Lecture on Programming Envircnment

GPGPU Programming

M. Sato

University of Tsukuba

Envizonment

£ mmom
|

erence

(qp)

e

¢ NVIDIAOCUDA®MDEHR Learn More about CUDA - NVIDIA
— http://www.nvidia.co.jp/object/cuda_education_jp.htmi
—- EXfG<w=a27JLIE. NVIDIA CUDA programming Guide

o HHYPFTULCUDADRS A K
— http://www.sintef.no/upload/1KT/9011/SimOslo/eVITA/2008/seland.pdf

¢ CUDAMI— K4
— http://tech.ckme.co.jp/cuda.shtml

& OpenCL NVIDIADR—
— http://www.nvidia.co.jp/object/cuda_opencl_jp.htmi

o BHESAE D WeeklyiEH =21 —X
- R—FTIVIZEBT HSNVIDIAOGEO7 —FT U F+ (2007F4A168)
http://pc.watch.impress.co.jp/docs/2007/0416/kaigai350.htm

— KhronoshA\GDC TGPU*Cell B.E. ZHHR— 3 50penCLOTEZT 2B (
200943 A 30H) http://pc.watch.impress.co.jp/docs/2009/0330/kaigai497.htm

Envizonment

M1 P i g

GPU Comput

¢ GPGPU - General-Purpose Graphic Processing Unit
— A technology to make use of GPU for general-purpose computing (scientific
applications)

¢ CUDA (Compute Unified Device Architecture)
— Co-designed Hardware and Software to exploit computing power of NVIDIA

GPU for GP computing.
— (In other words), at the moment, in order to obtain full performance of
GPGPU, a program must be written in CUDA language.

¢ Itis attracting many people’s interest since GPU enables great
performance much more than that of CPU (even multi-core) in some

scientific fields.

¢ Why GPGPU now?— — price (cost-performance)!!!

Programming Environment

Applications (From NVIDIA’s slides)

146X 17X 100X

ERAEROBHERED 7 : Her=_ 1, Al 1 = o
SHT TEAREAL Matlabt@ﬁfﬁﬁm vEal ERPEPICETHONEHE

149X

— < gase ADwFLavOHBLIBORET s BRI UEEFES
AERITIERH SRR D BB A sy 183 D BE L Cmatch XS A2

Lecturze on Programming Environment

Peak GFLOP/s

a0

S0

250

r£>3M1

CPU vs.

PU

CPU

GPGPU

Connected

PCle

via PClexpress

Graphic

memory
memory
Computing performance 6200 Memory bandwidth
4—MNVIDIA GPU ; 1zb
—a—inte CPU aso ©92 G80
Giea iz
GS0 100 7
-~
G8o_~
671 & f(,-*
GT70 /
3.2 GHz Banduidth

Nvas NV40 : 3.0 GHz Harpertown pev G611 ;,-/5

NV30 - : CoreZ Duo
' 1___..--*‘. /
*@ ® & " /
Jan Jun Apr Jun Mar Nov May Jun N"-’W_’,H
2003 2004 2005 2006 2007 2008 Harpertown
S — Woodcrest
; Prescott EE
GT200 = GeForce GTX 280 G671 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ulra ¥ Northwood e —a
B el

G892 = GeForce 3800 GTX G70 = GelForce 7BO0GTX MNV30 = GeForce FX 5800 .

GB0 = GeForce 8300 GTX

NW40 = GeForce 6800 Ulra

2003

2004 2005 2006 2007

Programming Enviromment

NINZZIINI A M

NVIDIA

¢ Many multiprocessor in a chip

eight Scalar Processor (SP) cores,

two special function units for transcendentals
a multithreaded instruction unit

on-chip shared Memory

¢ SIMT (single-instruction, multiple-thread).

The multiprocessor maps each thread to one scalar
processor core, and each scalar thread executes
independently with its own instruction address and
register state.

creates, manages, schedule a_nd executes threads in

S,
groups of 32 parallel threads c

¢ Complex memory hierarchy

Device Memory (Global Memory)
Shared Memory

Constant Cache

Texture Cache

YD)
PGP

Instruction
Unit

Lecture on Programming Environment

DA (Compute Unified Device Architecture)

O

¢ C programming language on GPUs

¢ Requires no knowledge of graphics APIs or GPU
programming

¢ Access to native instructions and memory

¢ Easy to get started and to get real performance benefit

¢ Designed and developed by NVIDIA

¢ Requires an NVIDIA GPU (GeForce 8xxx/Tesla/Quadro)

¢ Stable, available (for free), documented and supported

¢ For both Windows and Linux

Envizonment

PR g P P 1 IN\
CUDA Programming model (1/2)

¢ GPU is programmed as a compute device working as co-processor from
CPU(host).

— Codes for data-parallel, compute intensive part are offloaded as functions to
the device

— Offload hot-spot in the program which is frequently executed on the same data
= For example, data-parallel loop on the same data

— Call “kernel” a code of the function compiled as a function for the device

— Kernel is executed by multiple threads of device.
= Only one kernel is executed on the device at a time.

— Host (CPU) and device(GPU) has its owns memory, host memory and device
memory

— Data is copied between both memory.

GPGPU

iI PCle iI

Graphic
memory nemory

Lecture on Envizronment

1 1M A - o

N emm ~ & :-- ~~l~1 7N NN\
CUDA Programming model (2/2)
¢ computational Grid is composed of Grid
multiple thread blocks Block (0, 0) || Block (1,0) Block (2, 0)

¢ thread block includes multiple §§§§§§§§§§§ §§§§§§§§§ §§§§§§§§§

threads Block (0, 1) Block (1, 1) “-Block (2, 1)

¢ Each thread executes kernel W §§§§§§§§§§§ W

— A function executed by each thread
called “kernel”

— Kernel can be thought as one

iteration in parallel loop Block (1, 1)

¢ computational Grid and block can
have 1,2,3 dimension

& The reserved variable, blockID and
threadID have ID of threads.

Lecturze on Programming Environment

Example: Element-wise Matrix Add

void add_matrix

(float* a, float* b,

Int index;

for Cint i1 =0; 1

for C int j = 0; }
index = 1 + J*N;
c[index] = a[i

}

+
int main() {

add matrix(a, b, c,

}

CPU program

The nested for—
loops are
replaced with an
implicit grid

float* c,

< Nj; ++1)

int N) {

< N; ++5) {

ndex] + b[index];

CUDA program

N);

—

__global add matrix

(float* a, float* b, float* c, Int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.y;
Int Index = 1 + J*N;
iIT (1 <N&& J<N)
c[index] = a[index] + b[index];

+

int main() {
dim3 dimBlock(blocksize, blocksize);
dim3 dimGraid(N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(C a, b, c, N);

}

Lecture on Programming

How to be execut

¢ SM (Streaming
Multiprocessor) execute
blocks in SIMD (single
Instruction/multiple data),

¢ SM consists of 8 processors

Envizonment

1
U

D

Kernel Grid

v

Device with 2 SMs

h 4

Device with 4 SMs

SM 0

SM1

SM 2

SM 3

[

Lecture on Programming Environment

nviDiLA

® SQHEDARLUETOEYH AA—RILALYRE IR

® EHOTILFTOEVH . FNRNTAARODI=VFERR
®sEORLYETOEYY
® i BoEEL=vr
® XLuRRBAGEHDIE AT

< IJLFFTOtvH

AbykFZFatyiy

Envizonment

Number of Compute
Multiprocessors | Capability
(1 Multiprocessor
= B Processors)
GeForce GTX 295 2%30 1.3
GeForce GTX 285, GTX 280 30 1.3
GeForce GTX 260 24
GeForce 9800 GX2 2%16 Tesla C1060
GeForce GTS 250, GTS 150, 9800 GTX, 16 A7%: 24037
' ’ TatEyYEiEH: 1.3GHz

9800 GTX+, 8800 GTS 512 FE 8 AT - 408
GeForce 8800 Ultra, 8800 GTX 16 BRI E/NMUS B MEBE: 933GFlops (E—2%)
GeForce 9800 GT, 8800 GT, GTX 280M, 14 fEEERE/N R EEMRE: 78GFlops (E—%)
9800M GTX A EYTiE - 102GB/sec
GeForce GT 130, 9600 GSO, 8800 GS, 12 EEENHESE: 187.8W
8800M GTX, GTX 260M, 9800M GT SEINMAESE: IEEE 754 BEE/ERE
- - = = RAMERE: PCl Express x16 (PCI-E2.0%)

Tesla S1070 4330 1.3

[Teslacio60 D 30 1.3
——

Tesla S870 4x16 1.0

Tesla D870 2%16 1.0

Tesla C870 16 1.0

Quadro Plex 2200 D2 230 1.3

Quadro Plex 2100 D4 dx14 1.1

Quadro Plex 2100 Model 54 416 1.0

Lecturze on Programming Environment

1, /1

oke (Launch

1/ ~

hing) Ke

Invo rnel

¢ Host processor invoke the execution of kernel in this form
similar to function call:

kernel<<<dim3 grid, dim3 block, shmem size>>>(..)

& Execution Configuation (“<<< >>>”

— Dimension of computational grid : x and y
— Dimension of thread block: x, y. z

dim3 grid(16 16);

dim3 block(16,16);
kernel<<<grid, block>>>(...);
kernel<<<32, 512>>>(...);

Programming Envizonment

I - - wamm - ‘I I‘ - ‘I

ernel and thres

CUDA

¢ Parallel part of applications are executed as a kernel of
CUDA on the device
— One kernel is executed at a time
— Many threads execute kernel function in parallel.

¢ Difference between CUDA thread and CPU thread

— CUDA thread is a very light-weight thread
= Qverhead of thread creation is very small
» Thread switching is also very fast since it is supported by hardware.
— CUDA exploit its performance and efficient execution by a thousands
of threads.
= Conventional Multicore supports only a few threads (by software)

Programmine Enwironment

Execution of
CPU Code and
Kernel code by
Device

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel<<<>>> ()

Serial code

Parallel kernel

Kernell<<<>>>()

Host

Device

Grid O

Block (0, 0) Block (1, O) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Host

Device

Grid 1

Block (0, 0)

Block (0, 1)

Block (0, 2)

Block (1, O)

Block (1, 1)

Block (1, 2)

Envizonment

Grid, Block, thread and
Memory hierarchy

Thread

_ Per-thread local

¢ Thread can access local
memory (per_th read) Thread Block

memory

» Per-block shared

*
-
-+
"
<

memory

¢ Thread can access “shared

memory” on chip, which is O
attached for each thread sl Seleif sl
block (SM).
Block (0, 1) | Block (1, 1) | Block (2, 1)
¢ Thread in Computational Grid 1

Grid access and share a B0 || Bk)
global memory.

Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

i

Global memory

Lecturze on Programming Environment

¢ CPU and GPU have different memory space.
¢ Hosts (CPU) manages device (GPU) memory

¢ Allocation and Deallocation of GPU memory
— cudaMalloc(void ** pointer, size t nbytes)
— cudaMemset(void * pointer, int value, size t
count)

Nntar)
V4

(I I Sy |

— 1idaEvraafvwvnid* nn
AUl ILILI\VU \ W | PU

int n = 1024,

iInt nbytes = 1024*sizeof(int);

int *d a = 0O;

cudaMalloc((void**)&d a nbytes);
cudaMemset(d_a, 0, nbytes);
cudaFree(d _a);

Lecture on Envizronment

\

R Ao ~ =m ------ .l. [N IN
viemory management (2/2)

¢ Data copy operation between CPU and device

— cudaMemcpy(void *dst, void *src, size t
nbytes, enum cudaMemcpyKind direction);

» Direction specifies how to copy from src to dst, see below

» Block a caller of CPU thread (execution) until the memory transfer
completes.
= Copy operation starts after previous CUDA calls.

— enum cudaMemcpyKind
» cudaMemcpyHostToDevice
» cudaMemcpyDeviceToHost
» cudaMemcpyDeviceToDevice

Lecture om Envizonment

m~ed A A A D
odce Ol U'ie Or

C')

Executing

¢ Kernels are C functions with some restrictions
— Can only access GPU memory
— Must have void return type
— No variable number of arguments (“varargs’)
— Not recursive
— No static variables
— Function arguments

¢ Function arguments automatically copied from CPU
to GPU memory

Lecture on Envizronment

-f\

Function Qualifiers

¢ global :invoked from within host (CPU) code,

cannot be called from device (GPU) code must return void
¢ device :called from other GPU functions,

cannot be called from host (CPU) code
¢ host :canonly be executed by CPU, called from host

¢ host and_device_ can be combined.
— Sample use: overloading operators
— Compiler will generate both CPU and GPU code

Lecture on Programming Environment

L o ™\ Ay s~ I~ om | i
1L-11 UEVI e Varianles

C‘»
Q

> MNA D
CUDA bU

¢ global and _ device functions have access to
these automatically defined variables

— dim3 gridDim;
= Dimensions of the grid in blocks (at most 2D)

— dim3 blockDim;

= Dimensions of the block in threads

A= B A\ =
— ul IIO UIUL,I\IU)K

» Block index within the grid
— dim3 threadldx;
= Thread index within the block

Lecturze on Programming Environment

A simple ex ampl le

-
=l

__global __ void minimal(int* d_a)

1
}

*d a = 13;

__global __ void assign(int* d _a, int value)

INt 1dx = blockDim.x * blockldx.x + threadldx.x;
d af[i1dx] = value;

Lecturze on Programming Environment

A simple example

-
=l

__global __ void assign2D(int* d _a, int w, int h, Int value)

{
int 1y = blockDim.y * blockldx.y + threadldx.y;
iInt 1x = blockDim.x * blockldx.x + threadldx.Xx;
Int 1dx = 1y * w + 1X;
d af[i1dx] = value;

by

assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

Lecturze on Programming Environment

Example code to iIncrement array elements

CPU code CUDA codes

void inc_cpu(int*a, IntN) __global__ void

{ inc_gpu(int*a_d, IntN){
int idx: Int 1dx = blockldx.x* blockDim.x
for (idx =0;idx<N;idx++) +threadldx.Xx;
a[idx]=a[idx] + 1; iIT (1dx < N)
> a d[idx] = a d[idx] + 1;
o +
‘Eo'dma'”() void mainQ)
{
inc_cpu(a, N); _ i,
1 dim3dimBlock (blocksize);
dim3dimGrid(ceit Il (N/
(float)blocksize));

Iinc_gpu<<<dimGrid,
dimBlock>>>(a_d, N);

Lecture on Envizronment

‘\

de prograr

Exar npie (host-s

g_»
) -

// allocate host memory
int numBytes = N * sizeof(float)
float* h_ A = (float*) malloc(nhumBytes);

// allocate device memory
// Tloat* d A = 0;
cudaMalloc((void**)&d A, numbytes);

// Copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// Execute kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy back data from device to host
cudaMemcpy(h_A, d A, numBytes, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d _A);

Lecture ¢ C" T o e s T e e

maln() {

float = new Float[N*N];

float *h = new Float[N*N];

float *c = new float[N*N];

for C int 1 = 0; 1 < N*N; ++1) {
a[i1] = 1.0Ff; b[1] = 3.5F; }

float *ad, *bd, *cd;

const Int size = N*N*sizeof(float);
cudaMalloc((void**)&ad, size);
cudaMalloc((void**)&bd, size);
cudaMalloc((void**)&cd, size);

cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice);

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(ad, bd, cd, N);

cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);
cudaFree(ad); cudaFree(bd); cudaFree(cd);

delete[] a; delete[] b; delete[] c;
return EXIT_SUCCESS;

amming Envizonment

CUDA Qualifiers for var

Or varie

ble

Q'

ers

¢ device
— Allocated in device global memory (Large, high-latency, no cache)
— Allocated by cudaMalloc© (__device__is default)
— Access by every thread.
— extent: during execution of application

¢ shared
— Stored in on-chip “shared memory” (SRAM, low latency)

ANANllAanmnnd~A Lav: AvsAaAr idki A A~i~Fr ..._..4- ,..,-. A~~~ Anm.,-.. ~ -|. m.\
— AHULAlEUu Dy cxecutliull CUI1 Iauvull Or at COimpli E e

gu
— Accessible by all threads in the same thread block

¢ Unqualified variables
— Scalars and built-in vector types are stored in registers
— Arrays may be in registers or local memory (registers are not addressable)

Lecture on Programming Environment

1

Compile time

__global ___ void kernel(.)
{

__shared__ float sData[256];

nt main(void)

N

OW tO use/speci

ernel<<<nBlocks,blockSize>>>(..);

I TR I
fy shared memory

Invocation time

__global __ void kernel(.)
{

extern __ shared__ float sDatal];

-

int main(void)

{

smBytes =

blockSize*si1zeof(float);

kernel<<<nBlocks, blockSize,
smBytes>>>(..);

Envizonment

11 Tl

>N I Y QT
GPU Thread Syr

e = 7N

| P o~k
NroniZatior

C‘»

¢ void _ syncthreads();
— Synchronizes all threads in a block
— Generates barrier synchronization instruction

— No thread can pass this barrier until all threads in the block reach it

— Used to avoid RAW / WAR / WAW hazards when accessing shared
memory

¢ Allowed in conditional code only if the conditional is uniform
across the entire thread block

¢ Synchronization between blocks is not supported
— Done by host-side

Envizonment

er

Compile

¢ C Source program with CUDA is compiled by
nvcec.

C/C++ CUDA
Application
& Nvcc is a ccomile-driver:

_ ' ++
Execute required tools and udacc, g++, cl CPU Code

¢ Nvcc generates following codes:
— Cobject code (CPU code)
— PTX code for GPU
— Glue code to call GPU from CPU

¢ Objects required to execute CUDA program
— CUDA core library (cuda)
— CUDA runtime library (cudart)

Lecture om Envizonment
Y an Y R=pi P
UPLT lization 0

¢ Maximize parallel using GPGPU

¢ Optimize/ avoid memory access to global memory
— Rather than storing data, re-computation may be cheaper in some cases

— Coalescing memory access
— Use cache in recent NVIDIA GPGPU

¢ Optimize/avoid communication between CPU(host) and GPU
(Device)
— Communication through PCI Express Is expensive

— Re-computing (redundant computing) may be cheaper than
communications.

Lecture on Envizronment

Optimizati

Nno

L AN A v B § o s g e o o
|

Viemory access

Cb

¢ Coalescing global memory access
— Combine memory access to contiguous area

¢ Make use of shared memory

— Much faster than global memory (several x 100 times faster)
= On-chip Memory
= Low latency

— Threads in block share the memory.
— All threads can share the data computed by other threads.

— To load shared memory from global memory, coalesce the memory
and use them

¢ Use cache (shared memory) as in conventional CPU
— Recent GPGPU has a cache at the same level of shared memory

Envizonment

How to make use of different kinds of memory

¢ Constant memory:
— Quite small, <20K

— As fast as register access if all threads in a warp access the same
location

¢ Texture memory:
— Spatially cached
— Optimized for 2D locality
— Neighboring threads should read neighboring addresses
— No need to think about coalescing

¢ Constraint:
— These memories can only be updated from the CPU

Envizonment

¢ 4 cycles to i1ssue on memory fetch

¢ but 400-600 cycles of latency
— The equivalent of 100 MADs

¢ Likely to be a performance bottleneck

¢ Order of magnitude speedups possible
— Coalesce memory access (FHEEAEV TV ERX)

¢ Use shared memory to re-order non-coalesced
addressing (EXFBAEYDFIA)

Envizonment

Coalesced Me ory AcCCess

To exploit performance, global memory access should be
coalesced (combined).

¢ Ahalfwarp (16t hread) memory access is colaesced.

& Contiguous memory access
— 64 bytes — each tread reads a single word (int, float%i &)
— 128bytes- each tread reads a double word (int2, float27g &)
— 256/\4 k- each tread reads a quad word (int4, float4%: &)
— Float3isnotaligned ! ! !

o TDHudDHIR

— The start address of the contiguous area (Warp base address (WBA)) must be
aligned the boundary of multiple of #{16*sizeof(type)

— The k-th thread in half warp must access the k-th element of the block
— All threads in half warp may not be access.

Envizonment

Coalesced Mem ory AcCCess

Coalesced memory access:
Thread k accesses WBA + k

IHI IHI IHI IHI IH

Coalesced memory access:
Thread k accesses WBA + k

Not all threads need to participate

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Lecture on Envizronment

Case not coalesced

Non-Coalesced memory access: J'
Misaligned starting address "r‘

Non-Coalesced memory access:
Non-sequential access

Non-Coalesced memory access:

Wmng size of type http://www.sintef._no/upload/I1KT/9011/SimOslo/eVITA/2008/seland.pdf

Envizonment
Example of memory optimization :

Matrix Transpose

E3 31 31
E3 3 31 0

EEEE

X1 E3 E3 BN
__global __ void

transpose naive(float *out, float *in, Int w, Int h) {
unsigned 1Int xldx = blockDim.x * blockldx.x + threadldx.X;
unsigned iInt yldx blockDim.y * blockldx.y + threadldx.y;

IT (xldx <w && yldx < h) {
unsigned int 1dx _In = xldx + w * yldx;
unsigned int 1dx out = yldx + h * xldx;

out[idx_out] = in[idx_in]; readfll (in) (L. EEINBHH.

} writefll(out) BlIEXEFEEINELY,

} http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Lecture on Programming Environment

Read from global mem Write to shared mem Read “transposed” address from SMEM Write to global mem

00]01)|02 |«|015 00|01 |02 |«|015 00| 1,0 | 2,0 |«[15,0 00|10]| 2,0 |«|15,0

1011|112 |e|1,15] —s [1,0 |11 |12 |¢|1,156] —s 01|11 |21 |s|151| — |01]11]21]s]151

15, 0|15, 1|15, 2|3 (15,15 15, 0|15, 1|15, 2| 15,15 0,151, 15(2, 15|3 [15,15 0, 15|1, 152, 15| 15,15

¢ By blocking, fetch block o

laAl, ~L -
a

data from shared memory, and
store UdLK LIIE UIULK Ul Cla L 1

o shared memory.

¢ The above example, thread block of 16 x 16 execute.
¢ Matrix is read and write for each 16 x 16 block

¢ When write back, write access Is coalesced by contiguous
memory address.

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Envizonment

Optimized code (Coaleased)
__global ___ void
transpose(float *out, float *in, int w, Int h) {

__shared__ float block[BLOCK DIM*BLOCK_DIM];

unsigned Int xBlock blockDim.x * blockldx.Xx;

unsigned int yBlock blockDim.y * blockldx.y;
unsigned int xIndex XBlock + threadldx.x;
unsigned int ylndex = yBlock + threadldx.y;
unsigned int 1ndex out, index_ transpose;

IT (xIndex < width && ylndex < height) {
unsigned int index_in = width * ylndex + xIndex;
unsigned int index block = threadldx.y * BLOCK DIM + threadldx.x;
block[index block] = in[index_in];
index_transpose = threadldx.x * BLOCK DIM + threadldx.y;
index out = height * (xBlock + threadldx.y) + yBlock + threadldx.Xx;

s
__synchthreads();

IT (xIndex < width && ylndex < height) {
out[index out] = block[index transpose];
+

}

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Lectuzre Programming Envizonment

¢ Example results

‘ Grid Size Coalesced Non-coalesced Speedup

512 x 512 0.07 ms 033 ms 4.5X%
1024 x 2048 0.79 ms 6.6 ms 8.4 X

http://www.sintef.no/upload/1KT/9011/SimOslo/eVITA/2008/seland.pdf

Envizonment

Optimization of Host-device communication

¢ The bandwidth between host and device is very narrow
compared with the bandwidth of device memory.
— Peak bandwidth 4GB/s (PCle x16 1.0) vs. 76 GB/s (Tesla C870)

¢ Minimize the communication between host-device

— Intermediate results must be kept in device memory to avoid
communications

¢ Grouping communication

— Large chunk of communication is more efficient than several small chunk
of communications

¢ Asynchronous communication
— Make use of stream
— cudaMemcpyAsync(dst, src, size, direction, 0);

Envizonment

Host Synchronization

)
)

¢ All kernel launches are asynchronous
— control returns to CPU immediately
— kernel executes after all previous CUDA calls have completed

¢ cudaMemcpy () Is synchronous

— control returns to CPU after copy complete
— copy starts after all previous CUDA calls have completed

¢ cudaThreadSynchronize()
— blocks until all previous CUDA calls complete

Envizonment

£\~ 1

OpenCL

¢ Programming language for general purpose GPU computing.

¢ While C for CUDA is proprietary by NVIDIA, OpenCL is
targeting cross-platform environments.

— Only only for GPU such as NVIDIA and AMD(ATI), but also for
conventional multicore CPU and many-core, such as Cell Broadband
Engine(Cell B.E) and Intel MIC

¢ The point is that it targets for data parallel program by GPU
and also for task-parallel of multi-core.

¢ What is different from CUDA? : Similar programming mode
for kernel, but different in execution environment.

Envizonment

17 P |

er

D

—)
o

Iy | .
Icl all

\"

emory

OpenCL NMemory Model

- Private Memory
- Per work-item
« Local Memory
- Shared within a workgroup (16Kb)

- Local Global/Constant Memory
- Not synchronized

» Host Memory Global/Constant Memory
- On the CPU

Host Memory

Data Parallel
work-item work-item
5,48, . wy Syoer . (W S8, . Wy Sy-nsy'r
f5,.8)=10.0) iy 50 = (5,1, 0) kE rnel ?ﬂlld
4 dp mul (glecbal const float *a,
f : " glecbal const float *b,
global float *result)
work-item work-item
NDRange size Gy Wy Syo8y. W, 508) Wy Syoiy. Wy 8,08) {
_____ 8. 8)=(0.8,;1) e u,.s,,nrs,-.-_sr-u J.l'.l.t J.d. = gEt_glﬂbﬂ.l_ld {D] ;
i) |
be = result[id] = a[id] * b[id];
NDRange size G,

}

// execute dp mul over “n” work-items

Envizonment

r~- —~ oy gz mem ™y yom ccmomrmimm o rmde mdl N\ D]
Xecution vnvironment ol UPCTIC L
O pen CL '
J
Context
Programs Kernels Memory Objects Command Queues
4 2 $ ¢ 3
kernel void Images ,II‘ Buffers
dp_mul(global const float *a, dp_mul
global const float *b, CPU program binary ﬂfQ[ﬂ] vaue
global float *c)
{in{id=gei global_id{0); GPU dp_mmm argmme
cfid] = a[id] * b[id]; ’ program vnary —
arg[d] vaue GPU

Environment

Py Ry | W
el Vil

The “Knights” Family

Future Knights

‘ I ntel M anyCO I"e = Products
Knights Corner

architecture

22nm process
>50 Intel Architecture Cores
Within PCle Power Envelope
Knights Ferry Additional Enhancements

Intel® MIC Architecture — Knights Family "
@ o

| —

Multi-Threaded Multi-Threaded
Wide SIMD HH Wide SIMD
15 DS 15 DS

R —
——

1]
Interface
11

Memory Controller

Example: Computing PI

— —

Ml Theaaded TN J # define NSET 1068888

ulti-Threa ulti-Threade X . - .

Wide SIMD e Wide SIMD int maln-(1.nt argec, const char** argv)
{ long int i;

11
System & 1/0

Special Function

float num_inside, Pi;
num_inside = 8.06F;
Multiple IA cores 16-wide vector units (512b) 1024-bit ring bus o L One additional line frg
- In-order, short pipeline - Extended instruction set GDDR5 memory #pragma omp parallel for reduction(+:num_inside)
- Multi-thread support Fully coherent caches - Supports virtua for(i = @; i < NSET; i++)

{ float x, y, distance_from_zero;
H // Generate x, random numbers in [8,1
Standard IA Shared Memory Programming ottt gl ! 1)2
y = float(rand()) / float(RAND MAX + 1);
distance_from_zero = sqrt(x*x + y*y);
if (distance_from_zero <= 1.8F)
num_inside += 1.8f;

}
Pi = 4.8f * (num_inside / NSET);
printf(“Value of Pi = %f \n",Pi);
i

Envizronment
v e N LN
[.)Ell/—\b

¢ A spin-off activity from OpenMP ARB for
supporting accelerators such as GPGPU and MIC

¢ NVIDIA, Cray Inc., the Portland Group (PGl), and
CAPS enterprise

¢ Directive to specify the code offloaded to GPU.
— #pragma acc region

Lecturze on Programming Environment

I1$acc region
do k = 1,nl

c(i.k) = c(i,k) + a(i,j) * b(.k)
enddo
enddo

enddo

Isacc end region float f(int n, float* vl, float* v2)

{ - -
Iint 1;
float sum = O;
#pragma acc region for
for (1=0; iI<n; 1++)

1
}

return sum;

// Do some heavy computations here!

Envizronment
E 2 [—
15474 b

¢ GPGPUIZ., BETSH7 T THNEIFREICHEELRYVa—ay

— ¥z, IGPUT1DDHKRR FTHBES
— P —Saviz&oTIREOLEES ...

¢ CUDATEEIZG-=&IXWVA, T, #LL
— ¥, BREFaA—=2F. AEVEE. BE..

o 2RO bA—)LT7A—[E, KRR MITHOLLEL TIEE 5L
— kernell¥ local view 7045 A

o 1/—FZHBAT. ROEBREICTWNTEMN?
— TILFGPU—GPUZEH&K
— YILF/—FKGPU--9S5RBIZGPUEDIFTTHiFIFHE
- PEFY, £5F L., FEEHETOISIUITBENRE?2 227

Envizonment

>

Different Programming Styles e

® C for CUDA

¢ C with parallel keywords

® C runtime that abstracts driver API
¢ Memory managed by C runtime
™

Generates PTX

® OpenCL
® Hardware API - similar to OpenGL
* Programmer has complete access to hardware device
* Memory managed by programmer
® Generates PTX

IHRADC For CUDAEOpenCLTIZ., SIEfTITA T B,
OpenCLMZFILT 7 DL EELELTORBENELND—LAJL
APITHADIZH LT, C for CUDADAMNHMFRILDESLIN
BTV r—3 EEERTLN

http://pc.watch.impress.co.jp/docs/2009/0330/kaigai497 .htm

