
GPGPU P iGPGPU P iGPGPU ProgrammingGPGPU Programming

M. Sato

University of TsukubaUniversity of Tsukuba

referencereferencereferencereference
 NVIDIAのCUDAの情報 Learn More about CUDA - NVIDIA NVIDIAのCUDAの情報 Learn More about CUDA NVIDIA

 http://www.nvidia.co.jp/object/cuda_education_jp.html
 正式なマニュアルは、NVIDIA CUDA programming Guide

 わかりやすいCUDAのスライド
 http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

の ド例 CUDAのコード例
 http://tech.ckme.co.jp/cuda.shtml

O CL NVIDIAのペ ジ OpenCL NVIDIAのページ
 http://www.nvidia.co.jp/object/cuda_opencl_jp.html

 後藤弘茂のWeekly海外ニュース
 スケーラブルに展開するNVIDIAのG80アーキテクチャ（2007年4月16日）

http://pc.watch.impress.co.jp/docs/2007/0416/kaigai350.htm
 KhronosがGDCでGPUやCell B.E.をサポートするOpenCLのデモを公開（

2009年3月30日) http://pc.watch.impress.co.jp/docs/2009/0330/kaigai497.htm

GPU Comp tingGPU Comp tingGPU ComputingGPU Computing
 GPGPU - General-Purpose Graphic Processing Unit GPGPU - General-Purpose Graphic Processing Unit

 A technology to make use of GPU for general-purpose computing (scientific
applications)

 CUDA （Compute Unified Device Architecture）
 Co-designed Hardware and Software to exploit computing power of NVIDIA g p p g p

GPU for GP computing.
 (In other words), at the moment, in order to obtain full performance of

GPGPU, a program must be written in CUDA language.GPGPU, a program must be written in CUDA language.

 It is attracting many people’s interest since GPU enables great
f h th th t f CPU (lti) iperformance much more than that of CPU (even multi-core) in some

scientific fields.

 Why GPGPU now?－－ price (cost-performance)!!!

A li tiA li tiApplicationsApplications（（From NVIDIA’s slidesFrom NVIDIA’s slides））

CPUCPU s GPUs GPUCPUCPU vs. GPUvs. GPU

CPU GPGPU

PCIe
Connected
via PCIexpress

memory
Graphic
memory

Computing performance Memory bandwidthComputing performance Memory bandwidth

NVIDIANVIDIA GPGPU’sGPGPU’s architect rearchitect reNVIDIA NVIDIA GPGPU’sGPGPU’s architecturearchitecture
 Many multiprocessor in a chip Many multiprocessor in a chip

 eight Scalar Processor (SP) cores,
 two special function units for transcendentals
 a multithreaded instruction unit
 on-chip shared Memory

 SIMT (single-instruction, multiple-thread).
i The multiprocessor maps each thread to one scalar

processor core, and each scalar thread executes
independently with its own instruction address and
register state.

 creates, manages, schedules, and executes threads increates, manages, schedules, and executes threads in
groups of 32 parallel threads called warps.

 Complex memory hierarchy
D i M (Gl b l M) Device Memory (Global Memory)

 Shared Memory
 Constant Cache
 Texture CacheTexture Cache

CUDACUDA (C t U ifi d D i A hit t)(C t U ifi d D i A hit t)CUDA CUDA (Compute Unified Device Architecture)(Compute Unified Device Architecture)

 C programming language on GPUs
 Requires no knowledge of graphics APIs or GPU

programmingprogramming
 Access to native instructions and memory
 Easy to get started and to get real performance benefit Easy to get started and to get real performance benefit
 Designed and developed by NVIDIA
 Requires an NVIDIA GPU (GeForce 8xxx/Tesla/Quadro) Requires an NVIDIA GPU (GeForce 8xxx/Tesla/Quadro)
 Stable, available (for free), documented and supported
 For both Windows and Linux

CUDACUDA Programming model (1/2Programming model (1/2))CUDACUDA Programming model (1/2Programming model (1/2))
 GPU is programmed as a compute device working as co-processor from GPU is programmed as a compute device working as co processor from

CPU(host).
 Codes for data-parallel, compute intensive part are offloaded as functions to

the devicethe device
 Offload hot-spot in the program which is frequently executed on the same data

 For example, data-parallel loop on the same data
 Call “kernel” a code of the function compiled as a function for the deviceCall kernel a code of the function compiled as a function for the device
 Kernel is executed by multiple threads of device.

 Only one kernel is executed on the device at a time.

 Host (CPU) and device(GPU) has its owns memory, host memory and device
memory

 Data is copied between both memory.Data is copied between both memory.

CPU GPGPU

C

memory
Graphic
memory

PCIe

CUDACUDA Programming modelProgramming model (2/2)(2/2)CUDACUDA Programming modelProgramming model (2/2)(2/2)
 computational Grid is composed of computational Grid is composed of

multiple thread blocks
 thread block includes multiple

threads
 Each thread executes kernel

 A function executed by each threadA function executed by each thread
called “kernel”

 Kernel can be thought as one
iteration in parallel loopiteration in parallel loop

 computational Grid and block can
have 1,2,3 dimension

 The reserved variable blockID and The reserved variable, blockID and
threadID have ID of threads.

E lE l El tEl t i M t i Addi M t i AddExample:Example: ElementElement--wise Matrix Addwise Matrix Add
void add matrixvoid add_matrix
(float* a, float* b, float* c, int N) {

int index;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {for (int j = 0; j < N; ++j) {
index = i + j*N;
c[index] = a[index] + b[index];

}
} CUDA program}
int main() {
add_matrix(a, b, c, N);

}
__global__ add_matrix
(float* a, float* b, float* c, int N) {
int i = blockIdx x * blockDim x + threadIdx x;CPU

CUDA program

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j*N;
if (i < N && j < N)
c[index] = a[index] + b[index];

CPU program

c[index] = a[index] + b[index];
}
int main() {

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock x N/dimBlock y);

The nested for-
loops are
replaced with an dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);

add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);
}

replaced with an
implicit grid

Ho to be e ec tedHo to be e ec tedHow to be executedHow to be executed
 SM (Streaming SM (Streaming

Multiprocessor) execute
blocks in SIMD (single
instruction/multiple data)。

 SM consists of 8 processors SM consists of 8 processors

An e ample of GPGPU config rationAn e ample of GPGPU config rationAn example of GPGPU configurationAn example of GPGPU configuration

Tesla C1060
コア数: 240コア
プロセッサ周波数: 1.3GHz
搭載メモリ: 4GB
単精度浮動小数点演算性能: 933GFlops (ピーク)
倍精度浮動小数点演算性能: 78GFlops (ピーク)倍精度浮動小数点演算性能: ops (ク)
メモリ帯域: 102GB/sec
標準電力消費量: 187.8W
浮動小数点演算: IEEE 754 単精度/倍精度
ホスト接続: PCI Express x16 (PCI-E2.0対応)

In oke (La nching) KernelIn oke (La nching) KernelInvoke (Launching) KernelInvoke (Launching) Kernel

H t i k th ti f k l i thi f Host processor invoke the execution of kernel in this form
similar to function call:

kernel<<<dim3 grid, dim3 block, shmem_size>>>(…)

 Execution Configuation (“<<< >>>”)
 Dimension of computational grid : x and y
 Dimension of thread block: x、y、z

dim3 grid(16 16);g ();
dim3 block(16,16);
kernel<<<grid, block>>>(...);
kernel<<<32 512>>>();kernel<<<32, 512>>>(...);

CUDACUDA kernel and threadkernel and threadCUDACUDA kernel and threadkernel and thread

 Parallel part of applications are executed as a kernel of
CUDA on the device
 One kernel is executed at a time
 Many threads execute kernel function in parallel.

 Difference between CUDA thread and CPU thread
 CUDA thread is a very light-weight threadCUDA thread is a very light weight thread

 Overhead of thread creation is very small
 Thread switching is also very fast since it is supported by hardware.

 CUDA exploit its performance and efficient execution by a thousands
of threads.
 Conventional Multicore supports only a few threads (by software)pp y (y)

E ti fExecution of
CPU Code and
Kernel code byKernel code by
Device

Grid, Block, thread and Grid, Block, thread and
Memory hierarchyMemory hierarchy

 Thread can access local
memory (per-thread)

 Thread can access “shared
memory” on chip, which ismemory on chip, which is
attached for each thread
block (SM).

 Thread in Computational
Grid access and share aGrid access and share a
global memory.

Memor management (1/2)Memor management (1/2)Memory management (1/2)Memory management (1/2)

 CPU and GPU have different memory space.
 Hosts（CPU）manages device (GPU）memory

 Allocation and Deallocation of GPU memory
 cudaMalloc(void ** pointer, size t nbytes)(p , _ y)
 cudaMemset(void * pointer, int value, size_t
count)

 cudaFree(void* pointer)cudaFree(void* pointer)

int n = 1024;
int nbytes = 1024*sizeof(int);int nbytes 1024 sizeof(int);
int *d_a = 0;
cudaMalloc((void**)&d_a nbytes);
cudaMemset(d a 0 nbytes);cudaMemset(d_a, 0, nbytes);
cudaFree(d_a);

Memor management (2/2)Memor management (2/2)Memory management (2/2)Memory management (2/2)

Data copy operation between CPU and deviceData copy operation between CPU and device
 cudaMemcpy(void *dst, void *src, size_t
nbytes enum cudaMemcpyKind direction);nbytes, enum cudaMemcpyKind direction);
 Direction specifies how to copy from src to dst , see below
 Block a caller of CPU thread (execution) until the memory transfer () y

completes.
 Copy operation starts after previous CUDA calls.

 enum cudaMemcpyKind
 cudaMemcpyHostToDevice cudaMemcpyHostToDevice
 cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevicepy

E ec ting Code on the GPUE ec ting Code on the GPUExecuting Code on the GPUExecuting Code on the GPU

Kernels are C functions with some restrictions
 Can only access GPU memory
 Must have void return type
 No variable number of arguments (“varargs”)
 Not recursive
 No static variables

F ti t Function arguments

 F nction arg ments a tomaticall copied from CPU Function arguments automatically copied from CPU
to GPU memory

F nction Q alifiersF nction Q alifiersFunction QualifiersFunction Qualifiers

 __global__ : invoked from within host (CPU) code,
cannot be called from device (GPU) code must return void

 __device__ : called from other GPU functions,
cannot be called from host (CPU) code

 __host__ : can only be executed by CPU, called from host

 h t d d i b bi d __host__ and __device__ can be combined.
 Sample use: overloading operators
 Compiler will generate both CPU and GPU codeCompiler will generate both CPU and GPU code

CUDACUDA B iltB ilt in De ice Variablesin De ice VariablesCUDACUDA BuiltBuilt--in Device Variablesin Device Variables

 __global__ and __device__ functions have access to
these automatically defined variables

 dim3 gridDim;
 Dimensions of the grid in blocks (at most 2D)

 dim3 blockDim;
 Dimensions of the block in threads

dim3 blockIdx; dim3 blockIdx;
 Block index within the grid

 dim3 threadIdx;dim3 threadIdx;
 Thread index within the block

A simple e ampleA simple e ampleA simple exampleA simple example

__global__ void minimal(int* d_a)
{

*d a = 13;d_a 13;
}

__global__ void assign(int* d_a, int value)
{{

int idx = blockDim.x * blockIdx.x + threadIdx.x;
d_a[idx] = value;

}

A simple e ampleA simple e ampleA simple exampleA simple example

__global__ void assign2D(int* d_a, int w, int h, int value)
{

int iy = blockDim y * blockIdx y + threadIdx y;int iy = blockDim.y * blockIdx.y + threadIdx.y;
int ix = blockDim.x * blockIdx.x + threadIdx.x;
int idx = iy * w + ix;
d [id] ld_a[idx] = value;

}
...
assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

E l d t i t l tE l d t i t l tExample code to increment array elementsExample code to increment array elements

CPU code CUDA codes

void inc_cpu(int*a, intN)
{

__global__ void
inc_gpu(int*a_d, intN){
i id bl k d * bl k i

CPU code

int idx;
for (idx =0;idx<N;idx++)
a[idx]=a[idx] + 1;

}

int idx = blockIdx.x* blockDim.x
+threadIdx.x;

if (idx < N)
d[id] d[id] + 1}

voidmain()
{

a_d[idx] = a_d[idx] + 1;
}
void main()
{

...
inc_cpu(a, N);
}

{
…
dim3dimBlock (blocksize);
dim3dimGrid(ceil(N/dim3dimGrid(ceil(N/

(float)blocksize));
inc_gpu<<<dimGrid,

dimBlock>>>(a d, N);dimBlock>>>(a_d, N);
}

E ample (hostE ample (host side program)side program)Example (hostExample (host--side program)side program)
// allocate host memory// allocate host memory
int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
// float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);_

// Copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// Execute kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy back data from device to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);

int main() {
float *a = new float[N*N];
float *b = new float[N*N];float b new float[N N];
float *c = new float[N*N];

for (int i = 0; i < N*N; ++i) {
a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;
const int size = N*N*sizeof(float);const int size N N sizeof(float);
cudaMalloc((void**)&ad, size);
cudaMalloc((void**)&bd, size);
cudaMalloc((void**)&cd, size);

cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice);

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(ad, bd, cd, N);

cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);

cudaFree(ad); cudaFree(bd); cudaFree(cd);cuda ee(ad); cuda ee(bd); cuda ee(cd);
delete[] a; delete[] b; delete[] c;
return EXIT_SUCCESS;

}

CUDACUDA Q alifiersQ alifiers for ariablefor ariableCUDACUDA QualifiersQualifiers for variable for variable
 device__ __

 Allocated in device global memory（Large, high-latency, no cache）
 Allocated by cudaMallocで（__device__ is default）

A b th d Access by every thread.
 extent: during execution of application

 __shared__
 Stored in on-chip “shared memory” (SRAM, low latency)

Allocated by execution configuration or at compile time Allocated by execution configuration or at compile time
 Accessible by all threads in the same thread block

 Unqualified variables
 Scalars and built-in vector types are stored in registers

Arrays may be in registers or local memory (registers are not addressable) Arrays may be in registers or local memory (registers are not addressable)

Ho to se/specif shared memorHo to se/specif shared memorHow to use/specify shared memoryHow to use/specify shared memory

Compile time Invocation time

__global__ void kernel(…)
{
…

__global__ void kernel(…)
{

…
__shared__ float sData[256];
…
}
int main(void)

extern __shared__ float sData[];
…

}
int main(void)
{
…
kernel<<<nBlocks,blockSize>>>(…);

int main(void)
{

…
} smBytes =

blockSize*sizeof(float);
kernel<<<nBlocks, blockSize,

smBytes>>>(…);smBytes>>>(…);
…

}

GPU Thread S nchroni ationGPU Thread S nchroni ationGPU Thread SynchronizationGPU Thread Synchronization
 void syncthreads(); void __syncthreads();

 Synchronizes all threads in a block
 Generates barrier synchronization instructionG y
 No thread can pass this barrier until all threads in the block reach it
 Used to avoid RAW / WAR / WAW hazards when accessing shared

memory

 Allowed in conditional code only if the conditional is uniform y
across the entire thread block

 S h i ti b t bl k i t t d Synchronization between blocks is not supported
 Done by host-side

CompilerCompilerCompilerCompiler
 C Source program with CUDA is compiled by C Source program with CUDA is compiled by

nvcc.
 Nvcc is a ccomile-driver:

Execute required tools and udacc g++ cl Execute required tools and udacc、g++、cl

 Nvcc generates following codes:
（ ） C object code（CPU code）

 PTX code for GPU
 Glue code to call GPU from CPU

 Objects required to execute CUDA program
 CUDA core library（cuda）
 CUDA runtime library（cudart）

Optimi ation of GPU ProgrammingOptimi ation of GPU ProgrammingOptimization of GPU ProgrammingOptimization of GPU Programming

 Maximize parallel using GPGPU

 Optimize/ avoid memory access to global memory
 Rather than storing data, re-computation may be cheaper in some cases
 Coalescing memory access
 Use cache in recent NVIDIA GPGPU

 Optimize/avoid communication between CPU(host) and GPU
(Device)(Device)
 Communication through PCI Express is expensive
 Re-computing (redundant computing) may be cheaper than

communications.

Optimi ation of Memor accessOptimi ation of Memor accessOptimization of Memory accessOptimization of Memory access
 Coalescing global memory access Coalescing global memory access

 Combine memory access to contiguous area

M k f h d Make use of shared memory
 Much faster than global memory (several x 100 times faster)

 On-chip Memoryp y
 Low latency

 Threads in block share the memory.
 All threads can share the data computed by other threads.All threads can share the data computed by other threads.
 To load shared memory from global memory, coalesce the memory

and use them

 Use cache (shared memory) as in conventional CPU
 Recent GPGPU has a cache at the same level of shared memory

H k f diff ki d fH k f diff ki d fHow to make use of different kinds of memoryHow to make use of different kinds of memory

 Constant memory:
 Quite small, < 20K

As fast as register access if all threads in a warp access the same As fast as register access if all threads in a warp access the same
location

 Texture memory:
 Spatially cached
 Optimized for 2D localityOptimized for 2D locality
 Neighboring threads should read neighboring addresses
 No need to think about coalescing

 Constraint:
These memories can only be updated from the CPU These memories can only be updated from the CPU

Access to Global memorAccess to Global memorAccess to Global memoryAccess to Global memory

 4 cycles to issue on memory fetch
 but 400-600 cycles of latency

 The equivalent of 100 MADs
 Likely to be a performance bottlenecky p
Order of magnitude speedups possible

 Coalesce memory access （結合メモリアクセス）y
 Use shared memory to re-order non-coalesced

addressing （共有メモリの利用）g

Coalesced Memor AccessCoalesced Memor AccessCoalesced Memory Access Coalesced Memory Access

To exploit performance global memory access should beTo exploit performance, global memory access should be
coalesced (combined).

 A half warp（16t hread）memory access is colaesced.
 Contiguous memory access

 64 bytes – each tread reads a single word（int、floatなど）

 128bytes- each tread reads a double word （int2、float2など）

 256バイト- each tread reads a quad word （int4、float4など）56 イト eac t ead eads a quad wo d （ t 、 oat など）

 Float3 is not aligned！！！

その他の制限 その他の制限

 The start address of the contiguous area (Warp base address (WBA)) must be
aligned the boundary of multiple of 数16*sizeof(type)

 The k-th thread in half warp must access the k-th element of the block
 All threads in half warp may not be access.

Coalesced Memor AccessCoalesced Memor AccessCoalesced Memory AccessCoalesced Memory Access

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Case not coalescedCase not coalescedCase not coalescedCase not coalesced

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Example of memory optimizationExample of memory optimization：：
M iM i TTMatrix Matrix TransposeTranspose

__global__ void
transpose_naive(float *out, float *in, int w, int h) {

unsigned int xIdx = blockDim.x * blockIdx.x + threadIdx.x;g ;
unsigned int yIdx = blockDim.y * blockIdx.y + threadIdx.y;

if (xIdx < w && yIdx < h) {y
unsigned int idx_in = xIdx + w * yIdx;
unsigned int idx_out = yIdx + h * xIdx;

out[idx_out] = in[idx_in];
}

}

read側(in)は、結合されるが、
write側(out)側は結合されない。

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Optimi ation of memor accessOptimi ation of memor accessOptimization of memory accessOptimization of memory access

 By blocking, fetch block of data from shared memory, and
store back the block of data to shared memorystore back the block of data to shared memory.

 The above example thread block of 16 x 16 execute The above example, thread block of 16 x 16 execute.
 Matrix is read and write for each 16 x 16 block
 When write back, write access is coalesced by contiguous When write back, write access is coalesced by contiguous

memory address.
http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

O i i d d (O i i d d (C l dC l d))Optimized code (Optimized code (CoaleasedCoaleased))

global void__global__ void
transpose(float *out, float *in, int w, int h) {
__shared__ float block[BLOCK_DIM*BLOCK_DIM];
unsigned int xBlock = blockDim.x * blockIdx.x;
unsigned int yBlock = blockDim.y * blockIdx.y;
unsigned int xIndex = xBlock + threadIdx.x;
unsigned int yIndex = yBlock + threadIdx.y;
unsigned int index out index transpose;unsigned int index_out, index_transpose;
if (xIndex < width && yIndex < height) {

unsigned int index_in = width * yIndex + xIndex;
unsigned int index_block = threadIdx.y * BLOCK_DIM + threadIdx.x;
block[index_block] = in[index_in];
index_transpose = threadIdx.x * BLOCK_DIM + threadIdx.y;
index_out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;

}}
__synchthreads();
if (xIndex < width && yIndex < height) {

out[index_out] = block[index_transpose];
}

}

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

 Example results

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

O i i i f HO i i i f H d i i id i i iOptimization of HostOptimization of Host--device communicationdevice communication

 The bandwidth between host and device is very narrow The bandwidth between host and device is very narrow
compared with the bandwidth of device memory.
 Peak bandwidth 4GB/s （PCIe x16 1.0） vs. 76 GB/s （Tesla C870）ea ba dw dt G /s （ C e 6 .0） vs. 76 G /s （ es a C870）

 Minimize the communication between host-device
 Intermediate results must be kept in device memory to avoid

communications

 Grouping communication
 Large chunk of communication is more efficient than several small chunk

of comm nicationsof communications

 Asynchronous communication
 Make use of stream
 cudaMemcpyAsync(dst, src, size, direction, 0);

Host S nchroni ationHost S nchroni ationHost SynchronizationHost Synchronization

 All kernel launches are asynchronous All kernel launches are asynchronous
 control returns to CPU immediately
 kernel executes after all previous CUDA calls have completedp CU p

 cudaMemcpy() is synchronous
 control returns to CPU after copy complete
 copy starts after all previous CUDA calls have completed

 cudaThreadSynchronize()
bl k til ll i CUDA ll l t blocks until all previous CUDA calls complete

OpenCLOpenCLOpenCLOpenCL
 Programming language for general purpose GPU computing. Programming language for general purpose GPU computing.
 While C for CUDA is proprietary by NVIDIA, OpenCL is

targeting cross-platform environments.g g p
 Only only for GPU such as NVIDIA and AMD(ATI), but also for

conventional multicore CPU and many-core, such as Cell Broadband
Engine(Cell B E) and Intel MICEngine(Cell B.E) and Intel MIC

 The point is that it targets for data parallel program by GPU The point is that it targets for data parallel program by GPU
and also for task-parallel of multi-core.

 What is different from CUDA?：Similar programming mode
for kernel, but different in execution environment.,

Kernel and Memor modelKernel and Memor modelKernel and Memory modelKernel and Memory model

 xxx

E ec tionE ec tion E n ironmentE n ironment ofof OpenCLOpenCLExecution Execution EvnvironmentEvnvironment of of OpenCLOpenCL

Intel MICIntel MICIntel MICIntel MIC

 Intel Manycore
architecture

OpenACCOpenACCOpenACCOpenACC

 A spin-off activity from OpenMP ARB for
supporting accelerators such as GPGPU and MIC

 NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

 Directive to specify the code offloaded to GPU.
 #pragma acc regionp g g

!$acc region
do k = 1,n1
do i = 1,n3
c(i,k) = 0.0
do j = 1,n2
c(i,k) = c(i,k) + a(i,j) * b(j,k)

enddoenddo
enddo

enddo
!$acc end region float f(int n, float* v1, float* v2)!$acc end region (, ,)

{
int i;
float sum = 0;float sum = 0;
#pragma acc region for
for (i=0; i<n; i++)
{{

// Do some heavy computations here!
}
return sum;

}

最後に最後に最後に最後に

 GPGPUは 適合するアプリであれば非常に有望なソリ ション GPGPUは、適合するアプリであれば非常に有望なソリューション

 特に、1GPUで１つのホストでやる場合

 アプリケーションによってはだめな場合も…

 CUDAで簡単になったとはいえ、まだ、難しい

特に 性能チ ング メモリ配置 結合 特に、性能チューニング、メモリ配置、結合…

 全体のコントロールフローは、ホスト側でやらなくてはならない 全体のコントロ ルフロ は、ホスト側でやらなくてはならない

 kernelは local view プログラム

ドを超え 次 段階に けるか １ノードを超えて、次の段階にいけるか？

 マルチGPU－GPUを複数枚

 マルチノードGPU -- クラスタにGPUをつけて並列計算チ クラ タ を け 並列計算

 やはり、もうすこし、まともなプログラミング環境が必要？？？？

現状のC for CUDAとOpenCLでは、位置付けがずれる。
OpenCLがミドルウェアの土台としての色彩が濃いローレベル
APIであるのに対して C for CUDAの方が抽象化の度合いがAPIであるのに対して、C for CUDAの方が抽象化の度合いが
高くアプリケーションを書きやすい

http://pc.watch.impress.co.jp/docs/2009/0330/kaigai497.htm

