nelems
):
m_va(va), m_vb(vb), m vc(vc), m_nelems(nelems) { };
void operator(OQO
{
auto ptrA = m_va->template get access<access::read>();
auto ptrB = m_vb->template get access<access::read>();
auto ptrC = m_vc->template get access<access::read write>();
parallel _for(m_nelems, kernel lambda<class vadd params kernel>
(=] (id<1> 1) {
ptrC[i1] = ptrA[i] + ptrB[i];
Sep. 2021 ¥ Advanced Course in Massively Parallel Computing 24
)):

Main program

const unsigned NELEMS = 1024u;

C---)
{ /* A: Create scope */

buffer<float, 1> bufA(h_A.data(), h_A.size());
buffer<float, 1> bufB(h_B.data(), h _B.size());
buffer<float, 1> bufC(h_C.data(), h C.size());
buffer<float, 1> bufD(h_D.data(), h D.size());
buffer<float, 1> bufE(h_E.data(), h_E.size());

buffer<float, 1> bufF(h_F.data(), h_F.size());
buffer<float, 1> bufG(h_G.data(), h G.size());
/* The default constructor will use a default selector */
queue myQueue;
/* Now we create the command group objects to enqueue the command group
* objects with different parameters.
*/
command_group(myQueue, vadd params<float>(&bufA, &bufB, &bufC, NELEMS))
command_group(myQueue, vadd params<float> (&bufE, &bufC, &bufD, NELEMS)
command_group(myQueue, vadd params<float> (&bufG, &bufD, &bufF, NELEMS)
} /7* B: Will wait until execution here */

(.- ')Sep. 2021 Advanced Course in Massively Parallel Computing 25

| The three command groups will
Mal then be executed in order. When
the execution reaches the end of
const unsigned NELEMS = 1024u; the block statement at B, tl:]e
..) ' destructor of the buffers will

{ /* A: Create scope */ trigger the copying back of the
buffer<float, 1> bufA(h_A.da result.

buffer<float, 1> bufB(h_B.dg . Note also that we are not copying
buffer<float, 1> bufC(h_C.da data in and out for each kernel,

buffer<float, 1> bufD(h_D.d4a _ _
buffer<float. 1> bufE(h E.da and the runtime will take care of

buffer<float, 1> buff(h F.dq COPYINng the data required for
buffer<float, 1> bufG(h_G.da each kernel.
/* The default constructor will use a default selector */
queue myQueue;
/* Now we create the command group objects to enqueue the command group
* objects with different parameters.
*/
command_group(myQueue, vadd params<float>(&bufA, &bufB, &bufC, NELEMS))
command_group(myQueue, vadd params<float> (&bufE, &bufC, &bufD, NELEMS)
command_group(myQueue, vadd params<float> (&bufG, &bufD, &bufF, NELEMS)
} /7* B: Will wait until execution here */

(.- ')Sep. 2021 Advanced Course in Massively Parallel Computing 26

o0 The functor is instantiated for floats and passed to the
constructor of the command group, which enqueues it on the
given gueue.

— Although we only use floats in this sample (as we are following the
tutorial), we could be using any type. The compiler will take care of
creating the various implementations for us.

o0 The three command groups will then be executed in order.
When the execution reaches the end of the block statement at
B, the destructor of the buffers will trigger the copying back
of the result.

— Note also that we are not copying data in and out for each kernel, and
the runtime will take care of copying the data required for each
kernel.

Sep. 2021 Advanced Course in Massively Parallel Computing 27

OneAPI

0 For Intel CPU, GPU, FPGA, and Al accelerators

Optimized Applications

Optimized Middleware & Frameworks

DIRECT PROGRAMMING § API-BASED PROGRAMMING

Data Parallel C++ oneAP| Analysis &
(DPC++) Libraries Debug Tools

SCALAR VECTOR MATRIX SPATIAL
Sep. 2021 Advanced Course in Massively P;FrLzl;ILII;)Computing

28

OneAPI

o Data Parallel C++ Language for Direct
Programming : an evolution of C++ that incorporates
SYCL™.

— It allows code reuse across hardware targets and enables high
productivity and performance across CPU, GPU, and FPGA
architectures, while permitting accelerator-specific tuning.

0 Libraries for API-Based Programming
— Including deep learning, math, and video processing—

— Include pre-optimized, domain-specific functions to
accelerate compute-intense workloads on Intel® CPUs and
GPUs

0 Advanced Analysis and Debug Tools

Sep. 2021 Advanced Course in Massively Parallel Computing 29

OpenACC

0 A spin-off activity from OpenMP ARB for
supporting accelerators such as GPGPU and MIC

0 NVIDIA, Cray Inc., the Portland Group (PGl), and
CAPS enterprise

0 Directive to specify the code offloaded to GPU.

OpenACC.

DIRECTIVES FOR ACCELERATORS

Sep. 2021 Advanced Course in Massively Parallel Computing 30

OpenACC Online Course recording

= == O X
(.__._} OpenACC Online Course 2018 X ar
C @& openacc.org/events/openacc-online-course-2018 v Q © qﬁ @
ETwovN-0 ¥ Google iby5— [Facebook R-cCSHll-v @ 2= [8) RIKEN Online Drive #& Tsukuba CCS 4 Gems: Main » 20Ty IN-4

OpenACC

More Science, Less Programming

About Blog Tools News Stories Events Resources Spec Community

Online Course

October 18, 2018 - Online

The course, organized by OpenACC.org, Amazon Web Services, NVIDIA, and Linux Academy is
comprised of three instructor-led classes that include interactive lectures with dedicated Q&A
sections and hands-on exercises. The course covers analyzing performance, parallelizing and

optimizing your code.

Sep. 2021 Advanced Course in Massively Parallel Computing 31

https://www.openacc.org/events/openacc-online-course-2018

A simple example

#define N 1024
int main(){

Host->device O

'

int 1; Device->Host O O
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c) host device
{
#pragma acc parallet | | =m=———-— >
{ copy a,b
#pragma acc loop
for(hn = 0; 1 < N; 1++){
cfi] = a[1] + b[1];
}
+
+ copy C
} €---- v
Sep. 2021 Advanced Course in Massively Parallel Computing 32

A simple example

#define N 1024 |

int mainQf{ block(0) block(3)

int 1; thread(0) thread(0)
int a[N], b[N],c[N]; - -
#pragma acc data copyin(a,b) copyout(c) io ,,,,, pzma

{ : :
#pragma acc parallel thread(255) thread(255)
{ i=255 i=1023
#pragma acc loop

for(i = 0; i1 < N; i++){ |
c[i] = a[i] + b[i]; execute i1terations

\ } :> like CUDA kernel

¥

}

Sep. 2021 Advanced Course in Massively Parallel Computing 33

Matrix Multiply in OpenACC

#define N 1024

void main(void)
{
double a[N]J[N], b[NI[N], c[NI[N];
int 1,j;
// ... setup data ...
#pragma acc parallel loop copyin(a, b) copyout(c)
for(i = 0; 1 < Nj; i++){
#pragma acc loop
for = 0; 3 < N; J++){
int k;
double sum = 0.0;
for(k = 0; k < N; k++){
sum += a[i][k] * b[k][J1:
}
cfi]l[3] = sum;

Sep}?OZl Advanced Course in Massively Parallel Computing

Stencil Code (Laplace Solver) in OpenACC

#define XSIZE 1024
7 #define YSIZE 1024
#define ITER 100
int main(void){
int x, y, iter;
double u[XSIZE]J[YSIZE], uu[XSIZE][YSIZE];

// setup ...
#pragma acc data copy(u, uu)
{
for(iter = 0; iter < ITER; i1ter++){
//0ld <- new

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){
#pragma acc loop
for(y = 1; y < YSIZE-1; y++)
) uulx1lyl = ulx1Lyl;

//update
#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){
#pragma acc loop
for(y = 1; y < YSIZE-1; y++)
ulx1lyl = (uux-1]1Lyl + uu[x+1]Ly]
+ uulx]ly-11 + uu[x][y+1]) / 4.0;

Se }&1 Advanced Course in Massively Parallel Computin
} 9 acc data end y puting
1

35

Performance of OpenACC code

exec time

matrix multiply

120

100

80

60

40

20

LLLLllL

1K

M cpulcore

M cray(128)

Sep. 2021

Advanced Course in Massively Parallel Computing

36

Performance of OpenACC code

exec time laplace

120

100

80

60 M cpulcore

M cray(128)
40

20

0 - Size

1K 2K 3K 4K 5K 6K 7K 8K
Sep. 2021 Advanced Course in Massively Parallel Computing

37

OpenMP 4.0

0 Released July 2013

— A document of examples is expected to release soon

o0 Changes from 3.1 to 4.0 (Appendix E.1):

Accelerator: 2.9

SIMD extensions: 2.8

Places and thread affinity: 2.5.2, 4.5
Taskgroup and dependent tasks: 2.12.5, 2.11
Error handling: 2.13

User-defined reductions: 2.15

Sequentially consistent atomics: 2.12.6
Fortran 2003 support

_ Sep. 2021 Advanced Course in Massively Parallel Computing
slide by Yonghong@UH

38

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Accelerator (2.9): offloading

target

0 Execution Model: Offload data
and code to accelerator
Application data 1 Application

0 target construct creates tasks to data licat
be executed by devices Copy out

Copy in

raemmatao
TTTToTC

remote
data
o Aims to work with wide variety
of accs

Tasks acc. cores
bffloaded

to

ccelerator

— GPGPUs, MIC, DSP, FPGA, etc

— A target could be even a remote
node, intentionally

#pragma omp target
{
/* 1t is like a new task
* executed on a remote device */

{

_ Sep. 2021 Advanced Course in Massively Parallel Computing 39
slide by Yonghong@UH

target and map examples

void vec mult(int N)

vl, v2) map(from: p)

vi[0:N], v2[:N]) map(from: p[0:N])

{
int 1;
flecat p[N], Vv1[N], Vv2[N];
init(vl, v2, N);
#pragma omp target map(to:
#pragma omp parallel for
for (i=0; i<N; i++)
pli] = vl[i] * v2[i];
output(p, N);
}
void vec mult(float *p, float *vl, float *v2, int N)
{
int 1i;
init(vl, v2, N);
#pragma omp target map(to:
#pragma omp parallel for
for (i=0; i<N; i++)
p[i] = w1l[1i] * v2[1];
output(p, N);
}

_ . Sep. 2021
slide by Yonghong@UH

Advanced Course in Massively Parallel Computing

40

Kokkos

o0 C++ template library for both CPU
(SIMD/Multicore) and GPU

0 Background: All US exascale systems will have GPUs
o0 Pushed by US ECP (Exascale Computing Project)

0 Online Resources:
— Primary Kokkos GitHub Organization

— Lecture Series:

* Find the slides shown in this lecture in later pages

Sep. 2021 Advanced Course in Massively Parallel Computing 41

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/

The HPC Hardware Landscape

Current Generation: Programming Models OpenMP 3, CUDA and OpenACC depending on machine

e W o e

LAMNL/SNL Trinity LLNL SIERRA ORMNL Summit SNL Astra Riken Fugaku
Intel Haswell / Intel KNL IEM Power9 | NVIDIA Volta |IBM Power8 [NVIDIA Volta ARM CPUs ARM CPUs with SVE
OpenMP 3 CUDA / CpenhiP'= CUDA / OpenACC / OpenMP @ OpenMP 2 OpenMP 3/ OpenACC ™

Upcoming Generation: Programming Models OpenMP 5, CUDA, HIP and DPC++ depending on machine

hird 2

NERSC Perimutter ORNL Frontier ANL Aurora LLNL El Capitan
AMD CPU /| NVIDIA GPU AMD CPU / AMD GPU Xeon CPUs [Intel GPUs AMD CPU f AMD GPU
CUDA / OpenMP 51<) HIP / OpenMP 514 DPC++ / OpenlP &1 HIP / OpenMP 514

(a) Initially not working. Now more robust for Fortran than C++, but getting better.
(b) Research effort.

(c) OpenMP 5 by NVIDIA.
(d) OpenMP 5 by HPE.

(e%gg_pfd}l}/IP > by InteI'Advanced Course in Massively Parallel Computing

Kokkos at the Center

Applications Libraries Frameworks

i=40ps ¥

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

NREL/SNL NALU
Wind Turbine CFD

ORNL Raptor
Large Eddy Sim

Kokkos

ORNL Frontier
Cray / AMD GPU

ANL Aurora SNL Astra LLNL SIERRA
Intel Haswell / Intel KNL 10 xa0n CPUs + Xe Compute ARM Architecture |5 powerg / NVIDIA Volta

Sep. 2021 Advanced Course in Massively Parallel Computing 43

What is Kokkos?

» A C++ Programming Model for Performance Portability

» Implemented as a template library on top CUDA, HIP,
OpenMP, ...

» Aims to be descriptive not prescriptive
» Aligns with developments in the C++ standard

» Expanding solution for common needs of modern science and
engineering codes

» Math libraries based on Kokkos

» Tools for debugging, profiling and tuning
» Utilities for integration with Fortran and Python

» |s is an Open Source project with a growing community

» Maintained and developed at https://github.com/kokkos
» Hundreds of users at many large institutions

Sep. 2021 Advanced Course in Massively Parallel Computing 4“

Important Point: Performance Portability

Important Point

There's a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

Goal: write one implementation which:
» compiles and runs on multiple architectures,

» obtains performant memory access patterns across
architectures,

» can leverage architecture-specific features where possible.

Kekkos: performanssgatdabiliidsspekesaincmyggnge architecturesss ‘

Concepts: Patterns, Policies, and Bodies

Pattern Policy
for (element = 0; element < numElements; ++element) A
total = 0;
> for (qp = 0; qp < numQPs; ++qp) {
3 total += dot(left[element][qpl, right[element] [qpl);
Dy
elementValues [element] = total;

+
Terminology:

» Pattern: structure of the computations
for, reduction, scan, task-graph, ...

» Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

» Computational Body: code which performs each unit of
work; e.g., the loop body

= The pattern and policy drive the computational body.
46 ‘

Sep. 2021 Advanced Course in Massively Parallel Computing

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gqp < numQPs; ++qp) {
total += dot(left[element][qpl, rightlelement] [qp]l);
+

elementValues[element] = total;

b

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel PHI and NVIDIA GPU and AMD GPU and ...

Sep. 2021 Advanced Course in Massively Parallel Computing

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.5

#pragma omp target data map(...)

#pragma omp teams num_teams (...) num_threads(...) private(...)
#pragma omp distribute
for (element = 0; element < numElements; ++element) {

total = 0

#pragma omp parallel for
for (qp = 0; qp < numQPs; ++qp)
total += dot(left[element][qpl, right[element] [qpl);
elementValues[element] = total;

+
Option 2: OpenACC

#pragma acc parallel copy(...) num_gangs(...) vector_length(...)
#pragma acc loop gang vector
for (element = 0; element < numElements; ++element) {
total = 0;
for (qp = 0; gqp < numQPs; ++qp)
total += dot(left[element][qpl, right[element] [qpl);
elementValues[element] = total;

¥ Sep. 2021 Advanced Course in Massively Parallel Computing

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if It is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

Sep. 2021 Advanced Course in Massively Parallel Computing

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces[atomIndex] = calculateForce(...data...);

+

Kokkos maps work to execution resources
» each iteration of a computational body is a unit of work.
» an iteration index identifies a particular unit of work.

» an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution

resources.) ‘
Sep. 2021 Advanced Course in Massively Parallel Computing 50

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C+-+.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

void operator () (a work assignment) const {
/* ... computational body ... x*/

Sep. 2021 Advanced Course in Massively Parallel Computing 51 ‘

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;
Kokkos ::parallel_for (numberOfIterations, functor);

and work items are assigned to functors one-by-one:

struct Functor {
void operator () (const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

Sep. 2021 Advanced Course in Massively Parallel Computing 52

Serial

Functor

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {
Forcelype _atomForces;
AtomDatalype _atomData;
AtomForceFunctor (/* args */) {...}
void operator () (const int64_t atomIndex) const {
_atomForces[atomIndex] = calculateForce(_atomData);

}
};

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces, data);
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
functor (atomIndex) ;

}

Sep. 2021 Advanced Course in Massively Parallel Computing

Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;

AtomForceFunctor (ForceType atomForces , AtomDataType data)
_atomForces (atomForces), _atomData(data) {}

void operator () (const int64_t atomIndex) const {
_atomForces[atomIndex] = calculateForce(_atomData);

}

2. Executing in parallel with Kokkos pattern:

AtomForceFunctor functor(atomForces, data);

Kokkos ::parallel_for (numberOfAtoms, functor);
Sep. 2021 Advanced Course in Massively Parallel Computing 54

parallel_for examples

How does this compare to OpenMP?

for (int64_t i = 0; i < N; ++i) A
/* loop body x*/
+

#pragma omp parallel for

for (int64_t 1 = 0; 1 < N; ++1) A
/* loop body */

t

parallel _for (N, [=] (comnst int64_t i) {
/* loop body x*/
1)

Kokkos OpenMP Serial

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.

Sep. 2021 Advanced Course in Massively Parallel Computing

Scalar integration (4)

Example: Scalar integration

Q.| double totallntegral = 0;

:E #pragma omp parallel for reduction(+:totallntegral)
5 for (int64_t 1 = 0; i < numberOfIntervals; ++1i) {
Q. totallntegral += function(...);

Ol

double totallntegral = O;
parallel _reduce (numberOfIntervals,
[=] (const int64_t i, double & valueToUpdate) {
valueToUpdate += function(...);
¥},
totalIntegral);

Kokkos

» The operator takes two arguments: a work index and a value
to update.

» The second argument is a thread-private value that is

managed by Kokkos; it is not the final reduced value. 56‘

Sep. 2021 Advanced Course in Massively Parallel Computing

Final remarks

GPGPU is a good solution for apps which can be parallelized for GPU.
— It can be very good esp. when the app fits into one GPU.

— If the apps needs more than one GPU, the cost of communication will
kill performance. (in case of HPC)

Programming in CUDA is still difficult ...
— Performance tuning, memory layout ...
— OpenACC and OpenMP will help you!

GPU is now a main device to accelerate many kinds of computing
— Not only NVIDA, but also AMD and Intel
— Kokkos is supposed to support a variety of GPU and also CPU

Nkaregoprogrammingimedetsianc sayikegrraraetScabatipy oposed 57

	GPU Programming (2)
	Contents
	Supercomputers in US around 2021-2023
	OpenCL
	Kernel and Memory model
	Execution Environment of OpenCL
	Example
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	SYCL
	SYCL example
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	Comment on sample code
	Comment on sample code
	Comment on sample code
	Comment on sample code
	Using factor
	Using factor
	Main program
	Main program
	スライド番号 27
	OneAPI
	OneAPI
	OpenACC
	OpenACC Online Course recording
	A simple example
	A simple example
	Matrix Multiply in OpenACC
	Stencil Code (Laplace Solver) in OpenACC
	Performance of OpenACC code
	Performance of OpenACC code
	OpenMP 4.0
	Accelerator (2.9): offloading	
	target and map examples
	Kokkos
	スライド番号 42
	スライド番号 43
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	スライド番号 51
	スライド番号 52
	スライド番号 53
	スライド番号 54
	スライド番号 55
	スライド番号 56
	Final remarks

