
GPGPU and Manycore Programming

M. Sato

University of Tsukuba

Overview

Why GPU

CUDA

OpenCL

OpenACC

MIC (Manycore

(OpenMP)

OpenMP 4.0 (offloading)

reference

NVIDIAのCUDAの情報 Learn More about CUDA - NVIDIA

 http://www.nvidia.co.jp/object/cuda_education_jp.html

 正式なマニュアルは、NVIDIA CUDA programming Guide

わかりやすいCUDAのスライド
 http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

CUDAのコード例
 http://tech.ckme.co.jp/cuda.shtml

OpenCL NVIDIAのページ
 http://www.nvidia.co.jp/object/cuda_opencl_jp.html

後藤弘茂のWeekly海外ニュース
 スケーラブルに展開するNVIDIAのG80アーキテクチャ（2007年4月16日）

http://pc.watch.impress.co.jp/docs/2007/0416/kaigai350.htm

 KhronosがGDCでGPUやCell B.E.をサポートするOpenCLのデモを公開（
2009年3月30日) http://pc.watch.impress.co.jp/docs/2009/0330/kaigai497.htm

GPU Computing

GPGPU - General-Purpose Graphic Processing Unit

 A technology to make use of GPU for general-purpose computing (scientific

applications)

CUDA （Compute Unified Device Architecture）

 Co-designed Hardware and Software to exploit computing power of NVIDIA

GPU for GP computing.

 (In other words), at the moment, in order to obtain full performance of

GPGPU, a program must be written in CUDA language.

It is attracting many people’s interest since GPU enables great

performance much more than that of CPU (even multi-core) in some

scientific fields.

Why GPGPU now?－－ price (cost-performance)!!!

Applications（From NVIDIA’s slides）

CPU vs. GPU

CPU

memory

GPGPU

Graphic

memory

PCIe

Connected

via PCIexpress

Computing performance Memory bandwidth

NVIDIA GPGPU’s architecture

Many multiprocessor in a chip

 eight Scalar Processor (SP) cores,

 two special function units for transcendentals

 a multithreaded instruction unit

 on-chip shared Memory

SIMT (single-instruction, multiple-thread).

 The multiprocessor maps each thread to one scalar

processor core, and each scalar thread executes

independently with its own instruction address and

register state.

 creates, manages, schedules, and executes threads in

groups of 32 parallel threads called warps.

Complex memory hierarchy

 Device Memory (Global Memory)

 Shared Memory

 Constant Cache

 Texture Cache

CUDA (Compute Unified Device Architecture)

C programming language on GPUs

Requires no knowledge of graphics APIs or GPU
programming

Access to native instructions and memory

Easy to get started and to get real performance benefit

Designed and developed by NVIDIA

Requires an NVIDIA GPU (GeForce 8xxx/Tesla/Quadro)

Stable, available (for free), documented and supported

For both Windows and Linux

CUDA Programming model (1/2)

GPU is programmed as a compute device working as co-processor from
CPU(host).

 Codes for data-parallel, compute intensive part are offloaded as functions to
the device

 Offload hot-spot in the program which is frequently executed on the same data

 For example, data-parallel loop on the same data

 Call “kernel” a code of the function compiled as a function for the device

 Kernel is executed by multiple threads of device.

 Only one kernel is executed on the device at a time.

 Host (CPU) and device(GPU) has its owns memory, host memory and device
memory

 Data is copied between both memory.

CPU

memory

GPGPU

Graphic

memory

PCIe

CUDA Programming model (2/2)

computational Grid is composed of

multiple thread blocks

thread block includes multiple

threads

Each thread executes kernel

 A function executed by each thread

called “kernel”

 Kernel can be thought as one

iteration in parallel loop

computational Grid and block can

have 1,2,3 dimension

The reserved variable, blockID and

threadID have ID of threads.

Example: Element-wise Matrix Add

void add_matrix

(float* a, float* b, float* c, int N) {

int index;

for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j) {

index = i + j*N;

c[index] = a[index] + b[index];

}

}

int main() {

add_matrix(a, b, c, N);

}

__global__ add_matrix

(float* a, float* b, float* c, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if (i < N && j < N)

c[index] = a[index] + b[index];

}

int main() {

dim3 dimBlock(blocksize, blocksize);

dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);

add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

CPU program

The nested for-
loops are
replaced with an
implicit grid

CUDA program

How to be executed

SM (Streaming
Multiprocessor) execute
blocks in SIMD (single
instruction/multiple data)。

SM consists of 8 processors

An example of GPGPU configuration

Tesla C1060
コア数: 240コア
プロセッサ周波数: 1.3GHz

搭載メモリ: 4GB
単精度浮動小数点演算性能: 933GFlops (ピーク)
倍精度浮動小数点演算性能: 78GFlops (ピーク)
メモリ帯域: 102GB/sec

標準電力消費量: 187.8W

浮動小数点演算: IEEE 754 単精度/倍精度
ホスト接続: PCI Express x16 (PCI-E2.0対応)

Invoke (Launching) Kernel

Host processor invoke the execution of kernel in this form

similar to function call:

kernel<<<dim3 grid, dim3 block, shmem_size>>>(…)

Execution Configuation (“<<< >>>”)

 Dimension of computational grid : x and y

 Dimension of thread block: x、y、z

dim3 grid(16 16);

dim3 block(16,16);

kernel<<<grid, block>>>(...);

kernel<<<32, 512>>>(...);

CUDA kernel and thread

Parallel part of applications are executed as a kernel of

CUDA on the device

 One kernel is executed at a time

 Many threads execute kernel function in parallel.

Difference between CUDA thread and CPU thread

 CUDA thread is a very light-weight thread

 Overhead of thread creation is very small

 Thread switching is also very fast since it is supported by hardware.

 CUDA exploit its performance and efficient execution by a thousands

of threads.

 Conventional Multicore supports only a few threads (by software)

Execution of

CPU Code and

Kernel code by

Device

Grid, Block, thread and

Memory hierarchy

Thread can access local
memory (per-thread)

Thread can access “shared
memory” on chip, which is
attached for each thread
block (SM).

Thread in Computational
Grid access and share a
global memory.

Memory management (1/2)

CPU and GPU have different memory space.

Hosts（CPU）manages device (GPU）memory

Allocation and Deallocation of GPU memory
 cudaMalloc(void ** pointer, size_t nbytes)

 cudaMemset(void * pointer, int value, size_t

count)

 cudaFree(void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int *d_a = 0;

cudaMalloc((void**)&d_a nbytes);

cudaMemset(d_a, 0, nbytes);

cudaFree(d_a);

Memory management (2/2)

Data copy operation between CPU and device
 cudaMemcpy(void *dst, void *src, size_t

nbytes, enum cudaMemcpyKind direction);

 Direction specifies how to copy from src to dst , see below

 Block a caller of CPU thread (execution) until the memory transfer

completes.

 Copy operation starts after previous CUDA calls.

 enum cudaMemcpyKind

 cudaMemcpyHostToDevice

 cudaMemcpyDeviceToHost

 cudaMemcpyDeviceToDevice

Executing Code on the GPU

Kernels are C functions with some restrictions

 Can only access GPU memory

 Must have void return type

 No variable number of arguments (“varargs”)

 Not recursive

 No static variables

 Function arguments

Function arguments automatically copied from CPU
to GPU memory

Function Qualifiers

__global__ : invoked from within host (CPU) code,

cannot be called from device (GPU) code must return void

__device__ : called from other GPU functions,

cannot be called from host (CPU) code

__host__ : can only be executed by CPU, called from host

__host__ and __device__ can be combined.

 Sample use: overloading operators

 Compiler will generate both CPU and GPU code

CUDA Built-in Device Variables

__global__ and __device__ functions have access to
these automatically defined variables

 dim3 gridDim;

 Dimensions of the grid in blocks (at most 2D)

 dim3 blockDim;

 Dimensions of the block in threads

 dim3 blockIdx;

 Block index within the grid

 dim3 threadIdx;

 Thread index within the block

A simple example

__global__ void minimal(int* d_a)

{

*d_a = 13;

}

__global__ void assign(int* d_a, int value)

{

int idx = blockDim.x * blockIdx.x + threadIdx.x;

d_a[idx] = value;

}

A simple example

__global__ void assign2D(int* d_a, int w, int h, int value)

{

int iy = blockDim.y * blockIdx.y + threadIdx.y;

int ix = blockDim.x * blockIdx.x + threadIdx.x;

int idx = iy * w + ix;

d_a[idx] = value;

}

...

assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

Example code to increment array elements

void inc_cpu(int*a, intN)

{

int idx;

for (idx =0;idx<N;idx++)

a[idx]=a[idx] + 1;

}

voidmain()

{

...

inc_cpu(a, N);

}

__global__ void

inc_gpu(int*a_d, intN){

int idx = blockIdx.x* blockDim.x

+threadIdx.x;

if (idx < N)

a_d[idx] = a_d[idx] + 1;

}

void main()

{

…

dim3dimBlock (blocksize);

dim3dimGrid(ceil(N/

(float)blocksize));

inc_gpu<<<dimGrid,

dimBlock>>>(a_d, N);

}

CPU code
CUDA codes

Example (host-side program)

// allocate host memory

int numBytes = N * sizeof(float)

float* h_A = (float*) malloc(numBytes);

// allocate device memory

// float* d_A = 0;

cudaMalloc((void**)&d_A, numbytes);

// Copy data from host to device

cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// Execute kernel

increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy back data from device to host

cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// Free device memory

cudaFree(d_A);

int main() {

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for (int i = 0; i < N*N; ++i) {

a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc((void**)&ad, size);

cudaMalloc((void**)&bd, size);

cudaMalloc((void**)&cd, size);

cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice);

dim3 dimBlock(blocksize, blocksize);

dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);

add_matrix<<<dimGrid, dimBlock>>>(ad, bd, cd, N);

cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);

cudaFree(ad); cudaFree(bd); cudaFree(cd);

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

CUDA Qualifiers for variable

__device__

 Allocated in device global memory（Large, high-latency, no cache）

 Allocated by cudaMallocで（__device__ is default）

 Access by every thread.

 extent: during execution of application

__shared__

 Stored in on-chip “shared memory” (SRAM, low latency)

 Allocated by execution configuration or at compile time

 Accessible by all threads in the same thread block

Unqualified variables
 Scalars and built-in vector types are stored in registers

 Arrays may be in registers or local memory (registers are not addressable)

How to use/specify shared memory

__global__ void kernel(…)

{

…

__shared__ float sData[256];

…

}

int main(void)

{

…

kernel<<<nBlocks,blockSize>>>(…);

}

__global__ void kernel(…)

{

…

extern __shared__ float sData[];

…

}

int main(void)

{

…

smBytes =

blockSize*sizeof(float);

kernel<<<nBlocks, blockSize,

smBytes>>>(…);

…

}

Compile time Invocation time

GPU Thread Synchronization

void __syncthreads();

 Synchronizes all threads in a block

 Generates barrier synchronization instruction

 No thread can pass this barrier until all threads in the block reach it

 Used to avoid RAW / WAR / WAW hazards when accessing shared

memory

Allowed in conditional code only if the conditional is uniform

across the entire thread block

Synchronization between blocks is not supported

 Done by host-side

Compiler

C Source program with CUDA is compiled by

nvcc.

Nvcc is a ccomile-driver:

 Execute required tools and udacc、g++、cl

Nvcc generates following codes:

 C object code（CPU code）

 PTX code for GPU

 Glue code to call GPU from CPU

Objects required to execute CUDA program

 CUDA core library（cuda）

 CUDA runtime library（cudart）

Optimization of GPU Programming

Maximize parallel using GPGPU

Optimize/ avoid memory access to global memory

 Rather than storing data, re-computation may be cheaper in some cases

 Coalescing memory access

 Use cache in recent NVIDIA GPGPU

Optimize/avoid communication between CPU(host) and GPU

(Device)

 Communication through PCI Express is expensive

 Re-computing (redundant computing) may be cheaper than

communications.

Optimization of Memory access

Coalescing global memory access

 Combine memory access to contiguous area

Make use of shared memory

 Much faster than global memory (several x 100 times faster)
 On-chip Memory

 Low latency

 Threads in block share the memory.

 All threads can share the data computed by other threads.

 To load shared memory from global memory, coalesce the memory
and use them

Use cache (shared memory) as in conventional CPU

 Recent GPGPU has a cache at the same level of shared memory

How to make use of different kinds of memory

Constant memory:

 Quite small, < 20K

 As fast as register access if all threads in a warp access the same
location

Texture memory:

 Spatially cached

 Optimized for 2D locality

 Neighboring threads should read neighboring addresses

 No need to think about coalescing

Constraint:

 These memories can only be updated from the CPU

Access to Global memory

4 cycles to issue on memory fetch

but 400-600 cycles of latency

 The equivalent of 100 MADs

Likely to be a performance bottleneck

Order of magnitude speedups possible

 Coalesce memory access （結合メモリアクセス）

Use shared memory to re-order non-coalesced
addressing （共有メモリの利用）

Coalesced Memory Access

To exploit performance, global memory access should be

coalesced (combined).

A half warp（16t hread）memory access is colaesced.

Contiguous memory access

 64 bytes – each tread reads a single word（int、floatなど）

 128bytes- each tread reads a double word （int2、float2など）

 256バイト- each tread reads a quad word （int4、float4など）

 Float3 is not aligned！！！

その他の制限

 The start address of the contiguous area (Warp base address (WBA)) must be

aligned the boundary of multiple of 数16*sizeof(type)

 The k-th thread in half warp must access the k-th element of the block

 All threads in half warp may not be access.

Coalesced Memory Access

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Case not coalesced

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Example of memory optimization：
Matrix Transpose

__global__ void

transpose_naive(float *out, float *in, int w, int h) {

unsigned int xIdx = blockDim.x * blockIdx.x + threadIdx.x;

unsigned int yIdx = blockDim.y * blockIdx.y + threadIdx.y;

if (xIdx < w && yIdx < h) {

unsigned int idx_in = xIdx + w * yIdx;

unsigned int idx_out = yIdx + h * xIdx;

out[idx_out] = in[idx_in];

}

}

read側(in)は、結合されるが、
write側(out)側は結合されない。

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Optimization of memory access

By blocking, fetch block of data from shared memory, and
store back the block of data to shared memory.

The above example, thread block of 16 x 16 execute.

Matrix is read and write for each 16 x 16 block

When write back, write access is coalesced by contiguous
memory address.

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Optimized code (Coaleased)

__global__ void

transpose(float *out, float *in, int w, int h) {

__shared__ float block[BLOCK_DIM*BLOCK_DIM];

unsigned int xBlock = blockDim.x * blockIdx.x;

unsigned int yBlock = blockDim.y * blockIdx.y;

unsigned int xIndex = xBlock + threadIdx.x;

unsigned int yIndex = yBlock + threadIdx.y;

unsigned int index_out, index_transpose;

if (xIndex < width && yIndex < height) {

unsigned int index_in = width * yIndex + xIndex;

unsigned int index_block = threadIdx.y * BLOCK_DIM + threadIdx.x;

block[index_block] = in[index_in];

index_transpose = threadIdx.x * BLOCK_DIM + threadIdx.y;

index_out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;

}

__synchthreads();

if (xIndex < width && yIndex < height) {

out[index_out] = block[index_transpose];

}

}

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Example results

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Optimization of Host-device communication

The bandwidth between host and device is very narrow

compared with the bandwidth of device memory.

 Peak bandwidth 4GB/s （PCIe x16 1.0） vs. 76 GB/s （Tesla C870）

Minimize the communication between host-device

 Intermediate results must be kept in device memory to avoid

communications

Grouping communication

 Large chunk of communication is more efficient than several small chunk

of communications

Asynchronous communication

 Make use of stream

 cudaMemcpyAsync(dst, src, size, direction, 0);

Host Synchronization

All kernel launches are asynchronous

 control returns to CPU immediately

 kernel executes after all previous CUDA calls have completed

cudaMemcpy() is synchronous

 control returns to CPU after copy complete

 copy starts after all previous CUDA calls have completed

cudaThreadSynchronize()

 blocks until all previous CUDA calls complete

OpenCL

Programming language for general purpose GPU computing.

While C for CUDA is proprietary by NVIDIA, OpenCL is

targeting cross-platform environments.

 Only only for GPU such as NVIDIA and AMD(ATI), but also for

conventional multicore CPU and many-core, such as Cell Broadband

Engine(Cell B.E) and Intel MIC

The point is that it targets for data parallel program by GPU

and also for task-parallel of multi-core.

What is different from CUDA?：Similar programming mode

for kernel, but different in execution environment.

Kernel and Memory model

xxx

Execution Evnvironment of OpenCL

現状のC for CUDAとOpenCLでは、位置付けがずれる。
OpenCLがミドルウェアの土台としての色彩が濃いローレベル
APIであるのに対して、C for CUDAの方が抽象化の度合いが
高くアプリケーションを書きやすい

http://pc.watch.impress.co.jp/docs/2009/0330/kaigai497.htm

OpenACC

A spin-off activity from OpenMP ARB for
supporting accelerators such as GPGPU and MIC

NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

Directive to specify the code offloaded to GPU.

A simple example

#define N 1024

int main(){

int i;

int a[N], b[N],c[N];

#pragma acc data copyin(a,b) copyout(c)

{

#pragma acc parallel

{

#pragma acc loop

for(i = 0; i < N; i++){

c[i] = a[i] + b[i];

}

}

}

}

direction copy copyin copyout

Host->device ○ ○

Device->Host ○ ○

device
host

copy a,b

copy c

A simple example

#define N 1024

int main(){

int i;

int a[N], b[N],c[N];

#pragma acc data copyin(a,b) copyout(c)

{

#pragma acc parallel

{

#pragma acc loop

for(i = 0; i < N; i++){

c[i] = a[i] + b[i];

}

}

}

}

execute iterations

like CUDA kernel

Matrix Multiply in OpenACC

#define N 1024

void main(void)

{

double a[N][N], b[N][N], c[N][N];

int i,j;

// ... setup data ...

#pragma acc parallel loop copyin(a, b) copyout(c)

for(i = 0; i < N; i++){

#pragma acc loop

for(j = 0; j < N; j++){

int k;

double sum = 0.0;

for(k = 0; k < N; k++){

sum += a[i][k] * b[k][j];

}

c[i][j] = sum;

}

}

}

Stencil Code (Laplace Solver) in OpenACC
#define XSIZE 1024

#define YSIZE 1024

#define ITER 100

int main(void){

int x, y, iter;

double u[XSIZE][YSIZE], uu[XSIZE][YSIZE];

// setup ...

#pragma acc data copy(u, uu)

{

for(iter = 0; iter < ITER; iter++){

//old <- new

#pragma acc parallel loop

for(x = 1; x < XSIZE-1; x++){

#pragma acc loop

for(y = 1; y < YSIZE-1; y++)

uu[x][y] = u[x][y];

}

//update

#pragma acc parallel loop

for(x = 1; x < XSIZE-1; x++){

#pragma acc loop

for(y = 1; y < YSIZE-1; y++)

u[x][y] = (uu[x-1][y] + uu[x+1][y]

+ uu[x][y-1] + uu[x][y+1]) / 4.0;

}}

} //acc data end

}

Performance of OpenACC code

0

20

40

60

80

100

120

1K 2K 3K 4K 5K 6K 7K 8K

cpu1core

cray(128)

matrix multiplyexec time

size

0

20

40

60

80

100

120

1K 2K 3K 4K 5K 6K 7K 8K

cpu1core

cray(128)

Performance of OpenACC code

laplaceexec time

size

Xeon Phi (Intel MIC)

Intel Manycore architecture

released as a new lineup, Xeon Phi in Jan 2013

Many core (> 60) using Intel IA architecture.

http://www.google.co.jp/url?sa=i&rct=j&q=Xeon+Phi&source=images&cd=&cad=rja&docid=KZV9UbYrdiOVzM&tbnid=GlhifIeeHLziBM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.anandtech.com%2Fshow%2F6265%2Fintels-xeon-phi-in-10-petaflops-supercomputer&ei=GislUeCBAY2nkAX5roGwCw&bvm=bv.42661473,d.dGI&psig=AFQjCNG_CDkJyy6IOkNE7xQxk_Eq7JEZEg&ust=1361476759366337
http://www.google.co.jp/url?sa=i&rct=j&q=Xeon+Phi&source=images&cd=&cad=rja&docid=KZV9UbYrdiOVzM&tbnid=GlhifIeeHLziBM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.anandtech.com%2Fshow%2F6265%2Fintels-xeon-phi-in-10-petaflops-supercomputer&ei=GislUeCBAY2nkAX5roGwCw&bvm=bv.42661473,d.dGI&psig=AFQjCNG_CDkJyy6IOkNE7xQxk_Eq7JEZEg&ust=1361476759366337

Architecture of Xeon Phi

PCIe

Logic

x16

Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD

Core

L2

Core

L2

Core

L2

Core

L2

TDTDTDTD

GDDR MC

GDDR MC

GDDR MC

GDDR MC

MC 32x2

MC 32x2

MC 32x2

MC 32x2

Xeon Phi Core architecture

L2
コントロール

L1 TLB
および 32KB
命令キャッシュ

T0 IP

4 スレッド
インオーダー

TLB ミス

命令キャッシュミス

デコード μコード

16B/サイクル (2 IPC)

パイプ 0

X87 RF スカラー RF

X87 ALU 0 ALU 1

VPU RF

VPU
512b SIMD

パイプ 1

TLB ミス
ハンドラー

L2 TLB

T1 IP

T2 IP

T3 IP

L1 TLB および
32KB データ・キャッシュ

データキャッシュ ミス

TLB ミス

ダイ上の
インターコネクトへ

ハードウェア・
プリフェッチ

インテル® Xeon Phi™
コプロセッサー・コア

512KB
L2

キャッシュ

Xeon Phi Server

Current Xeon Phi
(Knight Corner) used as

a Co-processor

ホスト CPU

Xeonホスト

QPI

Xeon Phi

Xeon Phi コプロセッサー

GDDR5

IBA

DDR3

DDR3
ホスト CPU

PCI-Ex

Disk

QPI

Linux

Linux

Comparison Xeon(host) and Xeon Phi

factors Xeon Xeon Phi

Clock Freq. 2.6 GHz 1.1GHz

Length of Vector 4 8

Peak DP perf /Core 20.8GFLOPS 17.6GFLOPS

Peak DP Scalar Perf/Core 5.2GFLOPS 1.1(0.55)GFLOPS

Number of Core 8 61

Peak DP perf. of Chip 332GFLOPS 1073GFLOPS

Cache size / core 20MB 512KB

Number of Threads /Core 2 4

Memory Freq. 1600MHz 2750MHz

Size of Main Memory 32GB 8GB

Peak Memory Bandwidth 102.4GBS 350GBS

61

Programming model

offload model: hybrid execution of host and Phi by
specifying a region to off-load to Phi

Native model: execution by only Phi (note MPI can be
used to communicate between host-Phi and Phi-Phi)

OpenMP 4.0

Released July 2013

 http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

 A document of examples is expected to release soon

Changes from 3.1 to 4.0 (Appendix E.1):

 Accelerator: 2.9

 SIMD extensions: 2.8

 Places and thread affinity: 2.5.2, 4.5

 Taskgroup and dependent tasks: 2.12.5, 2.11

 Error handling: 2.13

 User-defined reductions: 2.15

 Sequentially consistent atomics: 2.12.6

 Fortran 2003 support

63
slide by Yonghong@UH

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Accelerator (2.9): offloading

Execution Model: Offload data

and code to accelerator

target construct creates tasks to

be executed by devices

Aims to work with wide variety

of accs

 GPGPUs, MIC, DSP, FPGA, etc

 A target could be even a remote

node, intentionally

64

Main
Memory

Application
data

target

Application
data

acc. cores

Copy in
remote

data

Copy out
remote

data

Tasks
offloaded

to
accelerator

#pragma omp target

{

/* it is like a new task

* executed on a remote device */

{

slide by Yonghong@UH

Accelerator: explicit data mapping

Relatively small number of
truly shared memory
accelerators so far

Require the user to
explicitly map data to and
from the device memory

Use array region

65

long a = 0x858;

long b = 0;

int anArray[100]

#pragma omp target data map(to:a) ¥¥

map(tofrom:b,anArray[0:64])

{

/* a, b and anArray are mapped

* to the device */

/* work here */

}

/* b and anArray are mapped

* back to the host */

slide by Yonghong@UH

Accelerator: hierarchical parallelism

Organize massive number of threads

 teams of threads, e.g. map to CUDA grid/block

Distribute loops over teams

66

#pragma omp target

#pragma omp teams num_teams(2)

num_threads(8)

{

//-- creates a “league” of teams

//-- only local barriers permitted

#pragma omp distribute

for (int i=0; i<N; i++) {

}

}slide by Yonghong@UH

target and map examples

67slide by Yonghong@UH

Final remarks

GPGPU is a good solution for apps which can be parallelized for GPU.

 It can be very good esp. when the app fits into one GPU.

 If the apps needs more than one GPU, the cost of communication will kill

performance.

Programming in CUDA is still difficult ...

 Performance tuning, memory layout ...

 OpenACC, and OpenMP 4.0, will help you!

Manycore (Xeon Phi) is emerging!

 Still offload model ... like GPU

For large scale computing, ... we will need multiple GPUs or MIC

 Hardware support for communication between GPU/MIC

 AND, good programming environment

