
1

OpenMP
Parallel Programming for Multicore

processors and GPU

Mitsuhisa Sato
RIKEN R-CCS

and University of Tsukuba

2

Agenda

 Trends of Multicore processor
 What’s OpenMP
 Advanced topics

 MPI/OpenMP Hybrid Programming
 Programming for Multi-core cluster

 OpenMP 3.0 (2007, approved)
 Task parallelism

 OpenACC (2012)
 For GPU, by NVIDIA, PGI, Cray, …

 OpenMP 4.0 (2013, released)
 Accelerator extension
 SIMD extension
 Task dependency description

Advanced Course in Massively Parallel Computing

3

How to make computer fast?

 Computer became faster and faster by
 Device
 Computer architecture

 Computer architecture to perform processing in
parallel at several levels:
 Inside of CPU (core)
 Inside of Chip
 Between chips (+GPU)
 Between computer

Pipeline
Superscalar

mulitcore

Shared memory
multiprocessor

Distributed memory
computer or Grid

Advanced Course in Massively Parallel Computing

4Advanced Course in Massively Parallel Computing

Trends of Mulitcore processors
 Faster clock speed, and Finer silicon technology

 “now clock freq is 3GHz, in future it will reach to
10GHz!?”
 Intel changed their strategy -> multicore!
 Clock never become faster any more

 Silicon technology 45 nm -> 7 nm in near future!

 Progress in Computer Architecture
 Superpipeline, super scalar, VLIW …
 Multi-level cache, L3 cache even in microprocessor
 Multi-thread architecture、Intel Hyperthreading

 Shared by multiple threads
 Multi-core： multiple CPU core on one chip dai

Inetl ® Pentium® processor
Dai of Extreme-edition

Good news & bad news!

Programming support is required

5Advanced Course in Massively Parallel Computing

Multi-core processor：
Solution of Low power by parallel processing

Apporach for Low power by parallel processing
increase N、 decrease V and f, improve perf. N×f

 Decreasing V and F, makes heat dissipation and power lower within a chip
 Progress in silicon technology 130nm ⇒ 90nm⇒65nm,22nm （Decrease C and V)
 Use a silicon process for low power (embedded processor) （Small α）

 Performance improvement by Multi-core （N=2～16)
 Number of transistors are increasing by “Moore’s Law”

 Parallel processing by low power processor

システム総電力 P = N ×α×C×V×FCPU power dissipation

P = N×α×C×V２×f
CPU Active rate of

processors
Capacitanc
e of circiuit

Voltage Clock Freq

Solution by multi-core processors for
High performance embedded system

6Advanced Course in Massively Parallel Computing

7

Why parallelization needs?
4 times speedup by using 4 cores!

Advanced Course in Massively Parallel Computing

8

Overhead of parallel execution

If comm or
Sync is required

Loads of each
proc

is different

9Advanced Course in Massively Parallel Computing

Shared memory multi-processor system

CPU CPU CPU CPU

ＭＥＭ

BUS

Multiple CPUs share
main memory

Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
in main memory.

Enterprise Server
SMP Multi-core

processors

10Advanced Course in Massively Parallel Computing

Distributed memory multi-processor

CPU CPU

CPU CPU

MEM

MEM MEM

MEM

Network

System with several
computer of CPU and
memory, connected by
network.

Thread executed in each
computer communicate
with each other by
exchanging data
(message) via network.タ

PC Cluster
AMP Multi-core processor

11Advanced Course in Massively Parallel Computing

Very simple example of parallel computing for high performance
for(i=0;i<1000; i++)

S += A[i]

1 2 3 4 1000

+ S

1 2 1000250 251 500 501 750 751

+ + + +

+ S

Sequential computation

Parallel computation

Processor１ Processor ２ プProcessor ３ Processor ４

12Advanced Course in Massively Parallel Computing

Parallel programming model

 Message passing programming model
 Parallel programming by exchange data (message) between processors

(nodes)
 Mainly for distributed memory system (possible also for shared memory)
 Program must control the data transfer explicitly.
 Programming is sometimes difficult and time-consuming
 Program may be scalable (when increasing number of Proc)

 Shared memory programming model
 Parallel programming by accessing shared data in memory.
 Mainly for shared memory system. (can be supported by software

distributed shared memory)
 System moves shared data between nodes (by sharing)
 Easy to program, based on sequential version
 Scalability is limited. Medium scale multiprocessors.

13

Parallel programming models

Advanced Course in Massively Parallel Computing

14Advanced Course in Massively Parallel Computing

Multithread(ed) programming
 Basic model for shared memory
 Thread of execution = abstraction of execution in processors.

 Different from process
 Procss = thread + memory space

 POSIX thread library = pthread
Many programs are
executed in parallel

スレッド

15Advanced Course in Massively Parallel Computing

POSIX thread library
 Create thread: thread_create
 Join threads: pthread_join
 Synchronization, lock

#include <pthread.h>

void func1(int x); void func2(int x);

main() {
pthread_t t1 ;
pthread_t t2 ;

pthread_create(&t1, NULL,
(void *)func1, (void *)1);

pthread_create(&t2, NULL,
(void *)func2, (void *)2);

printf("main()¥n");
pthread_join(t1, NULL);
pthread_join(t2, NULL);

}
void func1(int x) {

int i ;
for(i = 0 ; i<3 ; i++) {

printf("func1(%d): %d ¥n",x, i);
}

}
void func2(int x) {

printf("func2(%d): %d ¥n",x);
}

main

func1
func2

pthread_create

pthread_join

pthread_create

pthread_join

16Advanced Course in Massively Parallel Computing

Programming using POSIX thread

 Create threads

for(t=1;t<n_thd;t++){
r=pthread_create(thd_main,t)

}
thd_main(0);
for(t=1; t<n_thd;t++)

pthread_join();

Pthread, Solaris thread

 Divide and assign iterations of loop
 Synchronization for sum

int s; /* global */
int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
c=1000/n_thd;
b=c*id;
e=s+c;
ss=0;
for(i=b; i<e; i++) ss += a[i];
pthread_lock();
s += ss;
pthread_unlock();
return s;

}

Thread ＝
Execution of program

17Advanced Course in Massively Parallel Computing

Message passing programming
 General programming paradigm for distributed memory system.

 Data exchange by “send” and “receive”

 Communication library, layer
 POSIX IPC, socket
 TIPC (Transparent Interprocess Communication)
 LINX (on Enea’s OSE Operating System)
 MCAPI (Multicore Communication API）
 MPI (Message Passing Interface)

On-Chip
network

Send Receive

core１

core ２

core ３

core ４

18Advanced Course in Massively Parallel Computing

Simple example of Message Passing Programming

 Sum up 1000 element in array
int a[250]; /* 250 elements are allocated in each node */

main(){ /* start main in each node */
int i,s,ss;
s=0;
for(i=0; i<250;i++) s+= a[i]; /*compute local sum*/
if(myid == 0){ /* if processor 0 */

for(proc=1;proc<4; proc++){
recv(&ss,proc); /* receive data from others*/
s+=ss; /*add local sum to sum*/

}
} else { /* if processor 1,2,3 */

send(s,0); /* send local sum to processor 0 */
}

}

19Advanced Course in Massively Parallel Computing

Parallel programming using MPI
 MPI (Message Passing Interface)
 Mainly, for High performance scientific computing
 Standard library for message passing parallel programming in high-end

distributed memory systems.
 Required in case of system with

more than 100 nodes.
 Not easy and time-consuming work

 “assembly programming” in distributed
programming

 Communication with message
 Send/Receive

 Collective operations
 Reduce/Bcast
 Gather/Scatter

Over-specs for
Embedded system

Programming?!

ネットワーク

Send Receive

20Advanced Course in Massively Parallel Computing

Programming in MPI

#include "mpi.h"
#include <stdio.h>
#define MY_TAG 100
double A[1000/N_PE];
int main(int argc, char *argv[])
{

int n, myid, numprocs, i;
double sum, x;
int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
MPI_Get_processor_name(processor_name,&namelen);
fprintf(stderr,"Process %d on %s¥n", myid, processor_name);

....

21Advanced Course in Massively Parallel Computing

Programming in MPI

sum = 0.0;
for (i = 0; i < 1000/N_PE; i++){

sum+ = A[i];
}

if(myid == 0){
for(i = 1; i < numprocs; i++){

MPI_Recv(&t,1,MPI_DOUBLE,i,MY_TAG,MPI_COMM_WORLD,&status
sum += t;

}
} else

MPI_Send(&t,1,MPI_DOUBLE,0,MY_TAG,MPI_COMM_WORLD);
/* MPI_Reduce(&sum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_
MPI_Barrier(MPI_COMM_WORLD);
...
MPI_Finalize();
return 0;

}

22Advanced Course in Massively Parallel Computing

What’s OpenMP?
 Programming model and API for shared memory parallel programming

 It is not a brand-new language.
 Base-languages(Fortran/C/C++) are extended for parallel programming

by directives.
 Main target area is scientific application.
 Getting popular as a programming model for shared memory processors

as multi-processor and multi-core processor appears.

 OpenMP Architecture Review Board (ARB) decides spec.
 Initial members were from ISV compiler venders in US.
 Oct. 1997 Fortran ver.1.0 API
 Oct. 1998 C/C++ ver.1.0 API
 Latest version, OpenMP 4.5

 http://www.openmp.org/

23Advanced Course in Massively Parallel Computing

Programming using POSIX thread

 Create threads

for(t=1;t<n_thd;t++){
r=pthread_create(thd_main,t)

}
thd_main(0);
for(t=1; t<n_thd;t++)

pthread_join();

Pthread, Solaris thread

 Divide and assign iterations of loop
 Synchronization for sum

int s; /* global */
int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
c=1000/n_thd;
b=c*id;
e=s+c;
ss=0;
for(i=b; i<e; i++) ss += a[i];
pthread_lock();
s += ss;
pthread_unlock();
return s;

}

Thread ＝
Execution of program

24Advanced Course in Massively Parallel Computing

Programming in OpenMP

#pragma omp parallel for reduction(+:s)
for(i=0; i<1000;i++) s+= a[i];

これだけで、OK!

25Advanced Course in Massively Parallel Computing

OpenMP API

 It is not a new language!
 Base languages are extended by compiler directives/pragma, runtime

library, environment variable.
 Base languages：Fortran 90, C, C++

 Fortran： directive line starting with !$OMP
 C: directive by #pragma omp

 Different from automatic parallelization
 OpenMP parallel execution model is defined explicitly by a programmer.

 If directives are ignored (removed), the OpenMP program can be
executed as a sequential program
 Can be parallelized in incrementally
 Practical approach with respect to program development and debugging.
 Can be maintained as a same source program for both sequential and

parallel version.

26Advanced Course in Massively Parallel Computing

OpenMP Execution model
 Start from sequential execution
 Fork-join Model
 parallel region

 Duplicated execution even in function calls

… A ...
#pragma omp parallel
{

foo(); /* ..B... */
}
… C ….
#pragma omp parallel
{
… D …
}
… E ...

Call foo() Call foo()Call foo()Call foo()

A

B

C

D

E

fork

join

27Advanced Course in Massively Parallel Computing

Parallel Region

 A code region executed in parallel by multiple threads (team)
 Specified by Parallel constructs
 A set of threads executing the same parallel region is called “team”
 Threads in team execute the same code in region (duplicated

execution)

#pragma omp parallel
{

...

... Parallel region...

...
}

28

Demo
 How many threads? /proc/cpuinfo
 gcc –fopenmp, gcc suppots OpenMP from versio、4.2,

gfortran
 You can specify the number of threads by environment

variable OMP_NUM_THREADS
#include <omp.h>
#include <stdio.h>

main()
{

printf("omp-test ... n_thread=%d¥n",omp_get_max_threads());
#pragma omp parallel

{
printf("thread (%d/%d)...¥n",

omp_get_thread_num(),omp_get_num_threads());
}
printf("end...¥n");

}Advanced Course in Massively Parallel Computing

29Advanced Course in Massively Parallel Computing

Work sharing Constructs

 Specify how to share the execution within a team
 Used in parallel region
 for Construct

 Assign iterations for each threads
 For data parallel program

 Sections Construct
 Execute each section by different threads
 For task-parallelism

 Single Construct
 Execute statements by only one thread

 Combined Construct with parallel directive
 parallel for Construct
 parallel sections Construct

directives
work-sharing, sync

Duplicated execution

thread1 thread2 thread3

30Advanced Course in Massively Parallel Computing

For Construct

 Execute iterations specified For-loop in parallel
 For-loop specified by the directive must be in canonical shape

 Var must be loop variable of integer or pointer(automatically private)
 incr-expr

 ++var,var++,--var,var--,var+=incr,var-=incr
 logical-op

 ＜、＜＝、＞、＞＝

 Jump to ouside loop or break are not allows
 Scheduling method and data attributes are specified in clause

#pragma omp for [clause…]
for(var=lb; var logical-op ub; incr-expr)

body

31

Example: matrix-vector product

Advanced Course in Massively Parallel Computing

32

The performance looks like …

Advanced Course in Massively Parallel Computing

33Advanced Course in Massively Parallel Computing

Scheduling methods of parallel loop

 #processor = 4
Sequential

schedule(static,n)

Schedule(static)

Schedule(dynamic,n)

Schedule(guided,n)

n Iteration space

Static scheduling

34Advanced Course in Massively Parallel Computing

#iteration

#time/iteration

#iteration

#time/iteration

proc0 proc1 proc２ proc３
proc0 proc３proc1 proc２

small

large

Cyclic & dynamic scheduling

35Advanced Course in Massively Parallel Computing

#iteration

#time/iteration

proc0 proc３proc1 proc２

#iteration

#time/iteration

proc0 Proc?proc1 proc?…..

36Advanced Course in Massively Parallel Computing

Data scope attribute clause
 Clause specified with parallelconsruct、work sharing

construct
 shared(var_list)

 Specified variables are shared among threads.
 private(var_list)

 Specified variables replicated as a private variable
 firstprivate(var_list)

 Same as private, but initialized by value before loop.
 lastprivate(var_list)

 Same as private, but the value after loop is updated by the value of
the last iteration.

 reduction(op:var_list)
 Specify the value of variables computed by reduction operation op.
 Private during execution of loop, and updated at the end of loop

37

Data Race

Data Race =
Write a same variable by

different threads

OpenMP
Is shared
Memory!

reduction clause

38

t t t t

#pragma omp parallel for reduction(+:t)
• The syntax of the reduction

clause is as follows:
reduction (operator : list)

• a private copy is created in
each implicit task.

• After the end of the region,
it is updated with the
private copies using the
specified operator.

+
t

Operator Initial value Operator Initial value
+ 0 & ~0
* 1 | 0

Advanced Course in Massively Parallel Computing

39

Example of loop construct
#include <stdio.h>
#include <math.h>
double f(double a)
{

return (4.0 / (1.0 + a*a));
}

int main(int argc, char *argv[])
{

int n, I, thd;
double PI25DT = 3.141592653589793238462643;
double pi, h, sum, x;

n = atoi(argv[1]); thd = atoi(argv[2]);
h = 1.0 / (double) n;
sum = 0.0;

#pragma omp parallel for private(x) reduction(+:sum) num_threads(thd)
for (i = 1; i <=n; i++) {

x = h * ((double) i - 0.5);
sum += f(x);

}
pi = h * sum;
printf(“pi=%.16f, Error=%.16, n=%d, thd=%df¥n”, pi, fabs(pi - PI25DT), n, thd);
return 0;

}
Advanced Course in Massively Parallel Computing

40Advanced Course in Massively Parallel Computing

Barrier directive

 Sync team by barrier synchronization
 Wait until all threads in the team reached to the barrier

point.
 Memory write operation to shared memory is completed

(flush) at the barrier point.
 Implicit barrier operation is performed at the end of

parallel region, work sharing construct without nowait
clause

#pragma omp barrier

41

You cannot parallelize this loop

Advanced Course in Massively Parallel Computing

42

Barrier directive
 Sync team by barrier synchronization

 Wait until all threads in the team reached to the barrier point.
 Memory write operation to shared memory is completed (flush) at the

barrier point.
 Implicit barrier operation is performed at the end of parallel region, work

sharing construct without nowait clause

#pragma omp barrier

Advanced Course in Massively Parallel Computing

43

Barrier is important in this case

You don’t need to put barrier directive
Because for directive without nowait performs implicit barrier.

Advanced Course in Massively Parallel Computing

44

How to use nowait

Advanced Course in Massively Parallel Computing

45

Other directives

 Single construct： to specify a region executed by
one thread.

 Master construct: to specify a region executed by
master thread.

 Section construct: to specify regions executed by
different threads (task parallelism)

 Critical construct： to specify critical region executed
exclusively between threads

 Flush construct
 Threadprivate construct

Advanced Course in Massively Parallel Computing

46Advanced Course in Massively Parallel Computing

Example of OpenMP program：laplace
 Explicit solver of Laplace equation

 Stencil operation: update value with 4-points of up/down/left/right.
 Use array of “old” and “new”. Compute new by old and replace old

with new.
 Typical parallelization by domain decomposition
 At each iteration, compute residual

 OpenMP version: lap.c
 Parallelize 3 loops

 OpenMP support only loop
parallelization of outer loop.

 For loop directive is orphan, in dynamic extent of parallel directive.

47

void lap_solve()
{

int x,y,k;
double sum;

#pragma omp parallel private(k,x,y)
{

for(k = 0; k < NITER; k++){
/* old <- new */

#pragma omp for
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
uu[x][y] = u[x][y];

/* update */
#pragma omp for

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
u[x][y] = (uu[x-1][y] + uu[x+1][y] + uu[x][y-1] + uu[x][y+1])/4.0;

}
}

/* check sum */
sum = 0.0;

#pragma omp parallel for private(y) reduction(+:sum)
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
sum += (uu[x][y]-u[x][y]);

printf("sum = %g¥n",sum);
}

Advanced Course in Massively Parallel Computing

48Advanced Course in Massively Parallel Computing

What about performance?
 OpenMP really speedup my problem?!

 It depends on hardware and problem size/characteristics

 Esp. problem sizes is an very important factor
 Trade off between overhead of parallelization and grain size of parallel

execution.

 To understand performance, …
 How to lock
 How to exploit cache
 Memory bandwidth

49

Advanced topics

 MPI/OpenMP Hybrid Programming
 Programming for Multi-core cluster

 OpenMP 3.0 (2007, approved)
 Task parallelism

 OpenACC (2012)
 For GPU, by NVIDIA, PGI, Cray, …

 OpenMP 4.0 (2013, released)
 Accelerator extension
 SIMD extension
 Task dependency description

Advanced Course in Massively Parallel Computing

OpenACC
 A spin-off activity from OpenMP ARB for supporting

accelerators such as GPGPU and MIC

 NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

 Directive to specify the code offloaded to GPU.

Advanced Course in Massively Parallel Computing 50

A simple example

#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}
}
}

direction copy copyin copyout

Host->device ○ ○

Device->Host ○ ○

device
host

copy a,b

copy c

Advanced Course in Massively Parallel Computing 51

A simple example

#define N 1024
int main(){
int i;
int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c)
{
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}
}
}

execute iterations
like CUDA kernel

Advanced Course in Massively Parallel Computing 52

Matrix Multiply in OpenACC
#define N 1024

void main(void)
{
double a[N][N], b[N][N], c[N][N];
int i,j;
// ... setup data ...

#pragma acc parallel loop copyin(a, b) copyout(c)
for(i = 0; i < N; i++){

#pragma acc loop
for(j = 0; j < N; j++){
int k;
double sum = 0.0;
for(k = 0; k < N; k++){
sum += a[i][k] * b[k][j];
}
c[i][j] = sum;

}
}

}
Advanced Course in Massively Parallel Computing 53

Stencil Code (Laplace Solver) in OpenACC
#define XSIZE 1024
#define YSIZE 1024
#define ITER 100
int main(void){

int x, y, iter;
double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];
// setup ...

#pragma acc data copy(u, uu)
{
for(iter = 0; iter < ITER; iter++){
//old <- new

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){

#pragma acc loop
for(y = 1; y < YSIZE-1; y++)

uu[x][y] = u[x][y];
}
//update

#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++){

#pragma acc loop
for(y = 1; y < YSIZE-1; y++)

u[x][y] = (uu[x-1][y] + uu[x+1][y]
+ uu[x][y-1] + uu[x][y+1]) / 4.0;

}}
} //acc data end

}Advanced Course in Massively Parallel Computing 54

Performance of OpenACC code

0

20

40

60

80

100

120

1K 2K 3K 4K 5K 6K 7K 8K

cpu1core

cray(128)

matrix multiplyexec time

size

Advanced Course in Massively Parallel Computing 55

0

20

40

60

80

100

120

1K 2K 3K 4K 5K 6K 7K 8K

cpu1core

cray(128)

Performance of OpenACC code

laplaceexec time

size

Advanced Course in Massively Parallel Computing 56

OpenMP 4.0
 Released July 2013

 http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
 A document of examples is expected to release soon

 Changes from 3.1 to 4.0 (Appendix E.1):
 Accelerator: 2.9
 SIMD extensions: 2.8
 Places and thread affinity: 2.5.2, 4.5
 Taskgroup and dependent tasks: 2.12.5, 2.11
 Error handling: 2.13
 User-defined reductions: 2.15
 Sequentially consistent atomics: 2.12.6
 Fortran 2003 support

57slide by Yonghong@UH
Advanced Course in Massively Parallel Computing

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Accelerator (2.9): offloading
 Execution Model: Offload data

and code to accelerator
 target construct creates tasks

to be executed by devices
 Aims to work with wide variety

of accs
 GPGPUs, MIC, DSP, FPGA, etc
 A target could be even a remote

node, intentionally

58

Main
Memory

Application
data

target

Application
data

acc. cores

Copy in
remote
data

Copy out
remote data

Tasks
offloaded to
accelerator

#pragma omp target
{

/* it is like a new task
* executed on a remote device */

{

slide by Yonghong@UH
Advanced Course in Massively Parallel Computing

Accelerator: explicit data mapping

 Relatively small number of
truly shared memory
accelerators so far

 Require the user to
explicitly map data to and
from the device memory

 Use array region

59

long a = 0x858;
long b = 0;
int anArray[100]

#pragma omp target data map(to:a)
¥¥

map(tofrom:b,anArray[0:64])
{

/* a, b and anArray are mapped
* to the device */

/* work here */
}
/* b and anArray are mapped

* back to the host */

slide by Yonghong@UHAdvanced Course in Massively Parallel Computing

Accelerator: hierarchical parallelism
 Organize massive number of threads

 teams of threads, e.g. map to CUDA grid/block
 Distribute loops over teams

60

#pragma omp target

#pragma omp teams num_teams(2)
num_threads(8)

{
//-- creates a “league” of teams

//-- only local barriers permitted
#pragma omp distribute
for (int i=0; i<N; i++) {

}

}
slide by Yonghong@UHAdvanced Course in Massively Parallel Computing

target and map examples

61slide by Yonghong@UHAdvanced Course in Massively Parallel Computing

target date example

62
slide by Yonghong@UHAdvanced Course in Massively Parallel Computing

teams and distribute loop example

Double-nested loops are mapped to the two
levels of thread hierarchy (league and team)

63
slide by Yonghong@UHAdvanced Course in Massively Parallel Computing

	OpenMP�Parallel Programming for Multicore processors and GPU　
	Agenda
	How to make computer fast?
	Trends of Mulitcore processors
	Multi-core processor：�Solution of Low power by parallel processing
	スライド番号 6
	Why parallelization needs?�4 times speedup by using 4 cores!
	Overhead of parallel execution
	Shared memory multi-processor system
	Distributed memory multi-processor
	Very simple example of parallel computing for high performance
	Parallel programming model
	Parallel programming models
	Multithread(ed) programming
	POSIX thread library
	Programming using POSIX thread
	Message passing programming
	Simple example of Message Passing Programming
	Parallel programming using MPI
	Programming in MPI
	Programming in MPI
	What’s OpenMP?
	Programming using POSIX thread
	Programming in OpenMP
	OpenMP API
	OpenMP Execution model
	Parallel Region
	Demo
	Work sharing Constructs
	For Construct
	Example: matrix-vector product
	The performance looks like …
	Scheduling methods of parallel loop
	Static scheduling
	Cyclic & dynamic scheduling
	Data scope attribute clause
	Data Race
	reduction clause
	Example of loop construct
	Barrier directive
	You cannot parallelize this loop
	Barrier directive
	Barrier is important in this case
	How to use nowait
	Other directives
	Example of OpenMP program：laplace
	スライド番号 47
	What about performance?
	Advanced topics
	OpenACC
	A simple example
	A simple example
	Matrix Multiply in OpenACC
	Stencil Code (Laplace Solver) in OpenACC
	Performance of OpenACC code
	Performance of OpenACC code
	OpenMP 4.0
	Accelerator (2.9): offloading	
	Accelerator: explicit data mapping
	Accelerator: hierarchical parallelism
	target and map examples
	target date example
	teams and distribute loop example

