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Agenda

 Trends of Multicore processor
 What’s OpenMP
 Advanced topics

 MPI/OpenMP Hybrid Programming
 Programming for Multi-core cluster

 OpenMP 3.0 (2007, approved)
 Task parallelism

 OpenACC (2012)
 For GPU, by NVIDIA, PGI, Cray, …

 OpenMP 4.0 (2013, released)
 Accelerator extension
 SIMD extension
 Task dependency description
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How to make computer fast?

 Computer became faster and faster by
 Device
 Computer architecture

 Computer architecture to perform processing in 
parallel at several levels:
 Inside of CPU (core)
 Inside of Chip
 Between chips (+GPU)
 Between computer

Pipeline
Superscalar

mulitcore

Shared memory 
multiprocessor

Distributed memory 
computer or Grid

Advanced Course in Massively Parallel Computing
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Trends of Mulitcore processors
 Faster clock speed, and Finer silicon technology

 “now clock freq is 3GHz, in future it will reach to 
10GHz!?”
 Intel changed their strategy -> multicore!
 Clock never become faster any more

 Silicon technology 45 nm -> 7 nm in near future!

 Progress in Computer Architecture
 Superpipeline, super scalar, VLIW …
 Multi-level cache, L3 cache even in microprocessor
 Multi-thread architecture、Intel Hyperthreading

 Shared by multiple threads
 Multi-core： multiple CPU core on one chip dai

Inetl ® Pentium® processor
Dai of Extreme-edition

Good news & bad news! 

Programming support is required
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Multi-core processor：
Solution of Low power by parallel processing

Apporach for Low power by parallel processing
increase N、 decrease V and f,      improve perf. N×f

 Decreasing V and F, makes heat dissipation and power lower within a chip
 Progress in silicon technology 130nm ⇒ 90nm⇒65nm,22nm （Decrease C and V)
 Use a silicon process for low power (embedded processor) （Small α）

 Performance improvement by Multi-core （N=2～16)
 Number of transistors are increasing by “Moore’s Law”

 Parallel processing by low power processor

システム総電力 P = N ×α×C×V×FCPU power dissipation

P = N×α×C×V２×f
# CPU Active rate of 

processors
Capacitanc
e of circiuit

Voltage Clock Freq

Solution by multi-core processors for
High performance embedded system
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Why parallelization needs?
4 times speedup by using 4 cores!

Advanced Course in Massively Parallel Computing
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Overhead of parallel execution

If comm or
Sync is required

Loads of each 
proc

is different
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Shared memory multi-processor system

CPU CPU CPU CPU

ＭＥＭ

BUS

Multiple CPUs share 
main memory

Threads executed in 
each core(CPU) 
communicate with 
each other by 
accessing shared data 
in main memory.

Enterprise Server
SMP Multi-core 

processors
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Distributed memory multi-processor

CPU CPU

CPU CPU

MEM

MEM MEM

MEM

Network

System with several 
computer of CPU and 
memory, connected by 
network.

Thread executed in each 
computer communicate 
with each other by 
exchanging data 
(message) via network.タ

PC Cluster
AMP Multi-core processor
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Very simple example of parallel computing for high performance
for(i=0;i<1000; i++)

S += A[i]

1 2 3 4 1000

+ S

1 2 1000250 251 500 501 750 751

+ + + +

+ S

Sequential  computation

Parallel computation

Processor１ Processor ２ プProcessor ３ Processor ４
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Parallel programming model

 Message passing programming model
 Parallel programming by exchange data (message) between processors 

(nodes)
 Mainly for distributed memory system (possible also for shared memory)
 Program must control the data transfer explicitly.
 Programming is sometimes difficult and time-consuming
 Program may be scalable (when increasing number of Proc)

 Shared memory programming model
 Parallel programming by accessing shared data in memory.
 Mainly for shared memory system. (can be supported by software 

distributed shared memory)
 System moves shared data between nodes (by sharing)
 Easy to program,  based on sequential version
 Scalability is limited.  Medium scale multiprocessors.
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Parallel programming models

Advanced Course in Massively Parallel Computing
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Multithread(ed) programming
 Basic model for shared memory
 Thread of execution = abstraction of execution in processors.

 Different from process
 Procss = thread + memory space 

 POSIX thread library = pthread
Many programs are 
executed in parallel

スレッド
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POSIX thread library
 Create thread: thread_create
 Join threads: pthread_join
 Synchronization, lock

#include <pthread.h>

void func1( int x ); void func2( int x );

main() {
pthread_t t1 ;
pthread_t t2 ;

pthread_create( &t1, NULL, 
(void *)func1, (void *)1 );

pthread_create( &t2, NULL,
(void *)func2, (void *)2 );

printf("main()¥n");
pthread_join( t1, NULL );
pthread_join( t2, NULL );

}
void func1( int x ) {

int i ;
for( i = 0 ; i<3 ; i++ ) {

printf("func1( %d ): %d ¥n",x, i );
}

}
void func2( int x ) {

printf("func2( %d ): %d ¥n",x);
}

main

func1
func2

pthread_create

pthread_join

pthread_create

pthread_join
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Programming using POSIX thread

 Create threads

for(t=1;t<n_thd;t++){
r=pthread_create(thd_main,t)

}
thd_main(0);
for(t=1; t<n_thd;t++)

pthread_join();

Pthread, Solaris thread

 Divide and assign iterations of loop 
 Synchronization for sum

int s;  /* global */
int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
c=1000/n_thd;
b=c*id;
e=s+c;
ss=0;
for(i=b; i<e; i++) ss += a[i];
pthread_lock();
s += ss;
pthread_unlock();
return s;

}

Thread ＝
Execution of program
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Message passing programming
 General programming paradigm for distributed memory system.

 Data exchange by “send” and “receive”

 Communication library, layer
 POSIX IPC, socket
 TIPC (Transparent Interprocess Communication)
 LINX (on Enea’s OSE Operating System)
 MCAPI (Multicore Communication API）
 MPI (Message Passing Interface)

On-Chip
network

Send Receive

core１

core ２

core ３

core ４
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Simple example of Message Passing Programming

 Sum up 1000 element in array
int a[250]; /* 250 elements are allocated in each node */

main(){    /* start main in each node */
int i,s,ss;
s=0;
for(i=0; i<250;i++) s+= a[i]; /*compute local sum*/
if(myid == 0){   /* if processor 0 */

for(proc=1;proc<4; proc++){
recv(&ss,proc);  /* receive data from others*/
s+=ss;   /*add local sum to sum*/

}
} else { /* if processor 1,2,3 */

send(s,0);  /* send local sum to processor 0 */
}

}
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Parallel programming using MPI
 MPI (Message Passing Interface)
 Mainly, for High performance scientific computing
 Standard library for message passing parallel programming in high-end 

distributed memory systems.
 Required in case of system with 

more than 100 nodes.
 Not easy and time-consuming work

 “assembly programming” in distributed 
programming

 Communication with message
 Send/Receive

 Collective operations
 Reduce/Bcast
 Gather/Scatter

Over-specs for 
Embedded system 

Programming?!

ネットワーク

Send Receive
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Programming in MPI

#include "mpi.h"
#include <stdio.h>
#define MY_TAG 100
double A[1000/N_PE];
int main( int argc, char *argv[])
{

int n, myid, numprocs, i;
double sum, x;
int  namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
MPI_Get_processor_name(processor_name,&namelen);
fprintf(stderr,"Process %d on %s¥n", myid, processor_name);

.... 
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Programming in MPI

sum = 0.0;
for (i = 0; i < 1000/N_PE; i++){

sum+ = A[i];
}

if(myid == 0){
for(i = 1; i < numprocs; i++){

MPI_Recv(&t,1,MPI_DOUBLE,i,MY_TAG,MPI_COMM_WORLD,&status
sum += t;

}
} else 

MPI_Send(&t,1,MPI_DOUBLE,0,MY_TAG,MPI_COMM_WORLD);
/* MPI_Reduce(&sum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_  
MPI_Barrier(MPI_COMM_WORLD);
...
MPI_Finalize();
return 0;

}
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What’s OpenMP?
 Programming model and API for shared memory parallel programming

 It is not a brand-new language.
 Base-languages(Fortran/C/C++)  are extended for parallel programming 

by directives.
 Main target area is scientific application.
 Getting popular as a programming model for shared memory processors 

as multi-processor and multi-core processor appears.

 OpenMP Architecture Review Board (ARB) decides spec.
 Initial members were from ISV compiler venders in US.
 Oct. 1997 Fortran ver.1.0 API
 Oct. 1998 C/C++ ver.1.0 API
 Latest version, OpenMP 4.5

 http://www.openmp.org/
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Programming using POSIX thread

 Create threads

for(t=1;t<n_thd;t++){
r=pthread_create(thd_main,t)

}
thd_main(0);
for(t=1; t<n_thd;t++)

pthread_join();

Pthread, Solaris thread

 Divide and assign iterations of loop 
 Synchronization for sum

int s;  /* global */
int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
c=1000/n_thd;
b=c*id;
e=s+c;
ss=0;
for(i=b; i<e; i++) ss += a[i];
pthread_lock();
s += ss;
pthread_unlock();
return s;

}

Thread ＝
Execution of program
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Programming in OpenMP

#pragma omp parallel for reduction(+:s)
for(i=0; i<1000;i++) s+= a[i];

これだけで、OK!
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OpenMP API

 It is not a new language! 
 Base languages are extended by compiler directives/pragma, runtime 

library, environment variable.
 Base languages：Fortran 90, C, C++

 Fortran： directive line starting with !$OMP
 C: directive by #pragma omp

 Different from automatic parallelization
 OpenMP parallel execution model is defined explicitly by a programmer.

 If directives are ignored (removed), the OpenMP program can be 
executed as a sequential program
 Can be parallelized in incrementally
 Practical approach with respect to program development and debugging.
 Can be maintained as a same source program for both sequential and 

parallel version.
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OpenMP Execution model 
 Start from sequential execution
 Fork-join Model
 parallel region

 Duplicated execution even in function calls

… A ...
#pragma omp parallel
{

foo(); /* ..B... */
}
… C ….
#pragma omp parallel
{
… D …
}
… E ...

Call foo() Call foo()Call foo()Call foo()

A

B

C

D

E

fork

join
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Parallel Region

 A code region executed in parallel by multiple threads (team)
 Specified by Parallel constructs
 A set of threads executing the same parallel region is called “team”
 Threads in team execute the same code in region (duplicated 

execution)

#pragma omp parallel
{

...

... Parallel region...

...
}
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Demo
 How many threads? /proc/cpuinfo
 gcc –fopenmp, gcc suppots OpenMP from versio、4.2, 

gfortran
 You can specify the number of threads by environment 

variable OMP_NUM_THREADS
#include <omp.h>
#include <stdio.h>

main()
{

printf("omp-test ... n_thread=%d¥n",omp_get_max_threads());
#pragma omp parallel 

{
printf("thread (%d/%d)...¥n",

omp_get_thread_num(),omp_get_num_threads());
}
printf("end...¥n");

}Advanced Course in Massively Parallel Computing
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Work sharing Constructs

 Specify how to share the execution within a team
 Used in parallel region
 for Construct

 Assign iterations for each threads
 For data parallel program

 Sections Construct
 Execute each section by different threads
 For task-parallelism

 Single Construct
 Execute statements by only one thread

 Combined Construct with parallel directive
 parallel for Construct
 parallel sections Construct

directives
work-sharing, sync

Duplicated execution

thread1 thread2 thread3
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For Construct

 Execute iterations specified For-loop in parallel
 For-loop specified by the directive must be in canonical shape

 Var must be loop variable of integer or pointer(automatically private)
 incr-expr

 ++var,var++,--var,var--,var+=incr,var-=incr
 logical-op

 ＜、＜＝、＞、＞＝

 Jump to ouside loop or break are not allows
 Scheduling method and data attributes are specified in clause

#pragma omp for [clause…]
for(var=lb; var logical-op ub; incr-expr)

body
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Example: matrix-vector product

Advanced Course in Massively Parallel Computing
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The performance looks like …

Advanced Course in Massively Parallel Computing
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Scheduling methods of parallel loop

 #processor = 4
Sequential

schedule(static,n)

Schedule(static)

Schedule(dynamic,n)

Schedule(guided,n)

n Iteration space



Static scheduling 
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#iteration

#time/iteration

#iteration

#time/iteration

proc0 proc1 proc２ proc３
proc0 proc３proc1 proc２

small

large



Cyclic & dynamic scheduling 
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#iteration

#time/iteration

proc0 proc３proc1 proc２

#iteration

#time/iteration

proc0 Proc?proc1 proc?…..
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Data scope attribute clause
 Clause specified with parallelconsruct、work sharing 

construct
 shared(var_list)

 Specified variables are shared among threads.
 private(var_list)

 Specified variables replicated as a private variable
 firstprivate(var_list)

 Same as private, but initialized by value before loop.
 lastprivate(var_list)

 Same as private, but the value after loop is updated by the value of 
the last iteration.

 reduction(op:var_list)
 Specify the value of variables computed by reduction operation op.
 Private during execution of loop, and updated at the end of loop
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Data Race

Data Race =
Write a same variable by 

different threads

OpenMP
Is shared 
Memory!



reduction clause
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t t t t

#pragma omp parallel for reduction(+:t)
• The syntax of the reduction 

clause is as follows:
reduction (operator : list)

• a private copy is created in 
each implicit task.

• After the end of the region, 
it is updated with the 
private copies using the 
specified operator.

+
t

Operator Initial value Operator Initial value
+ 0 & ~0
* 1 | 0

Advanced Course in Massively Parallel Computing
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Example of loop construct
#include <stdio.h>
#include <math.h>
double f( double a )
{

return (4.0 / (1.0 + a*a));
}

int main( int argc, char *argv[])
{

int n, I, thd;
double PI25DT = 3.141592653589793238462643;
double pi, h, sum, x;

n = atoi(argv[1]); thd = atoi(argv[2]);
h = 1.0 / (double) n;
sum = 0.0;

#pragma omp parallel for private(x) reduction(+:sum) num_threads(thd)
for (i = 1; i <=n; i++) {

x = h * ((double) i - 0.5);
sum += f(x);

}
pi = h * sum;
printf(“pi=%.16f, Error=%.16, n=%d, thd=%df¥n”, pi, fabs(pi  - PI25DT), n, thd);
return 0;

}
Advanced Course in Massively Parallel Computing
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Barrier directive

 Sync team by barrier synchronization
 Wait until all threads in the team reached to the barrier 

point.
 Memory write operation to shared memory is completed 

(flush) at the barrier point.
 Implicit barrier operation is performed at the end of 

parallel region, work sharing construct without nowait
clause

#pragma omp barrier



41

You cannot parallelize this loop

Advanced Course in Massively Parallel Computing
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Barrier directive
 Sync team by barrier synchronization

 Wait until all threads in the team reached to the barrier point.
 Memory write operation to shared memory is completed (flush) at the 

barrier point.
 Implicit barrier operation is performed at the end of parallel region, work 

sharing construct without nowait clause

#pragma omp barrier

Advanced Course in Massively Parallel Computing
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Barrier is important in this case

You don’t need to put barrier directive 
Because for directive without nowait performs implicit barrier.

Advanced Course in Massively Parallel Computing
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How to use nowait

Advanced Course in Massively Parallel Computing
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Other directives

 Single construct： to specify a region executed by 
one thread.

 Master construct: to specify a region executed by 
master thread.

 Section construct: to specify regions executed by 
different threads (task parallelism)

 Critical construct： to specify critical region executed 
exclusively between threads

 Flush construct
 Threadprivate construct

Advanced Course in Massively Parallel Computing
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Example of OpenMP program：laplace
 Explicit solver of Laplace equation

 Stencil operation: update value with 4-points of up/down/left/right.
 Use array of “old” and “new”. Compute new by old and replace old 

with new.
 Typical parallelization by domain decomposition
 At each iteration, compute residual

 OpenMP version: lap.c
 Parallelize 3 loops 

 OpenMP support only loop 
parallelization of outer loop.

 For loop directive is orphan, in dynamic extent of parallel directive.
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void lap_solve()
{

int x,y,k;
double sum;

#pragma omp parallel private(k,x,y)
{

for(k = 0; k < NITER; k++){
/* old <- new */

#pragma omp for 
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
uu[x][y] = u[x][y];

/* update */
#pragma omp for

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
u[x][y] = (uu[x-1][y] + uu[x+1][y] + uu[x][y-1] + uu[x][y+1])/4.0;

}
}

/* check sum */
sum = 0.0;

#pragma omp parallel for private(y) reduction(+:sum)
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
sum += (uu[x][y]-u[x][y]);

printf("sum = %g¥n",sum);
}

Advanced Course in Massively Parallel Computing
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What about performance?
 OpenMP really speedup my problem?!

 It depends on hardware and problem size/characteristics

 Esp. problem sizes is an very important factor
 Trade off between overhead of parallelization and grain size of parallel 

execution.

 To understand performance, …
 How to lock
 How to exploit cache
 Memory bandwidth
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Advanced topics

 MPI/OpenMP Hybrid Programming
 Programming for Multi-core cluster

 OpenMP 3.0 (2007, approved)
 Task parallelism

 OpenACC (2012)
 For GPU, by NVIDIA, PGI, Cray, …

 OpenMP 4.0 (2013, released)
 Accelerator extension
 SIMD extension
 Task dependency description

Advanced Course in Massively Parallel Computing



OpenACC
 A spin-off activity from OpenMP ARB for supporting 

accelerators such as GPGPU and MIC

 NVIDIA, Cray Inc., the Portland Group (PGI), and 
CAPS enterprise

 Directive to specify the code offloaded to GPU.

Advanced Course in Massively Parallel Computing 50



A simple example

#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}
}
}

direction copy copyin copyout

Host->device ○ ○

Device->Host ○ ○

device
host

copy a,b

copy c

Advanced Course in Massively Parallel Computing 51



A simple example

#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}
}
}

execute iterations
like CUDA kernel
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Matrix Multiply in OpenACC
#define N 1024

void main(void)
{
double a[N][N], b[N][N], c[N][N];
int i,j;
// ... setup data ...

#pragma acc parallel loop copyin(a, b) copyout(c)
for(i = 0; i < N; i++){

#pragma acc loop
for(j = 0; j < N; j++){
int k;
double sum = 0.0;
for(k = 0; k < N; k++){
sum += a[i][k] * b[k][j];
}
c[i][j] = sum;

}
}

}
Advanced Course in Massively Parallel Computing 53



Stencil Code (Laplace Solver) in OpenACC
#define XSIZE 1024
#define YSIZE 1024
#define ITER 100
int main(void){

int x, y, iter;
double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
// setup ...

#pragma acc data copy(u, uu)
{
for(iter = 0; iter < ITER; iter++){
//old <- new

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){

#pragma acc loop
for(y = 1; y < YSIZE-1; y++)

uu[x][y] = u[x][y];
}
//update

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){

#pragma acc loop
for(y = 1; y < YSIZE-1; y++)

u[x][y] = (uu[x-1][y] + uu[x+1][y] 
+ uu[x][y-1] + uu[x][y+1]) / 4.0;

}}
} //acc data end

}Advanced Course in Massively Parallel Computing 54



Performance of OpenACC code
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OpenMP 4.0
 Released July 2013

 http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
 A document of examples is expected to release soon

 Changes from 3.1 to 4.0 (Appendix E.1): 
 Accelerator: 2.9
 SIMD extensions: 2.8
 Places and thread affinity: 2.5.2, 4.5
 Taskgroup and dependent tasks: 2.12.5, 2.11
 Error handling: 2.13
 User-defined reductions: 2.15
 Sequentially consistent atomics: 2.12.6
 Fortran 2003 support

57slide by Yonghong@UH
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Accelerator (2.9): offloading
 Execution Model: Offload data 

and code to accelerator
 target construct creates tasks 

to be executed by devices
 Aims to work with wide variety 

of accs
 GPGPUs, MIC, DSP, FPGA, etc
 A target could be even a remote 

node, intentionally

58

Main 
Memory

Application 
data

target

Application 
data

acc. cores

Copy in 
remote
data

Copy out 
remote data

Tasks
offloaded to 
accelerator

#pragma omp target
{

/* it is like a new task 
* executed on a remote device */

{

slide by Yonghong@UH
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Accelerator: explicit data mapping

 Relatively small number of 
truly shared memory 
accelerators so far

 Require the user to 
explicitly map data to and 
from the device memory

 Use array region

59

long a = 0x858;
long b = 0;
int anArray[100]

#pragma omp target data map(to:a) 
¥¥

map(tofrom:b,anArray[0:64])
{

/* a, b and anArray are mapped 
* to the device */

/* work here */
}
/* b and anArray are mapped 

* back to the host */

slide by Yonghong@UHAdvanced Course in Massively Parallel Computing



Accelerator: hierarchical parallelism
 Organize massive number of threads

 teams of threads, e.g. map to CUDA grid/block
 Distribute loops over teams

60

#pragma omp target

#pragma omp teams num_teams(2)
num_threads(8)

{
//-- creates a “league” of teams     

//-- only local barriers permitted
#pragma omp distribute
for (int i=0; i<N; i++) {

}

}
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target and map examples
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target date example
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teams and distribute loop example

Double-nested loops are mapped to the two 
levels of thread hierarchy (league and team)
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