Lecture on programming environment

Programming language and environment
for embedded multi-core processors and
high performance multi-core processors

M. Sato



Contents

= Why multicore? ~ Trends of Microprocessors
= Multi-core processor configurations: SMP vs. AMP

= How to use multicore
= POSIX Thread
= Communication

= Programming models
= OpenMP
= Cilk
= Asynchronous RPC

= Issues and agenda

Lecture on Programming Environment



Trends of Mulitcore processors

= Faster clock speed, and Finer silicon technology

= 'now clock freq is 3GHz, in future it will reach to
10GHz!?”

= Intel changed their strategy -> multicore!
= Clock never become faster any more

= Silicon technology 45 nm -> 22 nm in near future!

Good news & bad news!

= Progress in Computer Architecture
= Superpipeline, super scalar, VLIW ...
« Multi-level cache, L3 cache even in microprocessor

= Multi-thread architecure. Intel Hyperthreading
= Shared by multiple threads

= Multi-core: multiple CPU core on one chip dai
Programmlng Support |S requned Inetl ® Pentium® processor

Dai of Extreme-edition
Lecture on Programming Environment 3




Multi-core processor :
Solution of Low power by parallel processing

CPU power dissipation

P=NXaxCxVzxf
Capacitanc Voltage

# CPU Active rate of Clock Freq
processors e of circiuit

Apporach for Low power by parallel processing
increase N. T decrease V and f, § improve perf. Nxf 1

Decreasing V and F, makes heat dissipation and power lower within a chip
Progress in silicon technology 130nm = 90nm=65nm,22nm (Decrease C and V)
Use a silicon process for low power (embedded processor) (Small a)

= Performance improvement by Multi-core (N=2~16)
= Number of transistors are increasing by “Moore’s Law”
= Parallel processing by low power processor

Solution by multi-core processors for
High performance embedded system

Lecture on Programming Environment



Classification of Multi-core processors

SMP (Symmetric AMP(Asymmetric Multi
Multi Processor) Processor)

same kinds of cores | Different kinds of cores

Multi-core for sever
applications (small memory may be equipped

for communication)
ARM/NEC MPCore
Renesas M32R
Renesas RP1 (SH3X)

Fujitsu FR-V(?) IBM Cell
DSP-integrated chip
GPU-integrated chip

Alowsw pajngiasig | Alowaw paleys

Lecture on Programming Environment



SMP and AMP

= SMP(Symmetric Multi Processor)
= Same kind of cores integrated
= Usually, shared memory
= General purpose

AMD quad-core

1 spE| SPE | sPE | sPE
| =

"tementlnt' nectB s (EIB);

= AMP (Asymmetric Multi Processor) R
= Different cores integrated, Heterogenous IBM Cell -‘ ol | on ] &
= In most case, distributed memory e
= E.g. IBM Cell processors
= GPU-integrated, DSP-integrated
= Special-purpose, to reduce cost

DSP

= Shared memory vs. Distributed memory

=« Important point for programming models to program multi-core
processors: How to access main memory.

Lecture on Programming Environment



Cell D E AR

TOSHIBA
A (XDR)
Power Processor =~ = : XDR I/F 2Channel |
Element (FPE) ,;1 =
A == Fl el 1 (R & }EDR '
PowerPCF —+5 3 |
5F+MHCPUDT : DRAM ]
4 H

Element Interconnect

EEE"‘;@EL@“&’ Cell Broadband Engine Processor
Element Interconnect Bus {EIBJ'- 5@5332%";?;}‘3 ! Rambus XDRAMLInteriaces|« e
i 'i"ll LY —I. - ." . 1 : .-‘.. (=

u

e

. a’ Cell/GPU
F

Synergistic Processor |

Element (SPE) 76.8GBIs
SIMDED IS . L
SOty H 3T (i 4 ' ) | S
TR @ vs) - : m&?;im

TPE: Power Processor Element ,.[. - ,..[
SPE: Synergistic Processor Element Elex [0 1 UD

L3 - Local Storage [ 182Chanel® 5} 55 Rumbras s R

AR —TxA2 ) CEDEC 201

- EfiA APV AR EORFEERRS

8 /Copynghl © 2006 Toshibe Coporaion. All nghis reserved. 20060307

CellD5 4

2{E3400 A DRSO RFEE
HFBHA. 90NnmTAEATHE
SNBEML FLHA4X1E
221mm2EBEN NS, IR

Rambus:Fl

BANSPUTHS. RN TS

Lecture on Programming Environment



Shared memory multi-processor system

CPU

CPU

CPU

CPU

B

Lecture on Programming Environment

S

€ Multiple CPUs share
main memory

¢ Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
in main memory.

€ Enterprise Server
4 SMP Multi-core
processors



Distributed memory multi-processor

& System with several
computer of CPU and
memory, connhected by
network.

CPU

Network € Thread executed in each
computer communicate
CPU / \ CPU with each other by
oy exchanging data
(message) via network.4

€ PC Cluster
4 AMP Multi-core processor

Lecture on Programming Environment 9



How to use Multi-core processor (1)

= Run process or threads on each core
= Possible mainly on shared memory SMP multi-core processors

= Most embedded applications are a multi-task (multi-process) program.
« It may require any particular modification.

= In some cases, multi-task program running on a single core
cannot be executed in multi-core (SMP)

= The case of using high-priority non-preemptive execution of
Real time OS as an implementation of critical section.

=« In multi-core environment, high-priority execution does not
mean “non-preemptive” execution since other thread run in
parallel physically.

= Use lock properly to implement critical section.

a7 1 ‘ 27 ‘
:>::::;?:> jl> 72 > >

Lecture on Programming Environment !




How to use Multi-core processor (2)

= Use each core for different functions (hetero)

= A typical usage of AMP multi-core processor
= It can be applied for SMP-type multi-core , without shared memory.
= So far, this kind of applications use several kinds of different chips.

= In this case, individual OS can run on each core. (DSP has
no OS)
= May use different kind of OS, e.g. Linux and RTOS

=« Communication by using on-chip interconnect or bus
= Can use RPC model for programming

7 77 77)
OS 0S OS 77
7 |——| a7 Oy <> DSP

On-chip interconnect BUS
1

Lecture on Programming Environment



How to use Multi-core processor (3)

= For high performance (common goal?)

= Parallel processing by multiple cores

=« Can use OpenMP for shared memory SMP

= Technologies which is used in high-end platform
= Use DSP or GPU to accelerate computation in AMP

Corel

Core 3

Work-sharing by multiple cores

Lecture on Programming Environment

Core 2

4 b\

Core4

Core

core

DSP

Special
nction

12



Very simple example of parallel computing for high performance
for(1=0;1<1000; 1++)

Sequential computation S += ALl
1 . 3 | eeessssssssssssssssssss 1000
> + —_ S

Parallel computation

251

500 || | 9501 p==== 750 751 poeeee 1000

Lol el g

Lecture on Programming Environment

13



Speedup by parallel computing: “Amdahl’s low”

= Amdahl’s low

= Suppose execution time of sequential part T,, ratio of sequential
part a, execution time by parallel computing using p processors T,
is (no more than) T, = a*T; + (1-a) *T,/p

= Since some part must be executed sequentially, speedup is limited
by the sequential part.

\
Exec AN
time pn?a!!ﬁ! .
part,
\
‘ [
= sequential
- - part
Sequential Parallel Execution
execution by p processors

Lecture on Programming Environment 14



Parallel programming model

= Message passing programming model

Parallel programming by exchange data (message) between processors
(nodes)

Mainly for distributed memory system (possible also for shared memory)
Program must control the data transfer explicitly.

Programming is sometimes difficult and time-consuming

Program may be scalable (when increasing number of Proc)

= Shared memory programming model

Lecture on Programming Environment

Parallel programming by accessing shared data in memory.

Mainly for shared memory system. (can be supported by software
distributed shared memory)

System moves shared data between nodes (by sharing)
Easy to program, based on sequential version
Scalability is limited. Medium scale multiprocessors.

15



Multithread(ed) programming
= Basic model for shared memory
= Thread of execution = abstraction of execution in processors.

= Different from process
= Procss = thread + memory space
= POSIX thread library = pthread

Many programs are
executed i1n parallel

)

i"”
l"

J l l K

Lecture on Programming Environment 16

/
"
n""'
'I;!'




POSIX thread library

s Create thread: thread create

= Join threads: pthread_join
= Synchronization, lock

main
|

pthread_create ———

!

pthread_create ,

funcil
; J func2

pthread_join

|

pthread_join

!

Lecture on Programming Environment

#include <pthread.h>
void func1(int x ); void func2( int x );

main() {
pthread t t1;
pthread tt2 ;
pthread create( &t1, NULL,
(void *)func1, (void *)1 );
pthread create( &t2, NULL,
(void *)func2, (void *)2 );
printf("main()¥n");
pthread_join( t1, NULL );
pthread_join( t2, NULL );

}
void func1(int x ) {
inti:
for(i=0;i<3; i++){
printf("func1( %d ): %d ¥n"x, i );
}
}

void func2( int x ) {
printf("func2( %d ): %d ¥n",x);

) 17



Programming using POSIX thread

= Create threads = Divide and assign iterations of loop

= Synchronization for sum
Pthread, Solaris thread

— - int s; /* global */
for(t=1;t<n_thd;t++){ _ int n_thd; /* number of threads */
r=pthread create(thd main,t) int thd_main(int id)
} { int c,b,e,i,ss;
thd_main(0); c=1000/n_thd;
for(t=1; t<n_thd;t++) b=c*id- ’
pthread join(Q); e=sict
ss=0;
_ for(i=b; i<e; i++) ss += a[i];
Thread = pthread lock();
Execution of program S =SS,
ecution ot prog pthread_unlock();
return s;
+

Lecture on Programming Environment 18



Message passing programming

= General programming paradigm for distributed memory system.
= Data exchange by “send” and “receive”

= Communication library, layer
= POSIX IPC, socket
= TIPC (Transparent Interprocess Communication)
= LINX (on Enea’s OSE Operating System)
= MCAPI (Multicore Communication API)

= MPI (Message Passing Interface) Send Receive

coret. >F

I On-Chip

Lecture on Programming Environment 19




Simple example of Message Passing Programming

= Sum up 1000 element in array

int a[250]; /7* 250 elements are allocated 1n each node */

main(){ /* start main iIn each node */
int 1,s,Ss;
s=0;

for(1=0; 1<250;i1++) s+= a[1]; /*compute local sum*/
iIf(myad == 0){ /* 1Tt processor 0 */
for(proc=1;proc<4; proc++){
recv(&ss,proc); /* receive data from others*/
S+=SS; /*add local sum to sum*/
+
} else { /* i1t processor 1,2,3 */
send(s,0); /* send local sum to processor 0 */
+

}

Lecture on Programming Environment

20



Parallel programming using MPI

MPI (Message Passing Interface)
Mainly, for High performance scientific computing
Standard library for message passing parallel programming in high-end
distributed memory systems.
= Required in case of system with
more than 100 nodes.

= Not easy and time-consuming work

= “assembly programming” in distributed OVGI"SDECS for
programming Embedded system

Programming?!
Communication with message

= Send/Receive Send Receive

Collective operations | >

= Reduce/Bcast — )EK

= Gather/Scatter I I
RrYLT—2

21

Lecture on Programming Environment



Programming in MPI

#include "mpi.h"
#include <stdio.h>
#define MY_TAG 100
double A[1000/N_PE];
int main( Int argc, char *argvl])
{
int n, myid, numprocs, 1i;
double sum, X;
int namelen;
char processor name[MPI_MAX PROCESSOR_NAME];
MPI1_ Status status;

MPI_Init(&argc,&argv);
MP1_Comm_size(MP1_COMM_WORLD,&numprocs) ;
MP1_Comm_rank(MP1_COMM_WORLD,&myid);

MP1_Get processor_name(processor_name,&namelen);

fprintf(stderr,"Process %d on %s¥n'", myid, processor_name);

Lecture on Programming Environment

22



Programming in MPI

sum = 0.0;
for (i = 0; 1 < 1000/N_PE; i++){
sum+ = A[i];

}

iIT(nyid == 0){
for(n = 1; 1 < numprocs; 1++){
MPI1_Recv(&t,1,MPI_DOUBLE,1,MY_TAG,MP1_COMM_WORLD, &status
sum += t;
+
} else
MP1_Send(&t,1,MPI1_DOUBLE,O,MY TAG,MP1_COMM_WORLD) ;
/* MP1_Reduce(&sum, &sum, 1, MPI_DOUBLE, MPI_SuMm, 0, MPI_COMM
MP1_Barrier(MP1_COMM_WORLD);

MPI_Finalize();

return O;

}

Lecture on Programming Environment 23



MCAPI

MCAPI (Multicore Communication API)

= Communication API defined by Multicore Association (www.multicore-
association.org, Intel, Freescale, TI, NEC)

= V1.063 at March 31, 2008
= Using with MRAPI (Resource Management API)
=« Easy than MPI, hetero, scalable, fault tolerance(?), general

3 Basic functions
= 1. Messages — connection-less datagrams.
= 2. Packet channels — connection-oriented, uni-directional, FIFO packet streams.

= 3. Scalar channels — connection-oriented single word uni-directional, FIFO packet
streams.

MCAPI’s objective is to provide a limited number of calls with sufficient
communication functionality while keeping it simple enough to allow
efficient implementations.

Lecture on Programming Environment 24



Tuitiali

(CFU)
(CFL) <<

main (..] {
create sharsd mem

create mag chans

wait forewver

connection=s)
create scheduls ta=ks, passing

parm=s such as chans=s, mem rgns

N\

Lecture on Programming Environment

Example

Control task
'.-—-_______-___-_-

TPU task
(TFU)

for (..) {

wait TPU task msg
read shared mem
for (=igmal proc task] |
test signal m=g

if (mmsg) recw msg

}

compute new carb params
update carb

blgnal Processing

for

P I |

read ==nmor

compute EREPFM
update share=d mem

send m=qg to control task

for (-} {
read sensor
process signal
mend meag to control task

25




T
// The TPU task

T
void TPU_Task() {

char* sMem;

size_t msgSize;

mcapi_endpoint_t cntrl_endpt, cntrl_remote_endpt;
mcapi_sclchan_send_hndl_t cntrl_chan;
mcapi_request_t r1;

mcapi_status_t err;

// init the system

mcapi_initialize(TPU_NODE, &err);
CHECK_STATUS(err);

cntrl_endpt =
mcapi_create_endpoint(TPU_PORT_CNTRL, &err);
CHECK_STATUS(err);
mcapi_get_endpoint_i(CNTRL_NODE,
CNTRL_PORT_TPU,

&cntrl_remote_endpoint, &r1, &err);
CHECK_STATUS(err);

// wait on the remote endpoint

mcapi_wait(&rl,NULL,&err);
CHECK_STATUS(err);

Lecture on Programming Environment

// now get the shared mem ptr
mcapi_msg_recv(cntrl_endpt, &sMem,
sizeof(sMem), &msgSize, &err);
CHECK_MEM(sMem);
CHECK_STATUS(err);

// NOTE — connection handled by control task
// open the channel
mcapi_open_sclchan_send_i(&cntrl_chan,
cntrl_endpt, &r1, &err);

CHECK_STATUS(err);

// wait on the open
mcapi_wait(&rl,NULL,&err);
CHECK_STATUS(err);

// ALL bootstrapping is finished, begin processing
while (1) {
// do something that updates shared mem
sMem[0] = 1;
// send a scalar flag to cntrl process
// indicating sMem has been updated
mcapi_sclchan_send_uint8(cntrl_chan,
(uint8_t) 1,&err);
CHECK_STATUS(err);

26



What's OpenMP?

= Programming model and API for shared memory parallel programming

« Itis not a brand-new language.

=« Base-languages(Fortran/C/C++) are extended for parallel programming
by directives.

= Main target area is scientific application.

= Getting popular as a programming model for shared memory processors
as multi-processor and multi-core processor appears.

= OpenMP Architecture Review Board (ARB) decides spec.

= Initial members were from ISV compiler venders in US.
= Oct. 1997 Fortran ver.1.0 API

= Oct. 1998 C/C++ ver.1.0 API
= Latest version, OpenMP 3.0

= http://www.openmp.org/ OPenMP

Lecture on Programming Environment

27



Programming using POSIX thread

= Create threads = Divide and assign iterations of loop

= Synchronization for sum
Pthread, Solaris thread

— - int s; /* global */
for(t=1;t<n_thd;t++){ _ int n_thd; /* number of threads */
r=pthread create(thd main,t) int thd_main(int id)
} { int c,b,e,i,ss;
thd_main(0); c=1000/n_thd;
for(t=1; t<n_thd;t++) b=c*id- ’
pthread join(Q); e=sict
ss=0;
_ for(i=b; i<e; i++) ss += a[i];
Thread = pthread lock();
Execution of program S =SS,
ecution ot prog pthread_unlock();
return s;
+

Lecture on Programming Environment 28



Proarammina in OnenMP
| lvvl“llllllll lv | I I | vrIVl | | | nn

_N1=l+ T, OK!

#pragma omp parallel for reduction(+:s)
for(1=0; 1<1000;1++) s+= a[i1];

Lecture on Programming Environment

29



OpenMP API

= It is not a new language!

= Base languages are extended by compiler directives/pragma, runtime
library, environment variable.

= Base languages:Fortran 90, C, C++
= Fortran: directive line starting with 1$OMP
= C: directive by #pragma omp

= Different from automatic parallelization
= OpenMP parallel execution model is defined explicitly by a programmer.

= If directives are ignored (removed), the OpenMP program can be
executed as a sequential program

= Can be parallelized in incrementally
= Practical approach with respect to program development and debugging.

= Can be maintained as a same source program for both sequential and
parallel version.

Lecture on Programming Environment 30



OpenMP Execution model

= Start from sequential execution

= Fork-join Model
= parallel region

= Duplicated execution even in function calls

AL
#pragma omp parallel
{
foo(); /7* .B.. */
by
..C....
#pragma omp parallel
{
...D ...
by
.. E ..

Lecture on Programming Environment

forkl A
Call foo()| |Call foo()| |Call foo()| |Call foo()
l \4 B \4 A\ 4
join
C

31




Parallel Region

= A code region executed in parallel by multiple threads (team)
= Specified by Parallel constructs
= A set of threads executing the same parallel region is called “team”

= Threads in team execute the same code in region (duplicated
execution)

#pragma omp parallel
{

... Parallel region...
}

32

Lecture on Programming Environment



Work sharing Construc

(S

= Specify how to share the execution within a team

= Used in parallel region
=« Tor Construct

= Assign iterations for each threads
= For data parallel program
=« Sections Construct

threadl thread?2

= Execute each section by different threads
= For task-parallelism
Single Construct

thread3

Duplicated execu

tion

= Execute statements by only one thread

directives

work-sharing, sync

|

Combined Construct with parallel directive
=« parallel for Construct

=« parallel sections Construct

L

Lecture on Programming Environment

|

33



For Construct

= Execute iterations specified For-loop in parallel
= For-loop specified by the directive must be in canonical shape

#pragma omp for [clause...]
for(var=Ilb; var logical-op ub; incr-expr)
body

= lar must be loop variable of integer or pointer(automatically private)
Incr-expr
« ++var, vart+,—--var, var-- , vart=incr, var-=incr
logical-op
< <=, >.>=
Jump to ouside loop or break are not allows
= Scheduling method and data attributes are specified in clause

34

Lecture on Programming Environment



Example code Sparse matrix vector product

Matvec(double a[],int row start,int col idx[],
double x[],double y[],iInt n)

{
Int 1,j,start,end; double t;
#pragma omp parallel for private(j,t,start,end)
for(1=0; 1<n;i++){
start=row_start|i];
end=row_start[i1+1];
t = 0.0;
for(j=start;j<end;j++)
t += a[j]*x[col _1dx[j]1]:;
y[il=t; A x Y

a[col _idx[j]]

Lecture on Programming Environment a |\b\bb\b/| | |




Scheduling methods of parallel loop

m #processor = 4

Sequential Iteration space

schedule(static,n)

Schedule(static)

Schedule(dynamic,n)

Schedule(guided,n)

Lecture on Programming Environment

36



Data scope attribute clause

= Clause specified with paral lelconsruct, work sharing
construct
= Shared(var_list)
» Specified variables are shared among threads.
= private(var_list)
« Specified variables replicated as a private variable
= Firstprivate(var_list)
= Same as private, but initialized by value before loop.
= lastprivate(var_list)

= Same as private, but the value after loop is updated by the value of
the last iteration.

= reduction(op:var_list)
= Specify the value of variables computed by reduction operation op.
= Private during execution of loop, and updated at the end of loop

Lecture on Programming Environment 37



Barrier directive

= Sync team by barrier synchronization

= Wait until all threads in the team reached to the barrier
point.

= Memory write operation to shared memory is completed
(flush) at the barrier point.

« Implicit barrier operation is performed at the end of
parallel region, work sharing construct without nowait

clause

#pragma omp barrier

Lecture on Programming Environment

38



MediaBench

» MPEG2 encoder by OpenMP.

rr!otlo_n predict P dc_t_ty;_)e putpict ————
estimation estimation

) calcSNR ——» itransform —— > iquantize «

[*loop through all macro-blocks of the picture*/ |
#pragma omp parallel private(i,j,myk)
{ .
#pragma omp for -
for (j=0; j<height2; j+=16)
{

for (i=0; i<width; i+=16) ¥
{

: |Oop bOdy : _

}
}

Lect}Jre on Programming Environment 39



Example of OpenMP program:laplace

= Explicit solver of Laplace equation

= Stencil operation: update value with 4-points of up/down/left/right.

=« Use array of “old” and “new”. Compute new by old and replace old
with new.
= Typical parallelization by domain decomposition

= At each iteration, compute residual

= OpenMP version: lap.c ‘

= Parallelize 3 loops

= OpenMP support only loop
parallelization of outer loop.

= For loop directive is orphan, in dynamic extent of parallel directive.

Lecture on Programming Environment

40




void lap_solve()
{
int x,y,K;
double sum;

#pragma omp parallel private(k,X,y)
{
for(k = 0; k < NITER; k++){
/* old <- new */
#pragma omp for
for(x = 1; X <= XSIZE; Xx++)
for(y = 1; y <= YSIZE; y++)
uulx]lyl = ulx1lyl;
/* update */
#pragma omp for
for(x = 1; X <= XSIZE; Xx++)
for(y = 1; y <= YSIZE; y++)
) ulx1lyl = (uux-1]Ly] + uulx+1]Ly] + uulxdly-11 + uulx][y+1]1)/4.0;
by

/* check sum */
sum = 0.0;
#pragma omp parallel for private(y) reduction(+:sum)
for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
sum += (UUIX]Lyl-ulx1LyD):
printf('sum = %g¥n',sum);

Lecture on Programming Environment

41



Update in OpenMP3.0

= The concept of “task” is introduced:
= An entity of thread created by Parallel construct and Task construct.
= Task Construct & Taskwait construct

= Interpretation of shared memory consistency in OpenMP
= Definition of Flush semantics

= Nested loop
= Collapse clauses

= Specify stack size of thread.
= constructor, destructor of private variables in C++

Lecture on Programming Environment

42



Example of Task Constructs

struct node {
struct node *left;
struct node *right;

};

voild postorder_traverse( struct node *p ) {

it (p->left)
#pragma omp task // p 1s FTirstprivate by default
postorder_traverse(p->left);

iIT (p->right)
#pragma omp task // p 1s FTirstprivate by default
postorder_ traverse(p->right);

#pragma omp taskwait

process(p);

Lecture on Programming Environment 43



What about performance?

= OpenMP really speedup my problem?!
= It depends on hardware and problem size/characteristics

= EsSp. problem sizes is an very important factor

= Trade off between overhead of parallelization and grain size of parallel
execution.

To understand performance, ...
= How to lock

= How to exploit cache

= Memory bandwidth

Lecture on Programming Environment 44



Some experience of OpenMP performance of
embedded multicore processors

= SMP multicore for embedded
= renesas: M32700
= ARM+NEC: MPCore
« Hitachi+renesas: RP1

= For comparison
= Intel: Core2Quad Q6600 (Desktop/server)

5 BiEF BWSH E2KF EBH? £ Z A+ Rt
“OpenMP #RW=HMFIRFI—9T705 S5 LIZKDS
$AA AT ILFaF7 IOy Y OEEE", SWoPP 2008

Lecture on Programming Environment 45



Renesas M32R (M32700)

M32R-II core x 2
= /-stage pipeline
= 32bit instruction (1ap 3 EIFFFIT+16bitan 5 (288 5 R FFFE TRl RE)
= No floating unit
= gl B DFEN/N ST 14T 5 (soft-float)

On-chip 512KB SRAM

= Not used in our experiment 4 cpu1 < ) Buscmuer\
ZAN Bus Arbiter DMAC
SDRAM controller S
I-Cache D-Cache {
IJT_ E n g I ne 8KB/2way 8KB/2way \
I-TLB. D-TL|‘3 Peripherals
M3T-32700 UT% 1%% anes nt”es :ICC_IcL)Jck Control >
—
CPU Core «GPIO

Debugging Interface — PLL
k <«—  Clock Divider /

46

Lecture on Programming Environment



M32700 development kit

Lt

-
-
S

47

Lecture on Programming Environment



ARM MPCore

ARM+NEC

= ARM MP11 core (ARM11 architecture) x 4

» ARMVEAR Stz ARMan 5t (32bit), Thumbidr %tz ~(16bit),
Jazelledi s EyMAIZER)

= 8-stage pipeline, 1 instruction issue

= L2 cache, 1MB,

Distributed
8way-set-assoc 4 istrbute
Controller
T >T, | T l/ Interrug
lines
Int t Int t Int t Int t
= CT11MPCore + T R T T
Rea|V|eW EmU|at|0n Interface Interface Interface Interface
Timer & Timer & Timer & Timer &
Ba Se boa rd §1E % watchdog watchdog watchdog watchdog
" DDR-SDRAM:/FD_7‘ MP11 MP11 MP11 MP11
f;&}ﬁmI/F[iFPGA[::}%ﬁ CPUO CPU1 CPU2 CPU3
beoed L SCOSHRIAUAS e U Cohetlengy
Instr & Data t—> -Contrpl Bus
64bit Bus
Snoop Control Unit (SCU)

Lecture on Programming Environment AXI 64bit Bus x 2 438
v N



MPCore development kit

s B

controller

Lecture on Programming Environment

49



RP1 prototype

s SH-X3 architecture, SH-4A core x 4

« 16bitar vk, 2an SRR FEITAIEE
= 8-stage pipeline

= Snoop Bus
s SHWYD ST 49D % 81T TERIE

= On chip memory... (not used)

Snoop bus

= Local on-chip memory
=« 155 F ILRAM (8Kbyte, 1clock)
« 7 —4 A OLRAM (8Kbyte, 1clock)
- URAM (128Kbyte, 1~#140v%)
= Shared memory(CSM, 128Kbyte)

Core 2

ILRAM

3K DTU

URAM 128K

Core 3

......
Controller
(SNC)

Lecture on Programming Environment

.~ DDR2-SDRAM

50




LY R
M32700

Comparison

ARM+NEC
MPCore

BR+ILARY X+
= v

Intel
Core2Quad

2

Core frequency 300MHz

Feq internal bus [\ gVA

Feq external bus W)\ilgr
cache(I+D) 2way 8K+8K

Line size 16byte

Main memory 32MB
SDRAM
100MHz

Lecture on Programming Environment

4
210MHz
210MHz
30MHz

4way
32K+32K

L2, iMB, 8way
32byte

256MB
DDR-SDRAM
30MHz

RP1

4

600MHz
300MHz
50MHz

4way 32K+32K

32byte

128MB
DDR2-600
300MHz

Q6600

2.4GHz

8way 32K+32K (L1)
16way 4M(237) x 2
(L2)

64byte

4GB
DDR2-800
400MHz

51



NAS parallel benchmark: IS, CG

M32700
3| MPCore

RP1
Core2Quad o

Speedup
N

1 2 3 4
Number of PUs

IS: Memory intensive,
perf. Affected by
memory bandwidth

Lecture on Programming Environment

M32700 .
MPCore

RP1

| Core2Quad — o

1 2 3 4

Number of PUs

CG: compute intensive

52



Susan smoothing . BlowFish (ECBE—F)

(X5 DEMKEZL=, error barTxX
- error bar: i KEEwH/IME. TR FEHIE

4|  M32700 | o] 4 [ M32700
MPCore MPCore
RP1 . 351 RP1
3 Core2Quad — o 3 Core2Quad -,
S S
g 2 25
&2 &
[ ] 2 |
151
11
11
1 2 3 4 1 2 3 4
Number of PUs Number of PUs

File processing included

Scalable performance Core2Quad LL#MMENFSERER

Lecture on Programming Environment 53



FFT

M32700 .,
MPCore

RP1

3t Core2Quad o

Speedup

Number of PUs

Too short execution (a few mills sec) in case
of Core2Quad => overhead too large

Lecture on Programming Environment

54



Programming Cost of parallelization by OpenMP

Parallelization by OpenMP
« Make parallel region large to reduce fork-join cost.
« Small modification from sequential

susan smoothing Directive 6 line added

Blowfish encoding  Directive 9 line added
12 line modified

FFT Directive 4 line added

Mpeg2enc Directive 5 line added
/ line modified

55

Lecture on Programming Environment



Programming for Multi-core processor by RPC

= RPC (remote procedure call)

= Technology to execute some procedures in different memory space (usually, on remote
computer)

= Abstraction as a client-server(caller-callee), and hide complicated communication and
protocol

= Interface definition is described in IDL (interface description language), and stub for
communication is generated automatically.

= Technologies used in various applications.
= SUN RPC - system programming

= CORBA (common object broker arch)

= GridRPC core
I
| COrc | (or DSP)
= RPC for multi-core processor Call
= Assign functions to cores
= Stright-forward abstraction for AMP program /@ Procedure
= “Call some function as a RPC”
= Also, it can be applied on SMP retu n
= It can be used for both shared memory

and distributed memory since it hide communication.

Lecture on Programming Environment 56



Mechanism of RPC

= Abstraction of client-server(caller-callee), hides detail protocol of
communication

» Interface is defined by IDL (interface description language), and generate
communication by IDL compiler.

= Stub — Called as a local function call and send argument/ recv results.
= Skeleton — Accept call request and call the function in remote side.

The definition of the interface is I[?L _ IDL compiler generate
Described in IDL file description Stub and skelton
/ \

/ \
/"| call N core
Cor-

Invoke and send argment I DSP)

X
P |
program stub — skeleton procedure

Send results
" return|

Lecture on Programming Environment o7



Multi-core processor programming
by Fujitsu Asynchronous RPC(ARPC)

Fujitsu proposed Asynchronous
RPC(ARPC) for Multi-core

processor programming

= Asynchronous = multiple RPC
requests can be executed in

LeCtU| AR S R |

parallel

Common memory region

foo_start(&handle, X, &P);

Y=foo_wait(&handle);

Inhibit access to P

=

Local memory region

move_start(&handle1,
&P_1, &P, size);
move_wait(&handle1);

Y=foo_wait(&handle2);
move_start(&handle1,

&P, &P_1, size);
move_wait(&handle1);

foo_start(&handle2, X, &P_1);

7

Core#0 |,

X,&P

Y

core #0 core #1 core #2
foo_start(X) start N
bar_start( copy F@) start

copy @

Y=foo_wait() foo()

Wait for Y return bar()

bar_wait(pL: copy Y return

| Core# Easy to port code

[ Corﬁmon memory fr»égion J

Core#0

X,&P_1

| Core#1

Common
memory region

~

copy

/

Local

D!

/

Iuylullllllllls _liVvIiIVII

A2 R AN

.

memory region

from sequential
program.

By hiding
communication by
RPC, portability is
improved for several
kinds of core incluing
DSP.

= reduction of cost

for development
58



Advanced multicore programming by RPC

= RPCis a good solution to use an original sequential program with small
modification cost for several kind of processors.(AMP&SMP, DSP)

= Directive-base programming environment has been proposed
= HMPP (hybrid multicore parallel programming)@INRIA
= StarSs @BSC

fFinclude «<stdio.h>
ginclude «<stdlib.h>

fpragma hmpp simple codelet, args[l].ic=ocut
woid gimplefunc (int n, flcat vl[n], flecat wZ[mn], float +3[n], flocat alpha)
' *
int i;
for (1 = 0 ; i= n ; i++) |
v1[i] = w2[i] * w3[i] + alpha;

} codelet / callsite
int main (int argec, char **argv) { directive set

unsigned int n = 400;

CPU HWA

fleat t1[400], t2[400], t3[400];
float alpha = 1.36;
unsigned int j, ssed = Z;
/* Initializaticn of input data*/
f ok & J

1 Application
data

fpragma hmpp simple callsite
simplefunc(n,tl,tZ,t3,alpha); Ramote ol [P1EM COres

v

printf ("%f %f (...} %f %f ‘n"™, tl1[0], t1[1l], tl[n-2], tl[n-1]);

return J;




Issues and agenda of programming environment
for embedded multi-core processsors

= No standard, yet.

= Embedded applications require several different kinds of configuration, so not
easy to apply standard way to develop software.

= Communication software for on-chip interconnect
= MCAPI (Multicore Communication API)?

= Standard (high-level) programming model and environment are prposed from
high-end computing
= ARPC ? OpenMP?
= Multi-core processors for embedded will be distributed or shared memoy?

= Real time processing and parallel processing

= Real-time scheduling with parallel task may be difficult (esp. in shared memory
processor)

= In real-time processing, parallel tasks needs multiple cores at a time.

= Thread allocation fits to configuration of cores (core affinity)

= Sched_setaffinity is available form Linx 2.6, but it is mainly for HPC, not for embedded
apps.
= Difficult debugging ...

Lecture on Programming Environment 60



