
Lecture on programming environment

Programming language and environmentg g g g
for embedded multi-core processors and
high performance multi-core processorshigh performance multi core processors

M. Sato

Contents

 Why multicore? ～ Trends of Microprocessors
 Multi-core processor configurations: SMP vs. AMPp g

 How to use multicore
 POSIX Thread
 Communication

 Programming modelsProgramming models
 OpenMP
 Cilk
 Asynchronous RPC

2Lecture on Programming Environment

 Issues and agenda

Trends of Mulitcore processors

 Faster clock speed, and Finer silicon technology
 “now clock freq is 3GHz, in future it will reach to

10GHz!?”
 Intel changed their strategy -> multicore!
 Clock never become faster any moreClock never become faster any more

 Silicon technology 45 nm -> 22 nm in near future!

Good news & bad news!

 Progress in Computer Architecture
S i li l VLIW

Good news & bad news!

 Superpipeline, super scalar, VLIW …
 Multi-level cache, L3 cache even in microprocessor
 Multi-thread architecure Intel Hyperthreading Multi thread architecure、Intel Hyperthreading

 Shared by multiple threads

 Multi-core： multiple CPU core on one chip dai

3Lecture on Programming Environment

Inetl ® Pentium® processor
Dai of Extreme-edition

Programming support is requried

Multi-core processor：
Solution of Low power by parallel processingp y p p g

システム総電力 P = N ×α×C×V×FCPU power dissipation

P = N×α×C×V２×fP = N×α×C×V２×f
CPU Active rate of

processors
Capacitanc
e of circiuit

Voltage Clock Freq

Apporach for Low power by parallel processing
increase N decrease V and f improve perf N×f

processors e of circiuit

increase N、 decrease V and f, improve perf. N×f
 Decreasing V and F, makes heat dissipation and power lower within a chip
 Progress in silicon technology 130nm ⇒ 90nm⇒65nm,22nm （Decrease C and V)
 Use a silicon process for low power (embedded processor) （Small α）p p (p)

 Performance improvement by Multi-core （N=2～16)
 Number of transistors are increasing by “Moore’s Law” Number of transistors are increasing by Moore s Law

 Parallel processing by low power processor

Solution by multi-core processors for

4Lecture on Programming Environment

y p
High performance embedded system

Classification of Multi-core processors

SMP (Symmetric
Multi Processor)

AMP(Asymmetric Multi
Processor)

same kinds of cores Different kinds of cores

Multi-core for sever

Sh Multi core for sever
applications
ARM/NEC MPCore

（small memory may be equipped
for communication）

hared m /
Renesas M32R
Renesas RP1 (SH3X)

m
em

ory ()
Fujitsu FR-V(?) IBM Cell

DSP-integrated chip

D
istribu DSP integrated chip

GPU-integrated chip

uted m
e

5Lecture on Programming Environment

em
ory

SMP and AMP

 SMP（Symmetric Multi Processor）
 Same kind of cores integrated

U ll h d

AMD quad-core

 Usually, shared memory
 General purpose

 AMP（Asymmetric Multi Processor）
 Different cores integrated, Heterogenous

I t di t ib t d
IBM Cell

 In most case, distributed memory
 E.g. IBM Cell processors
 GPU-integrated, DSP-integrated CPUg , g
 Special-purpose, to reduce cost

Sh d Di t ib t d

CPU
core DSP

 Shared memory vs. Distributed memory
 Important point for programming models to program multi-core

processors: How to access main memory.

6Lecture on Programming Environment

p y

Cellのダイ

2億3400万個のトランジスタを実
装するが、90nmプロセスで製造
されることから、ダイ・サイズは
221 2と意外と小さい 細長い

7Lecture on Programming Environment

221mm2と意外と小さい。細長い
部分がSPUである。

Shared memory multi-processor system

Multiple CPUs share

CPU CPU CPU CPU
p

main memory

Th d t d iThreads executed in
each core(CPU)
communicate with

BUS
communicate with
each other by
accessing shared data

ＭＥＭ in main memory.

E t i SEnterprise Server
SMP Multi-core

processors

8Lecture on Programming Environment

processors

Distributed memory multi-processor

System with several
CPU CPU

System with several
computer of CPU and
memory, connected by

MEM MEM

N t k

network.

Thread executed in each

CPU CPU

Network Thread executed in each
computer communicate
with each other by

MEM MEM

with each other by
exchanging data
(message) via network.タ

PC Cluster
AMP Multi-core processor

9Lecture on Programming Environment

AMP Multi-core processor

How to use Multi-core processor (1)

 Run process or threads on each core
 Possible mainly on shared memory SMP multi-core processors
 Most embedded applications are a multi-task (multi-process) program.
 It may require any particular modification.

 In some cases, multi-task program running on a single core
cannot be executed in multi-core (SMP)
 The case of using high-priority non-preemptive execution of The case of using high priority non preemptive execution of

Real time OS as an implementation of critical section.
 In multi-core environment, high-priority execution does not

mean “non-preemptive” execution since other thread run inmean non preemptive execution since other thread run in
parallel physically.

 Use lock properly to implement critical section.

コア１コア１

コア２

10Lecture on Programming Environment

コア２

How to use Multi-core processor (2)
U h f diff t f ti (h t) Use each core for different functions (hetero)
 A typical usage of AMP multi-core processor

It b li d f SMP t lti ith t h d It can be applied for SMP-type multi-core , without shared memory.
 So far, this kind of applications use several kinds of different chips.

In this case individual OS can run on each core (DSP has In this case, individual OS can run on each core. (DSP has
no OS)
 May use different kind of OS, e.g. Linux and RTOSay use d e e t d o OS, e g u a d OS

 Communication by using on-chip interconnect or bus
 Can use RPC model for programming

OS
アプリ アプリ アプリ

アプリ

コア

OS
コア

OS
コア

OS
DSP

アプリ

11Lecture on Programming Environment

On-chip interconnect BUS

How to use Multi-core processor (3)

 For high performance (common goal?)
 Parallel processing by multiple coresp g y p
 Can use OpenMP for shared memory SMP

 Technologies which is used in high-end platform g g p

 Use DSP or GPU to accelerate computation in AMP

Core1 Core 2

program
Core DSP

Special program

Core 3 Core4

p
functionsprogram

12Lecture on Programming Environment

Work-sharing by multiple cores

Very simple example of parallel computing for high performance

for(i=0;i<1000; i++)
S += A[i]

Sequential computation

1 2 3 4 1000

q p

+ S
Parallel computation

1 2 1000250 251 500 501 750 751

p

+ + + ++ + + +

+
Processor１ Processor ２ プProcessor ３ Processor ４

13Lecture on Programming Environment

+ S

Speedup by parallel computing：”Amdahl’s low”

 Amdahl’s low
 Suppose execution time of sequential part T1, ratio of sequential 1

part α, execution time by parallel computing using p processors Tp
is (no more than) Tp = α＊T1 + (1-α)＊T1/p

 Since some part must be executed sequentially speedup is limited Since some part must be executed sequentially, speedup is limited
by the sequential part.

Exec
time parallel 1/p

ti l

parallel
part

1/p

sequential
part

S ti l Parallel Execution

14Lecture on Programming Environment

Sequential
execution

Parallel Execution
by p processors

Parallel programming model

 Message passing programming model
 Parallel programming by exchange data (message) between processors a a p og a g by a g da a (ag) b p o o

(nodes)
 Mainly for distributed memory system (possible also for shared memory)
 Program must control the data transfer explicitly Program must control the data transfer explicitly.
 Programming is sometimes difficult and time-consuming
 Program may be scalable (when increasing number of Proc)

 Shared memory programming model
 Parallel programming by accessing shared data in memory.Parallel programming by accessing shared data in memory.
 Mainly for shared memory system. (can be supported by software

distributed shared memory)
 System moves shared data between nodes (by sharing) System moves shared data between nodes (by sharing)
 Easy to program, based on sequential version
 Scalability is limited. Medium scale multiprocessors.

15Lecture on Programming Environment

Multithread(ed) programming
B i d l f h d Basic model for shared memory

 Thread of execution = abstraction of execution in processors.
Diff t f Different from process
 Procss = thread + memory space

 POSIX thread library = pthready p
Many programs are
executed in parallel

16Lecture on Programming Environment

スレッド

POSIX thread library
#include <pthread h>

 Create thread: thread_create
 Join threads: pthread_join

#include <pthread.h>

void func1(int x); void func2(int x);

 Synchronization, lock main() {
pthread_t t1 ;
pthread_t t2 ;

pthread create(&t1 NULLi pthread_create(&t1, NULL,
(void *)func1, (void *)1);

pthread_create(&t2, NULL,
(void *)func2, (void *)2);

main

pthread_create () ())
printf("main()¥n");
pthread_join(t1, NULL);
pthread_join(t2, NULL);

}f 1

pthread_create

}
void func1(int x) {

int i ;
for(i = 0 ; i<3 ; i++) {

func1
func2 () {

printf("func1(%d): %d ¥n",x, i);
}

}
void func2(int x) {

pthread_join

pthread_join

17Lecture on Programming Environment

void func2(int x) {
printf("func2(%d): %d ¥n",x);

}

Programming using POSIX thread

 Create threads Divide and assign iterations of loop
 Synchronization for sum

for(t=1;t<n thd;t++){

Pthread, Solaris thread
 Synchronization for sum

int s; /* global */
int n thd; /* number of threads */(; _ ;){

r=pthread_create(thd_main,t)
}
thd_main(0);

int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
c=1000/n thd;_

for(t=1; t<n_thd;t++)
pthread_join();

c=1000/n_thd;
b=c*id;
e=s+c;
ss=0;ss 0;
for(i=b; i<e; i++) ss += a[i];
pthread_lock();
s += ss;

Thread ＝
Execution of program ;

pthread_unlock();
return s;

}

Execution of program

18Lecture on Programming Environment

}

Message passing programming
 General programming paradigm for distributed memory system.

 Data exchange by “send” and “receive”

 Communication library, layer
 POSIX IPC, socket
 TIPC (Transparent Interprocess Communication)
 LINX (on Enea’s OSE Operating System)
 MCAPI (Multicore Communication API） MCAPI (Multicore Communication API）
 MPI (Message Passing Interface) Send Receive

core１ core ３

On-Chip
network

２ ４

19Lecture on Programming Environment

networkcore ２ core ４

Simple example of Message Passing Programming

 Sum up 1000 element in array

int a[250]; /* 250 elements are allocated in each node */

main(){ /* start main in each node */
int i,s,ss;
s=0;
for(i=0; i<250;i++) s+= a[i]; /*compute local sum*/
if(myid == 0){ /* if processor 0 */

for(proc=1;proc<4; proc++){for(proc 1;proc<4; proc++){
recv(&ss,proc); /* receive data from others*/
s+=ss; /*add local sum to sum*/

}}
} else { /* if processor 1,2,3 */

send(s,0); /* send local sum to processor 0 */
}

20Lecture on Programming Environment

}
}

Parallel programming using MPI

 MPI (Message Passing Interface)
 Mainly, for High performance scientific computing

S d d lib f i ll l i i hi h d Standard library for message passing parallel programming in high-end
distributed memory systems.
 Required in case of system with q y

more than 100 nodes.
 Not easy and time-consuming work

 “assembly programming” in distributed Over-specs for
 assembly programming in distributed

programming

C i i i h

p
Embedded system

Programming?!
 Communication with message

 Send/Receive

 Collective operations

Send Receive

 Collective operations
 Reduce/Bcast
 Gather/Scatter

21Lecture on Programming Environment

ネットワーク

Programming in MPI

#include "mpi.h"
#include <stdio.h>
#define MY TAG 100#define MY_TAG 100
double A[1000/N_PE];
int main(int argc, char *argv[])
{{

int n, myid, numprocs, i;
double sum, x;
int namelen;int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);_ _ _ _
MPI_Get_processor_name(processor_name,&namelen);
fprintf(stderr,"Process %d on %s¥n", myid, processor_name);

22Lecture on Programming Environment

....

Programming in MPI

sum = 0.0;
for (i = 0; i < 1000/N PE; i++){for (i = 0; i < 1000/N_PE; i++){

sum+ = A[i];
}

if(myid == 0){
for(i = 1; i < numprocs; i++){

MPI Recv(&t,1,MPI DOUBLE,i,MY TAG,MPI COMM WORLD,&status_ (, , _ , , _ , _ _ ,
sum += t;

}
} else

MPI_Send(&t,1,MPI_DOUBLE,0,MY_TAG,MPI_COMM_WORLD);
/* MPI_Reduce(&sum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_
MPI_Barrier(MPI_COMM_WORLD);
...
MPI_Finalize();
return 0;

}

23Lecture on Programming Environment

}

MCAPI

 MCAPI (Multicore Communication API)
 Communication API defined by Multicore Association (www.multicore-

association org Intel Freescale TI NEC)association.org, Intel, Freescale, TI, NEC)
 V1.063 at March 31, 2008
 Using with MRAPI (Resource Management API)
 Easy than MPI、hetero, scalable, fault tolerance(?), general

 3 Basic functions 3 Basic functions
 1. Messages – connection-less datagrams.
 2. Packet channels – connection-oriented, uni-directional, FIFO packet streams.

3 S l h l ti i t d i l d i di ti l FIFO k t 3. Scalar channels – connection-oriented single word uni-directional, FIFO packet
streams.

 MCAPI’s objective is to provide a limited number of calls with sufficient
communication functionality while keeping it simple enough to allow
efficient implementations.

24Lecture on Programming Environment

efficient implementations.

Example

25Lecture on Programming Environment

//
// The TPU task
//
void TPU Task() { // t th h d tvoid TPU_Task() {

char* sMem;
size_t msgSize;
mcapi_endpoint_t cntrl_endpt, cntrl_remote_endpt;
mcapi sclchan send hndl t cntrl chan;

// now get the shared mem ptr
mcapi_msg_recv(cntrl_endpt, &sMem,
sizeof(sMem), &msgSize, &err);
CHECK_MEM(sMem);
CHECK STATUS()mcapi_sclchan_send_hndl_t cntrl_chan;

mcapi_request_t r1;
mcapi_status_t err;

// init the system

CHECK_STATUS(err);

// NOTE – connection handled by control task
// open the channel

i l h d i(& t l h// sys
mcapi_initialize(TPU_NODE, &err);
CHECK_STATUS(err);
cntrl_endpt =
mcapi create endpoint(TPU PORT CNTRL, &err);

mcapi_open_sclchan_send_i(&cntrl_chan,
cntrl_endpt, &r1, &err);
CHECK_STATUS(err);
// wait on the open
mcapi wait(&r1 NULL &err);p _ _ p (_ _ ,);

CHECK_STATUS(err);
mcapi_get_endpoint_i(CNTRL_NODE,
CNTRL_PORT_TPU,
&cntrl remote endpoint, &r1, &err);

mcapi_wait(&r1,NULL,&err);
CHECK_STATUS(err);

// ALL bootstrapping is finished, begin processing
while (1) {_ _ p , ,);

CHECK_STATUS(err);

// wait on the remote endpoint
mcapi wait(&r1,NULL,&err);

while (1) {
// do something that updates shared mem
sMem[0] = 1;
// send a scalar flag to cntrl process
// indicating sMem has been updatedp _ (, ,);

CHECK_STATUS(err); // indicating sMem has been updated
mcapi_sclchan_send_uint8(cntrl_chan,
(uint8_t) 1,&err);
CHECK_STATUS(err);

}

26Lecture on Programming Environment

}
}

What’s OpenMP?
 Programming model and API for shared memory parallel programming

 It is not a brand-new language.
 Base-languages(Fortran/C/C++) are extended for parallel programming Base languages(Fortran/C/C++) are extended for parallel programming

by directives.
 Main target area is scientific application.

Getting popular as a programming model for shared memory processors Getting popular as a programming model for shared memory processors
as multi-processor and multi-core processor appears.

 OpenMP Architecture Review Board (ARB) decides spec.
 Initial members were from ISV compiler venders in US.
 Oct. 1997 Fortran ver.1.0 API Oct. 1997 Fortran ver.1.0 API
 Oct. 1998 C/C++ ver.1.0 API
 Latest version, OpenMP 3.0

 http://www.openmp.org/

27Lecture on Programming Environment

Programming using POSIX thread

 Create threads Divide and assign iterations of loop
 Synchronization for sum

for(t=1;t<n thd;t++){

Pthread, Solaris thread
 Synchronization for sum

int s; /* global */
int n thd; /* number of threads */(; _ ;){

r=pthread_create(thd_main,t)
}
thd_main(0);

int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
c=1000/n thd;_

for(t=1; t<n_thd;t++)
pthread_join();

c=1000/n_thd;
b=c*id;
e=s+c;
ss=0;ss 0;
for(i=b; i<e; i++) ss += a[i];
pthread_lock();
s += ss;

Thread ＝
Execution of program ;

pthread_unlock();
return s;

}

Execution of program

28Lecture on Programming Environment

}

Programming in OpenMPProgramming in OpenMP

これだけで、OK!

#pragma omp parallel for reduction(+:s)
for(i=0; i<1000;i++) s+= a[i];

29Lecture on Programming Environment

OpenMP API

 It is not a new language!
 Base languages are extended by compiler directives/pragma, runtime

lib i i bllibrary, environment variable.
 Base languages：Fortran 90, C, C++

 Fortran： directive line starting with !$OMP
 C: directive by #pragma omp

 Different from automatic parallelization Different from automatic parallelization
 OpenMP parallel execution model is defined explicitly by a programmer.

 If directives are ignored (removed), the OpenMP program can be
executed as a sequential program
 Can be parallelized in incrementallyCan be parallelized in incrementally
 Practical approach with respect to program development and debugging.
 Can be maintained as a same source program for both sequential and

parallel version

30Lecture on Programming Environment

parallel version.

OpenMP Execution model
 Start from sequential execution
 Fork-join Model

ll l i parallel region
 Duplicated execution even in function calls

Afork

A
Call foo() Call foo()Call foo()Call foo()

Afork

… A ...
#pragma omp parallel
{

foo(); /* B */

B

C
join

foo(); /* ..B... */
}
… C ….
#pragma omp parallel D#pragma omp parallel
{
… D …
}

E

31Lecture on Programming Environment

}
… E ...

Parallel Region

 A code region executed in parallel by multiple threads (team)
 Specified by Parallel constructs
 A set of threads executing the same parallel region is called “team”
 Threads in team execute the same code in region (duplicated

execution)execution)

#pragma omp parallel
{

...

... Parallel region...

...
}

32Lecture on Programming Environment

Work sharing Constructs

 Specify how to share the execution within a team
 Used in parallel regionp g
 for Construct

 Assign iterations for each threads
F d t ll l For data parallel program

 Sections Construct
 Execute each section by different threads

thread1 thread2 thread3

y
 For task-parallelism

 Single Construct
E t t t t b l th d di ti

Duplicated execution

 Execute statements by only one thread

 Combined Construct with parallel directive

directives
work-sharing, sync

p
 parallel for Construct
 parallel sections Construct

33Lecture on Programming Environment

For Construct

 Execute iterations specified For-loop in parallel
 For-loop specified by the directive must be in canonical shape For loop specified by the directive must be in canonical shape

#pragma omp for [clause…]
f (lb l i l b i)for(var=lb; var logical-op ub; incr-expr)

body

 Var must be loop variable of integer or pointer(automatically private)
 incr-expr

++var var++ var var var+ incr var incr ++var,var++,--var,var--,var+=incr,var-=incr
 logical-op

 ＜、＜＝、＞、＞＝＜、＜ 、＞、＞

 Jump to ouside loop or break are not allows
 Scheduling method and data attributes are specified in clause

34Lecture on Programming Environment

Example code
Matvec(double a[] int row start int col idx[]

Sparse matrix vector product
Matvec(double a[],int row_start,int col_idx[],
double x[],double y[],int n)
{

int i j start end; double t;int i,j,start,end; double t;
#pragma omp parallel for private(j,t,start,end)

for(i=0; i<n;i++){
start=row start[i];start row_start[i];
end=row_start[i+1];
t = 0.0;
for(j=start;j<end;j++)(j j j)

t += a[j]*x[col_idx[j]];
y[i]=t;

}
X yA

}
a[col_idx[j]]

35Lecture on Programming Environment a

Scheduling methods of parallel loopg p p

 #processor = 4 #processor 4

Sequential n Iteration space

schedule(static,n)

Schedule(static)

Schedule(dynamic,n)

Schedule(guided,n)

36Lecture on Programming Environment

Data scope attribute clause

 Clause specified with parallelconsruct、work sharing
construct

 shared(var_list)
 Specified variables are shared among threads.

 private(var_list)
 Specified variables replicated as a private variable
fi i (li) firstprivate(var_list)
 Same as private, but initialized by value before loop.
lastprivate(var list) lastprivate(var_list)
 Same as private, but the value after loop is updated by the value of

the last iteration.
 reduction(op:var_list)

 Specify the value of variables computed by reduction operation op.

37Lecture on Programming Environment

 Private during execution of loop, and updated at the end of loop

Barrier directive

 Sync team by barrier synchronization
 Wait until all threads in the team reached to the barrier Wait until all threads in the team reached to the barrier

point.
 Memory write operation to shared memory is completedMemory write operation to shared memory is completed

(flush) at the barrier point.
 Implicit barrier operation is performed at the end of p p p

parallel region, work sharing construct without nowait
clause

#pragma omp barrier

38Lecture on Programming Environment

MediaBench

motion
estimation predict dct_type

estimation transform putpict

 MPEG2 encoder by OpenMP.

i til SNR it f iquantizecalcSNR itransform

/*loop through all macro-blocks of the picture*/ i
#pragma omp parallel private(i,j,myk)
{
#pragma omp for j

i

for (j=0; j<height2; j+=16)
{

for (i=0; i<width; i+=16)(; ;)
{

... loop body ...
}

39Lecture on Programming Environment

}
}

}

Example of OpenMP program：laplace

 Explicit solver of Laplace equation
 Stencil operation: update value with 4-points of up/down/left/right.
 Use array of “old” and “new”. Compute new by old and replace old

with new.
 Typical parallelization by domain decomposition Typical parallelization by domain decomposition
 At each iteration, compute residual

OpenMP version: lap c OpenMP version: lap.c
 Parallelize 3 loops

 OpenMP support only loopOpenMP support only loop
parallelization of outer loop.

 For loop directive is orphan, in dynamic extent of parallel directive.

40Lecture on Programming Environment

void lap_solve()
{

int x,y,k;
double sum;

#pragma omp parallel private(k,x,y)
{

for(k = 0; k < NITER; k++){
/* old <- new */

#pragma omp for
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
uu[x][y] = u[x][y];

/* update */
#pragma omp for

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
u[x][y] = (uu[x-1][y] + uu[x+1][y] + uu[x][y-1] + uu[x][y+1])/4.0;

}
}

/* check sum */
sum = 0.0;

#pragma omp parallel for private(y) reduction(+:sum)
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
sum += (uu[x][y]-u[x][y]);

printf("sum = %g¥n",sum);

41Lecture on Programming Environment

}

Update in OpenMP3.0

 The concept of “task” is introduced:
 An entity of thread created by Parallel construct and Task construct.
 Task Construct & Taskwait construct

Interpretation of shared memory consistency in OpenMP Interpretation of shared memory consistency in OpenMP
 Definition of Flush semantics

 Nested loop
 Collapse clauses

 Specify stack size of thread.
 constructor, destructor of private variables in C++, p

42Lecture on Programming Environment

Example of Task Constructs

struct node {
struct node *left;
t t d * i htstruct node *right;

};

void postorder traverse(struct node *p) {void postorder_traverse(struct node *p) {
if (p->left)

#pragma omp task // p is firstprivate by default
postorder traverse(p->left);postorder_traverse(p >left);

if (p->right)
#pragma omp task // p is firstprivate by default
postorder traverse(p->right);postorder_traverse(p >right);

#pragma omp taskwait
process(p);

}}

43Lecture on Programming Environment

What about performance?

 OpenMP really speedup my problem?!

 It depends on hardware and problem size/characteristics

 Esp. problem sizes is an very important factor
 Trade off between overhead of parallelization and grain size of parallel

execution.

To understand performance To understand performance, …
 How to lock
 How to exploit cache How to exploit cache
 Memory bandwidth

44Lecture on Programming Environment

Some experience of OpenMP performance of
embedded multicore processorsp

SMP multicore for embedded SMP multicore for embedded
 renesas： M32700
 ARM+NEC： MPCore ARM+NEC： MPCore
 Hitachi+renesas： RP1

 For comparison
 Intel: Core2Quad Q6600 (Desktop/server)

塙 敏博,李 珍泌,今田 貴之,木村 英明2 佐藤 三久1,,朴 泰祐
“OpenMP を用いた並列ベンチマークプログラムによる
組込み向けマルチコアプロセッサの評価”, SWoPP 2008

45Lecture on Programming Environment

Renesas M32R (M32700)

 M32R-II core x 2
 7-stage pipeline
 32bit instruction （1命令同時発行+16bit命令（2命令同時発行可能)
 No floating unit

 gcc付属の浮動小数点ライブラリ (soft-float) gcc付属の浮動小数点ライブラリ (soft-float)

 On-chip 512KB SRAMp
 Not used in our experiment

 SDRAM controller
CPU1CPU1

Bus ArbiterBus Arbiter
Bus Controller

DMAC
SDRAMC

Bus Controller
DMAC
SDRAMC

128

 μT-Engine

CPU0CPU0

I‐Cache
8KB/2way
I‐Cache

8KB/2way
D‐Cache
8KB/2way
D‐Cache
8KB/2way

I‐TLBI‐TLB D‐TLBD‐TLB

512KB
Shared
SRAM

512KB
Shared
SRAM

PeripheralsPeripherals
32

M3T-32700UTを使用
I TLB

32Entries
I TLB

32Entries
D TLB

32Entries
D TLB

32Entries

CPU CoreCPU Core

Peripherals
•ICU
•Clock Control
•Timer
•UART
•GPIO

Peripherals
•ICU
•Clock Control
•Timer
•UART
•GPIO

46Lecture on Programming Environment

Debugging InterfaceDebugging Interface PLL
Clock Divider

PLL
Clock Divider

M32700 development kit

SDRAM

M32700

47Lecture on Programming Environment

ARM MPCore

ARM+NEC
 ARM MP11 core (ARM11 architecture) x 4

 ARMv6命令セット、ARM命令セット(32bit), Thumb命令セット(16bit),
Jazelle命令セット(可変長)
8 stage pipeline 1 instruction issue 8-stage pipeline、 1 instruction issue

 L2 cache, 1MB,
8way-set-assoc Distributed

Interrupt
Distributed
Interrupt8 ay a o

 CT11MPCore + Interrupt
CPU0

Interrupt
CPU0

Interrupt
Controller
Interrupt
Controller

Interrupt
CPU1

Interrupt
CPU1

Interrupt
CPU2

Interrupt
CPU2

Interrupt
CPU3

Interrupt
CPU3

Interrup
lines

RealView Emulation
Baseboardを使用

DDR SDRAMコントローラ

InterfaceInterface

Timer &
watchdog
Timer &
watchdog

Timer &
watchdog
Timer &
watchdog

Timer &
watchdog
Timer &
watchdog

Timer &
watchdog
Timer &
watchdog

InterfaceInterface InterfaceInterface InterfaceInterface

 DDR-SDRAMコントローラ

など周辺I/FはFPGAに搭載
MP11
CPU0
MP11
CPU0

MP11
CPU1
MP11
CPU1

MP11
CPU2
MP11
CPU2

MP11
CPU3
MP11
CPU3

Coherency
Control BusInstr & Data

64bit Bus

48Lecture on Programming Environment

Snoop Control Unit (SCU)Snoop Control Unit (SCU)
64bit Bus

AXI 64bit Bus x 2

MPCore development kit

DRAM

MPCore
Bus IF
Memory
controller

49Lecture on Programming Environment

RP1 prototype

 SH-X3 architecture，SH-4A core x 4
 16bit命令セット，2命令同時発行可能

 8-stage pipeline

 Snoop Bus
SH のトラフ クを避けて転送 SHwyのトラフィックを避けて転送

 On chip memory (not used) Snoop busSnoop bus
 On chip memory… (not used)

 Local on-chip memory
命令用 ILRAM (8Kbyte, 1clock)

Core 3Core 3

CPU FPU
D$
32K

I$
32K CCN

Core 3Core 3

CPUCPU FPUFPU
D$
32K
D$
32K

I$
32K
I$
32K CCNCCN

Core 2Core 2

CPU FPU
DI

Core 2Core 2

CPUCPU FPUFPU
DDII

Core 1Core 1

CPU FPU

Core 1Core 1

CPUCPU FPUFPUCore 0Core 0Core 0Core 0 SnoopSnoop

データ用 OLRAM (8Kbyte, 1clock)
URAM (128Kbyte, 1～数クロック)

Shared memory(CSM 128Kbyte)

32K32K
OLRAM
16K

ILRAM
8K

URAM 128K

DTU

32K32K32K32K
OLRAM
16K

OLRAM
16K

ILRAM
8K

ILRAM
8K

URAM 128KURAM 128K

DTUDTU
D$
32K

I$
32K

OLRAM
16K

ILRAM
8K

URAM 128K

CCN

DTU

D$
32K
D$
32K

I$
32K
I$
32K

OLRAM
16K

OLRAM
16K

ILRAM
8K

ILRAM
8K

URAM 128KURAM 128K

CCNCCN

DTUDTU

CPU FPU
D$
32K

I$
32K

OLRAM
16K

ILRAM
8K

URAM 128K

CCN

DTU

CPUCPU FPUFPU
D$
32K
D$
32K

I$
32K
I$
32K

OLRAM
16K

OLRAM
16K

ILRAM
8K

ILRAM
8K

URAM 128KURAM 128K

CCNCCN

DTUDTU

CPU FPU
D$
32K

I$
32K

OLRAM
16K

ILRAM
8K

CCN

DTU

CPUCPU FPUFPU
D$
32K
D$
32K

I$
32K
I$
32K

OLRAM
16K

OLRAM
16K

ILRAM
8K

ILRAM
8K

CCNCCN

DTUDTU

Snoop
Controller
(SNC)

Snoop
Controller
(SNC)

 Shared memory(CSM, 128Kbyte) URAM 128KURAM 128KURAM 128K16K8K
URAM 128K

16K16K8K8K
URAM 128KURAM 128K

On‐chip system bus (SuperHwy)On‐chip system bus (SuperHwy)

CSM
128K
CSM
128K

50Lecture on Programming Environment

LBSCLBSC DBSCDBSC

SRAM DDR2‐SDRAM

Comparison

ルネサス ARM+NEC 早大+ルネサス+ Intelルネサス
M32700

ARM+NEC
MPCore

早大+ルネサス+
日立
RP1

Intel
Core2Quad
Q6600

#cores 2 4 4 4co es

Core frequency 300MHz 210MHz 600MHz 2.4GHz

Feq internal bus 75MHz 210MHz 300MHz

F l b 75MH 30MH 50MHFeq external bus 75MHz 30MHz 50MHz

cache(I+D) 2way 8K+8K 4way
32K+32K
L2 1MB 8 a

4way 32K+32K 8way 32K+32K (L1)
16way 4M(2コア) x 2
(L2)L2, 1MB, 8way (L2)

Line size 16byte 32byte 32byte 64byte

Main memory 32MB 256MB 128MB 4GB
SDRAM
100MHz

DDR-SDRAM
30MHz

DDR2-600
300MHz

DDR2-800
400MHz

51Lecture on Programming Environment

NAS parallel benchmark: IS, CG

 3

M32700
MPCore

RP1

 4
M32700
MPCore

RP1
C 2Q d

 2

Sp
ee

du
p

Core2Quad

2

3

Sp
ee

du
p

Core2Quad

 1

1

2S

 1 2 3 4

Number of PUs

1

 1 2 3 4

Number of PUs

IS: Memory intensive、
perf. Affected by
memory bandwidth

CG: compute intensive

memory bandwidth

52Lecture on Programming Environment

Susan smoothing 、BlowFish (ECBモード)
ばらつきが大きいため error barで表

 4 M32700
MPCore

 4 M32700
MPCore

ばらつきが大きいため、error barで表
- error bar: 最大値と最小値、折れ線: 平均値

 3

up

MPCore
RP1

Core2Quad 3

 3.5

up

MPCore
RP1

Core2Quad

 2Sp
ee

du

1 5

 2

2.5

Sp
ee

du

 1

1 2 3 4

 1

1.5

1 2 3 41 2 3 4

Number of PUs

 1 2 3 4

Number of PUs

Fil i i l d dScalable performance File processing included
Core2Quad以外はNFS環境

53Lecture on Programming Environment

FFT
4 4

M32700
MPCore

RP1
 3

du
p

RP1
Core2Quad

 2Sp
ee

d

 1

 1 2 3 4

Number of PUs

Too short execution (a few mills sec) in case
of Core2Quad => overhead too large

54Lecture on Programming Environment

Q g

Programming Cost of parallelization by OpenMP

Parallelization by OpenMP
• Make parallel region large to reduce fork-join cost.
• Small modification from sequential

application # of line added

susan smoothing Directive 6 line addedsusan smoothing Directive 6 line added

Blowfish encoding Directive 9 line added
12 li difi d12 line modified

FFT Directive 4 line added

Mpeg2enc Directive 5 line added
7 line modified

55Lecture on Programming Environment

Programming for Multi-core processor by RPC
 RPC (remote procedure call)

 Technology to execute some procedures in different memory space (usually, on remote
computer)p)

 Abstraction as a client-server(caller-callee), and hide complicated communication and
protocol

 Interface definition is described in IDL (interface description language), and stub for
i ti i t d t ti llcommunication is generated automatically.

 Technologies used in various applications.
 SUN RPC – system programming

CORBA (common object broker arch) CORBA (common object broker arch)
 GridRPC

 RPC for multi-core processor
core

core
(or DSP)call RPC for multi core processor

 Assign functions to cores
 Stright-forward abstraction for AMP

 “Call some function as a RPC”
procedureprogram

call

t Call some function as a RPC
 Also, it can be applied on SMP

 It can be used for both shared memory
and distributed memory since it hide communication.

return

56Lecture on Programming Environment

and distributed memory since it hide communication.

Mechanism of RPC
 Abstraction of client-server(caller-callee), hides detail protocol of

communication
 Interface is defined by IDL (interface description language), and generate Interface is defined by IDL (interface description language), and generate

communication by IDL compiler.
 Stub – Called as a local function call and send argument/ recv results.

Skeleton Accept call request and call the function in remote side Skeleton – Accept call request and call the function in remote side.

IDL
desc iption

The definition of the interface is IDL compiler generate
St b and skelton

corecall

descriptionDescribed in IDL file Stub and skelton

Core
core

(or DSP)
call

Invoke and send argment

procedureprogram stub skeleton

Send results

57Lecture on Programming Environment
return

Send results

Multi-core processor programming
by Fujitsu Asynchronous RPC(ARPC）

 Fujitsu proposed Asynchronous
RPC(ARPC） for Multi-core
processor programmingprocessor programming

 Asynchronous = multiple RPC
requests can be executed in

ll lparallel

E t t d Easy to port code
from sequential
program.
B hidi By hiding
communication by
RPC, portability is
improved for severalimproved for several
kinds of core incluing
DSP.

d ti f t

58Lecture on Programming Environment

⇒ reduction of cost
for development

Advanced multicore programming by RPC
 RPC is a good solution to use an original sequential program with small

modification cost for several kind of processors.(AMP&SMP、DSP)
 Directive-base programming environment has been proposed

 HMPP (hybrid multicore parallel programming)@INRIA
 StarSs @BSC

59Lecture on Programming Environment

Issues and agenda of programming environment
for embedded multi-core processsors

 No standard, yet.
 Embedded applications require several different kinds of configuration, so not

easy to apply standard way to develop softwareeasy to apply standard way to develop software.
 Communication software for on-chip interconnect

 MCAPI (Multicore Communication API)?

St d d (hi h l l) i d l d i t d f Standard (high-level) programming model and environment are prposed from
high-end computing

 ARPC ? OpenMP?

 Multi-core processors for embedded will be distributed or shared memoy?

 Real time processing and parallel processing
 Real-time scheduling with parallel task may be difficult (esp. in shared memory

processor)
 In real-time processing, parallel tasks needs multiple cores at a time.p g, p p
 Thread allocation fits to configuration of cores (core affinity)

 sched_setaffinity is available form Linx 2.6, but it is mainly for HPC, not for embedded
apps.

60Lecture on Programming Environment

pp

 Difficult debugging …

