Lecture on Programming Environment

GPGPU and Manycore Programming

M. Sato

University of Tsukuba

ST, Envirzonment

Lecture on Programming

Overview

- Why GPU
- CUDA

- OpenCL
- OpenACC

- MIC (Manycore
- (OpenMP)
- OpenMP 4.0 (offloading)

Programming Environment

reference

NVIDIAOCUDADTEER Learn More about CUDA - NVIDIA

— http://'www.nvidia.co.jp/object/cuda_education_jp.html
—- EXGE<w=a7JLIE. NVIDIA CUDA programming Guide

HHYPFULCUDADRSA K
— http://www.sintef.no/upload/IKT/9011/SimQOslo/eVITA/2008/seland.pdf

CUDA® a— K4
— http://tech.ckme.co.jp/cuda.shtml

OpenCL NVIDIAQR—
— http://www.nvidia.co.jp/object/cuda_opencl_jp.htmi

%R E D WeeklyioHb =1 —X
- R —5JVIZERT ANVIDIADGSO7—FFH F+ (200754A16R)
http://pc.watch.impress.co.jp/docs/2007/0416/kaigai350.htm

— KhronoshGDC TGPUCell B.E.ZHHR— T 50penCLOTEZ LB (
200953 A 30H) http://pc.watch.impress.co.jp/docs/2009/0330/kaigai497.htm

ing Environment

GPU Computing

Proge

GPGPU - General-Purpose Graphic Processing Unit

— A technology to make use of GPU for general-purpose computing (scientific
applications)

CUDA (Compute Unified Device Architecture)

— Co-designed Hardware and Software to exploit computing power of NVIDIA
GPU for GP computing.

— (In other words), at the moment, in order to obtain full performance of
GPGPU, a program must be written in CUDA language.

It is attracting many people’s interest since GPU enables great
performance much more than that of CPU (even multi-core) in some
scientific fields.

Why GPGPU now?— — price (cost-performance)!!!

Programming Environment

Applications (From NVIDIA’s slides)

146X 17X 100X

BHRAEHOBREBDI2 : s =1, Al = o
577‘{7@?&%&. Maﬂabf@ﬁff/ﬁm/\lb BEW%E%L%HéNﬁiﬁﬁ

149X

T by . AT 3D HALIBORET J|UI VBB VEEFES
ATMAF R IATIER ILDEFZaL—3Yy RAROEFLZCmatchXXEHEBE

Environment

CPU vs. GPU

CPU GPGPU
Connected
PCIe via PCIexpress
Graphic
memory
memory
Computing performance GT200 Memory bandwidth
fe W DA G 120
750 Ultra Ultra
& G80 100 —
§ GSOf,//
(MR &
A a1 80 ‘,/
¢ G70 / /
50 NVIE NV4D . 3.0 GH:z erig-t?wn Bm:;fth 60 GT71 ‘)‘,./
o & = &
Jan Jun Apr Jun Mar Nov May Jun 40 NV40 7
2003 2004 2005 2006 2007 2008 / Harpertown
» Woodcrest
0 NVEo i EE
GT200 = GeForce GTX 260 G71 = GeForce 7900 GTX MNW35 = GeForce FX 5950 Ultra v Jorthwood _ £< —R
@92 = GeForce 9800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800 . 9

GBO = GeForce B800 GTX

MNV40 = GeForce &300 Ukra

2004 2005 2006 2007

Envizonment

NVIDIA GPGPU’s architecture

Many multiprocessor in a chip

eight Scalar Processor (SP) cores,

two special function units for transcendentals
a multithreaded instruction unit

on-chip shared Memory

SIMT (single-instruction, multiple-thread).

The multiprocessor maps each thread to one scalar
processor core, and each scalar thread executes
independently with its own instruction address and
register state.

creates, manages, schedules, and executes threads in
groups of 32 parallel threads called warps.

Complex memory hierarchy

Device Memory (Global Memory)
Shared Memory

Constant Cache

Texture Cache

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Processor 1 Processor 2 | *** | Processor M

Instruction
Unit

Environment

QINMING

CUDA (Compute Unified Device Architecture)

C programming language on GPUs

Requires no knowledge of graphics APIs or GPU
programming

- Access to native instructions and memory
Easy to get started and to get real performance benefit
Designed and developed by NVIDIA
Requires an NVIDIA GPU (GeForce 8xxx/Tesla/Quadro)
Stable, available (for free), documented and supported
For both Windows and Linux

Programming Environment

CUDA Programming model (1/2)

GPU is programmed as a compute device working as co-processor from
CPU(host).

— Codes for data-parallel, compute intensive part are offloaded as functions to
the device

— Offload hot-spot in the program which is frequently executed on the same data
= For example, data-parallel loop on the same data

— Call “kernel” a code of the function compiled as a function for the device

— Kernel is executed by multiple threads of device.
= Only one kernel is executed on the device at a time.

— Host (CPU) and device(GPU) has its owns memory, host memory and device

memory
H GPGPU

— Data is copied between both memory.
CPU
:I::E: PCIe :I::I:

Graphic

memory B

Lectuze Programming Envizonment

CUDA Programming model (2/2)

computational Grid is composed of
multiple thread blocks

thread block includes multiple
threads
Each thread executes kernel

— A function executed by each thread
called “kernel”

— Kernel can be thought as one
iteration in parallel loop

computational Grid and block can
have 1,2,3 dimension

The reserved variable, blockID and
threadlD have ID of threads.

Grid

Block (0, 0) Block (1, 0) | Block (2, 0)

Block (0, 1)~ Block (1, 1) Block (2, 1)

Block (1, 1)

Environment

Example: Element-wise Matrix Add

void add matrix
(float* a, float* b,
int index;

for (int 1 = 0
for (int j = 0;
index = 1 + J*N;
c[index] = a[index]
}
}
int main() {

add matrix(a, b,

}

Cy

CPU program

The nested for—
loops are
replaced with an
implicit grid

; 1 < N;
j < N; ++3) A

float* c,

++1)

int N) {

+ b[index];

CUDA program

N);

——

__global add matrix

(float* a, float* b, float* ¢, int N) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + J*N;
if (1 <N && jJ < N)
cl[index] = a[index] + b[index];

}

int main () {
dim3 dimBlock (blocksize,
dim3 dimGrid(N/dimBlock.x,
add matrix<<<dimGrid, dimBlock>>>(a, b,

blocksize);
N/dimBlock.y)
c, N
}

) g

Programming

Envizonment

How to be executed

SM (Streaming
Multiprocessor) execute
blocks in SIMD (single

Instruction/multiple data),

SM consists of 8 processors

Kernel Grid
v v
Device with 2 SMs Device with 4 SMs
SMO0 SM1 SM 0O SM1 SM 2 SM 3

Programming Environment

An example of GPGPU configuration
102) —X T —FTOFv =

nvibDiA

® 240EDRLYETObEYH B —RILALYRE LR

® JEOTIILFTOEVH . FhEANKRDI=VFERER
® sEORLYFTOEYY
® EBEomEL=Vr
® vk DIREAEY

< IJILFOotvH

AbwkFotuy

Environment

Number of Compute
Multiprocessors | Capability

(1 Multiprocessor
= B Processors)

GeForce GTX 295 2%30 1.3
GeForce GTX 285, GTX 280 30 1.3
GeForce GTX 260 24
GeForce 9800 GX2 2x16 T:; la C71 060
- | : 2403
GeForce GTS 250, GTS 150, 9800 GTX, 16 F OB RS 1.3CHS
9800 GTX+, 8800 GTS 512 s AT 4GH
GeForce 8800 Ultra, 8800 GTX 16 B BRI/ NS EEMAE: 933GFlops (E—%)
GeForce 9800 GT, 8800 GT, GTX 280M, 14 EEEZS/NHREENEE: 78GFlops (E—7)
9800M GTX IEV I : 102GB/sec
GeForce GT 130, 9600 GSO, 8800 GS, 12 BEEHHER: 187.8W
8800M GTX, GTX 260M, 9800M GT BE/NNAES: IEEE 754 BHEE/EREE
- - e - e e RAMESH : PCI Express x16 (PCI-E2.0%)
Tesla S1070 4x30 1.3
(Tesla C1060 > 30 1.3
Tesla S870 4x16 1.0
Tesla D&70 2x16 1.0
Tesla C&70 16 1.0
Quadro Plex 2200 D2 2%30 1.3
Quadro Plex 2100 D4 4x%14 1.1
Quadro Plex 2100 Model 54 4%16 1.0

Programming Environment

Invoke (Launching) Kernel

Host processor invoke the execution of kernel in this form
similar to function call:

kernel<<<dim3 grid, dim3 block, shmem size>>>(..)

Execution Configuation (“<<<>>>%)
— Dimension of computational grid : x and y
— Dimension of thread block: X, y. z

dim3 grid (16 16);

dim3 block (16,16) ;
kernel<<<grid, block>>>(...);
kernel<<<32, 512>>>(...);

CUDA kernel and thread

amming Envizonment

Parallel part of applications are executed as a kernel of
CUDA on the device

— One kernel is executed at a time

— Many threads execute kernel function in parallel.

Difference between CUDA thread and CPU thread

— CUDA thread is a very light-weight thread
= Qverhead of thread creation is very small
» Thread switching is also very fast since it is supported by hardware.

— CUDA exploit its performance and efficient execution by a thousands
of threads.

= Conventional Multicore supports only a few threads (by software)

Lecture on Programmine Enwironment

Execution of
CPU Code and
Kernel code by
Device

C Program
Sequential
Execution

Serial code

Parallel kernel

KernelQ<<<>>> ()

Serial code

Parallel kernel

Kernell<J<<>>»> ()

Host

Device

Grid 0

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Host

Device

Grid 1

Block (0, O)

Block (0, 1)

Block (0, 2)

Block (1, 0)

Block (1, 1)

Block (1, 2)

Grid, Block, thread and
Memory hierarchy

amming Envizonment

Thread

_ _ Per-thread local
N i memory

Thread can access local
memory (per-th read) Thread Block |

< » Per-block shared
< > memory
) .

Thread can access “shared
memory” on chip, which is Grid 0

attaChed for eaCh th r‘ead Block (0, 0) | Block (1,0) | Block (2, 0)

block (SM).

Block (0, 1) | Block (1, 1) | Block (2, 1)
Thread in Computational o
Grid access and share a Block (0,0) | Block (1, 0)

global memory.

Block (0, 1) Block (1, 1)
gggg%

Block (0, 2) Block (1, 2)

Programming Environment

Memory management (1/2)

CPU and GPU have different memory space.
Hosts (CPU) manages device (GPU) memory

Allocation and Deallocation of GPU memory

— cudaMalloc (void ** pointer, size t nbytes)

— cudaMemset (void * pointer, int value, size t
count)

— cudaFree (void* pointer)

int n = 1024;

int nbytes = 1024*sizeof (int) ;

int *d a = 0;

cudaMalloc((void**)&d a nbytes);
cudaMemset(d a, 0, nbytes);
cudaFree (d a);

Programming Environment

Memory management (2/2)

- Data copy operation between CPU and device

— cudaMemcpy (void *dst, void *src, size t
nbytes, enum cudaMemcpyKind direction) ;

» Direction specifies how to copy from src to dst, see below

» Block a caller of CPU thread (execution) until the memory transfer
completes.
= Copy operation starts after previous CUDA calls.

— enum cudaMemcpyKind
= cudaMemcpyHostToDevice
= cudaMemcpyDeviceToHost
= cudaMemcpyDeviceToDevice

Environment

Executing Code on the GPU

QINMING

Kernels are C functions with some restrictions
— Can only access GPU memory

— Must have void return type

— No variable number of arguments (“varargs)

— Not recursive

— No static variables

— Function arguments

Function arguments automatically copied from CPU
to GPU memory

Environment

QINMING

Function Qualifiers

__global_ :invoked from within host (CPU) code,

cannot be called from device (GPU) code must return void
device : called from other GPU functions,

cannot be called from host (CPU) code
__host___:canonly be executed by CPU, called from host

__host and device can be combined.

— Sample use: overloading operators
— Compiler will generate both CPU and GPU code

Lecture on Progr

CUDA Built-in Device Variables

amming Envizonment

__global and _ device _ functions have access to
these automatically defined variables

— dim3 gridDim;
= Dimensions of the grid in blocks (at most 2D)
— dim3 blockDim;
*= Dimensions of the block in threads
— dim3 blockIdx;
» Block index within the grid
— dim3 threadIdx;
» Thread index within the block

Programming Environment

A simple example

__global void minimal(int* d a)
{

*d a = 13;
}

__global void assign(int* d a, int wvalue)

{
int idx = blockDim.x * blockIdx.x + threadldx.x;

d a[idx] = value;

}

Programming Environment

A simple example

__global void assign2D(int* d a, int w, int h, int value)
{

int iy = blockDim.y * blockIdx.y + threadIdx.y;

int ix = blockDim.x * blockIdx.x + threadlIdx.x;

int idx = iy * w + 1x;

d a[idx] = value;

}

assign2D<<<dim3 (64, 64), dim3 (16, 16)>>>(...);

Environment

Example code to increment array elements

CUDA codes

CPU code
o : : __global wvoid
\{701d inc_cpu(int*a, intN) nclapallintraNaie Rt
int idx: int idx = blockIdx.x* blockDim.x
for (idx =0;idx<N;idx++) +threadIdx.x;
a[idx]=a[idx] + 1; if (idx < N)
} a d[idx] = a d[idx] + 1;

}

void main ()

{

voidmain ()

{

inc cpu(a, N); "
} - dim3dimBlock (blocksize) ;
dim3dimGrid (ceil (N/
(float)blocksize)) ;
inc_gpu<<<dimGrid,
dimBlock>>>(a d, N);

Programming Environment

Example (host-side program)

// allocate host memory
int numBytes = N * sizeof(float)
float* h A = (float*) malloc (numBytes)

// allocate device memory
// float* d A = 0;
cudaMalloc((void**) &d A, numbytes);

// Copy data from host to device
cudaMemcpy(d A, h A, numBytes, cudaMemcpyHostToDevice)

// Execute kernel
increment gpu<<< N/blockSize, blockSize>>>(d A, b);

// copy back data from device to host
cudaMemcpy (h A, d A, numBytes, cudaMemcpyDeviceToHost)

// Free device memory
cudaFree(d A) ;

Leeture ¢, ~ o T oA

int main() {
float *a = new float[N*N];
float *b = new float[N*N];
float *c = new float[N*N];

for (int i = 0; 1 < N*N; ++i) {
af[i] = 1.0£f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof (float);
cudaMalloc((void*¥*) &ad, size);
cudaMalloc((void**)&bd, size);
cudaMalloc((void*¥*) &cd, size);

cudaMemcpy (ad, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (bd, b, size, cudaMemcpyHostToDevice) ;

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add matrix<<<dimGrid, dimBlock>>>(ad, bd, cd, N);

cudaMemcpy (¢, cd, size, cudaMemcpyDeviceToHost) ;
cudaFree(ad); cudaFree(bd); cudaFree(cd) ;

delete[] a; delete[] b; delete][] c;
return EXIT SUCCESS;

Proge

CUDA Qualifiers for variable

amming Envizonment

device

— Allocated in device global memory (Large, high-latency, no cache)
— Allocated by cudaMalloc @ (__device _is default)

— Access by every thread.

— extent: during execution of application

shared

— Stored in on-chip “shared memory” (SRAM, low latency)
— Allocated by execution configuration or at compile time
— Accessible by all threads in the same thread block

Unqualified variables
— Scalars and built-in vector types are stored in registers
— Arrays may be in registers or local memory (registers are not addressable)

Programming Environment

How to use/specify shared memory

Compile time Invocation time
__global void kernel (..) __global void kernel (..)
{ {
shared float sDatal[256]; extern shared float sDatal];

} }

int main (void)

{ int main (void)
- {
kernel<<<nBlocks,blockSize>>>(..); -

} smBytes =

blockSize*sizeof (float) ;
kernel<<<nBlocks, blockSize,
smBytes>>> (...) ;

amming Envizonment

GPU Thread Synchronization

void _ syncthreads() ;
— Synchronizes all threads in a block
— Generates barrier synchronization instruction

— No thread can pass this barrier until all threads in the block reach it

— Used to avoid RAW / WAR / WAW hazards when accessing shared
memory

Allowed in conditional code only if the conditional is uniform
across the entire thread block

Synchronization between blocks is not supported
— Done by host-side

Proge

amming Envizonment

Compiler

C Source program with CUDA is compiled by
nVCC.

Application
Nvcc is a ccomile-driver:

— Execute required tools and udacc, g++, cl

Nvcc generates following codes:
— C object code (CPU code)
— PTX code for GPU
— Glue code to call GPU from CPU

Objects required to execute CUDA program
— CUDA core library (cuda)
— CUDA runtime library (cudart)

Programming Environment

Optimization of GPU Programming

Maximize parallel using GPGPU

Optimize/ avoid memory access to global memory
— Rather than storing data, re-computation may be cheaper in some cases

— Coalescing memory access
— Use cache in recent NVIDIA GPGPU

Optimize/avoid communication between CPU(host) and GPU
(Device)
— Communication through PCI Express is expensive

— Re-computing (redundant computing) may be cheaper than
communications.

Programming Environment

Optimization of Memory access

Coalescing global memory access
— Combine memory access to contiguous area

Make use of shared memory

— Much faster than global memory (several x 100 times faster)
= On-chip Memory
= Low latency

— Threads in block share the memory.
— All threads can share the data computed by other threads.

— To load shared memory from global memory, coalesce the memory
and use them

Use cache (shared memory) as in conventional CPU
— Recent GPGPU has a cache at the same level of shared memory

Programming Environment

How to make use of different kinds of memory

Constant memory:
— Quite small, <20K

— As fast as register access if all threads in a warp access the same
location

Texture memory:
— Spatially cached
— Optimized for 2D locality

— Neighboring threads should read neighboring addresses
— No need to think about coalescing

Constraint:
— These memories can only be updated from the CPU

Environment

QINMING

Access to Global memory

-4 cycles to issue on memory fetch

- but 400-600 cycles of latency
— The equivalent of 100 MADs

- Likely to be a performance bottleneck

- Order of magnitude speedups possible
— Coalesce memory access HEHAEUT7 I 1ERX)

- Use shared memory to re-order non-coalesced
addressing (¥XFAEYDFIA)

Programming Environment

Coalesced Memory Access

To exploit performance, global memory access should be
coalesced (combined).

A half warp (16t hread) memory access is colaesced.

Contiguous memory access
— 64 bytes — each tread reads a single word (int, floatZs &)
— 128bytes- each tread reads a double word (int2, float27i &)
— 256/\A b-each tread reads a quad word (int4, float4%i &)
— Float3isnotaligned ! ! !

T O ftb O I BR

— The start address of the contiguous area (Warp base address (WBA)) must be
aligned the boundary of multiple of #{16*sizeof(type)

— The k-th thread in half warp must access the k-th element of the block
— All threads in half warp may not be access.

Lecture Programming Environment

Coalesced Memory Access

Coalesced memory access:
Thread k accesses WBA + k

IHI IHI IHI IHI IH

Coalesced memory access:
Thread k accesses WBA + k
Not all threads need to participate

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Lecture Programming Environment

Case not coalesced

Non-Coalesced memory access: J'
Misaligned starting address "r‘

Non-Coalesced memory access:
Non-sequential access

Non-Coalesced memory access:
Wrong size of type

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Envizonment
Example of memory optimization :

Matrix Transpose

£ £33 B8 31 B3 G0
3 B3 B3)
BN K

31 £ E3 En X 2 B
global void

transpose naive(float *out, float *in, int w, int h) {
unsigned int xIdx = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int yIdx = blockDim.y * blockIdx.y + threadIdx.y;

if (xIdx < w && yIdx < h) {
unsigned int idx in = xIdx + w * yIdx;
unsigned int idx out = yIdx + h * xIdx;

out[idx out] = in[idx in]; readfl] (in) L. SN B,
} writeff] (out) HlIEFEEINELY,

} http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Programming Environment

Optimization of memory access

Read from global mem Write to shared mem Read “transposed” address from SMEM Werite to global mem

0,0 |01 |02 |«0,15 00|01 |072|«]0,15 00| 1,0 | 2,0 |+|150 00|10/ 20 |« 150

101112 |e|115| — [10 |11 |12 |e[1,15| —s 01|11|21]s|151] — |01 |11 |21 |« 151

15, 0|15, 1|15, 2|3 |15,15 15, 0|15, 115, 2|3 (15,15 0,15|1, 15|2, 15|32 (15,15 0, 151, 15/2, 15/ |15,15

By blocking, fetch block of data from shared memory, and
store back the block of data to shared memory.

The above example, thread block of 16 x 16 execute.
Matrix is read and write for each 16 x 16 block

When write back, write access Is coalesced by contiguous
memory address.

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Environment

Optimized code (Coaleased)

__global void

transpose(float *out, float *in, int w, int h) {
__shared float block[BLOCK DIM*BLOCK DIM];

unsigned int xBlock = blockDim.x * blockIdx.x;

unsigned int yBlock = blockDim.y * blockIdx.y;

unsigned int xIndex xBlock + threadIdx.x;

unsigned int yIndex = yBlock + threadIdx.y;

unsigned int index out, index transpose;

if (xIndex < width && yIndex < height) {
unsigned int index in = width * yIndex + xIndex;

unsigned int index block = threadlIdx.y * BLOCK DIM + threadIdx.x;

block[index block] = in[index in];

index transpose = threadIdx.x * BLOCK DIM + threadIdx.y;

index out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;
}
__synchthreads() ;
if (xIndex < width && yIndex < height) {

out[index out] = block[index transpose];

}

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Example results

Grid Size Coalesced Non-coalesced Speedup

512 x 512 0.07 ms 0.33ms 4.5X%
1024 x 2048 0.79 ms 6.6 ms 8.4 X

http://www.sintef.no/upload/IKT/9011/SimOslo/eVITA/2008/seland.pdf

Programming Environment

Optimization of Host-device communication

The bandwidth between host and device is very narrow
compared with the bandwidth of device memory.
— Peak bandwidth 4GB/s (PCle x16 1.0) vs. 76 GB/s (Tesla C870)

Minimize the communication between host-device

— Intermediate results must be kept in device memory to avoid
communications

Grouping communication

— Large chunk of communication is more efficient than several small chunk
of communications

Asynchronous communication

— Make use of stream
— cudaMemcpyAsync(dst, src, size, direction, 0);

Programming Environment

Host Synchronization

All kernel launches are asynchronous
— control returns to CPU immediately
— Kkernel executes after all previous CUDA calls have completed

cudaMemcpy () IS synchronous

— control returns to CPU after copy complete
— copy starts after all previous CUDA calls have completed

cudaThreadSynchronize ()
— blocks until all previous CUDA calls complete

Envizonment

OpenCL

Programming language for general purpose GPU computing.

While C for CUDA is proprietary by NVIDIA, OpenCL is
targeting cross-platform environments.

— Only only for GPU such as NVIDIA and AMD(ATI), but also for
conventional multicore CPU and many-core, such as Cell Broadband
Engine(Cell B.E) and Intel MIC

QINMING

The point is that it targets for data parallel program by GPU
and also for task-parallel of multi-core.

What is different from CUDA? : Similar programming mode
for kernel, but different in execution environment.

Lectuze Programming Envizonment

Kernel and Memory model

OpenCL Néemory Model

NDRange size G,

¥

Private Memory
- Per work-item

Local Memory

- Shared within a workgroup (16Kb)
Local Global/Constant Memory

- Not synchronized

Host Memory

- On the CPU

[
F

NDHRange size G,

work-item work-item

Wy B 48, Wy Syns)) Wy 8,48, . Wy Syﬁy?
fsx.s,J={{J. ay fsx.s})=.{5x-1.0,l
work-item work-item

[Wy Sy-nsy}

(5 syJ =, SF-J,I

Wy S s, Wy Sy-nsy}

(3080 =151, 5,01)

Private
Mer‘lfl?:ry

nﬁ;'vatrey

Work-ltem Work-tem

Local Memory Local Memory

Workgroup Workgroup

Data Parallel

kernel wvoid

dp mul (global const float *a,
global const float *b,

global float *result)
int id = get global id(0);
result[id] =

}

// execute dp mul over “n” work-items

al[id] * b[id];

Programming Environment

Execution Evnvironment of OpenCL

OpenCL

] .

Context
Programs Kernels Memory Objects Command Queues
__kernel void ‘ ap_mul ImagEE ,II‘ Buffers I]
*a, dp_mul
dp_::lég:n::;ﬂ:: l*‘::t ¢ CPU program binary arg[0] value In
global float *c) ——— Order
dp_mul 1va
intid = get_global_id(0); GPU program binary arg[1] value Queue
cfid] = a[d] * bfid; [r—
arg[4] value G PU

Programming Environment

>

Different Programming Styles e

@ C for CUDA
¢ C with parallel keywords
® C runtime that abstracts driver API
¢ Memory managed by C runtime
® Generates PTX

® OpenCL

® Hardware API - similar to OpenGL

¢ Programmer has complete access to hardware device
¢ Memory managed by programmer

® Generates PTX

INRDC for CcuDALOpenCLTIL., LIEFFITNT IS5,
OpenCLMEFIL T DL ELELTOBENENNA—LAN)L
APITHADIZXLT.C for CUDADADHBIEDES LA
BT IV r—a azg;ERT

http://pc.watch.impress.co.jp/docs/2009/0330/kaigaid97 .htm

Programm Envizonment

OpenACC

LNG

- A spin-off activity from OpenMP ARB for
supporting accelerators such as GPGPU and MIC

- NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

- Directive to specify the code offloaded to GPU.

OpenACC.

DIRECTIVES FOR ACCELERATORS

Lecture on ProgE

ing Envizonment

A simple example

'

#define N 1024 Host->device O

int main|() {
int i Device->Host O O

int a[N], b[N],c[N];
#pragma acc data copyin(a,b) copyout(c) host device
{
#pragma acc parallel = | | m=———— >
{ copy a,b
#fpragma acc loop
for(i = 0; i < N; i++)({
c[i] = a[i] + b[i];
}
}
} COopy C
) €TTTT v

Proge

amming Envizonment

A simple example

#define N 1024 |

int main () { block(0) block(3)
int 1; thread(0) thread(0)
int a[N], b[N],c[N];))
#pragma acc data copyin(a,b) copyout(c) I==U '=};68
{ : :
#pragma acc parallel thread(255) thread(255)
{ =255 1=1023
#pragma acc loop

for(i = 0; i < N; i++){ |

c[i] = a[i] + b[i]~; execute iterations
} like CUDA kernel

Proge

ing Environment

Matrix Multiply in OpenACC

#define N 1024

void main (void)
{
double a[N][N], b[N][N], c[N]I[N];
int i,3;
// ... setup data ...
#pragma acc parallel loop copyin(a, b) copyout(c)
for(i = 0; 1 < N; 1i++){
#pragma acc loop
for(j = 0; j < N; j++) {
int k;
double sum = 0.0;
for(k = 0; k < N; k++) {
sum += a[i] [k] * b[k][]J]’
}

c[i][J] = sum;

Lecture on Programming Environment

Stencil Code (Laplace Solver) in OpenACC

#define XSIZE 1024

#define YSIZE 1024

#define ITER 100

int main (void) {
int x, y, iter;
double u[XSIZE] [YSIZE], uu[XSIZE][YSIZE];
// setup ...

#pragma acc data copy(u, uu)

{

for(iter = 0; iter < ITER; iter++) {
//0ld <- new
#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++) {
#pragma acc loop
for(y = 1; y < YSIZE-1; y++)
uu[x] [y] = u[x][y];
}
//update
#pragma acc parallel loop
for(x = 1; x < XSIZE-1; x++) {
#pragma acc loop
for(y = 1; y < YSIZE-1; y++)
ulx] [y] = (uulx-1][y] + uu[x+1][y]
+ uulx] [y-1] + uulx][y+1]) / 4.0;
b}
} //acc data end

}

Lecture on Programming Environment

Performance of OpenACC code

exec time matrix multiply

120

100

80

60 M cpulcore
M cray(128)
40
) L L
O T —— L T L T T T T Size
2K 3K 4K 5K 6K 7K 8K

1K

Lecture on Programming Environment

Performance of OpenACC code

exec time laplace

120

100

80

60 M cpulcore

M cray(128)
40

20

0 - size
1K 2K 3K 4K 5K 6K 7K 8K

Proge

amming Environment

Xeon Phi (Intel MIC)

Intel Manycore architecture
released as a new lineup, Xeon Phi in Jan 2013
Many core (> 60) using Intel 1A architecture.

Intel® MIC Architecture - Knights Family

Multi-Threaded Multi-Threaded
Wide SIMD e T Wide SIMD

15 DS

System & 1/0
Interf:
11

Memory Controller

E _
4]

Multi-Threaded
Wide SIMD soaee Wide SIMD

15 D% 15 D$

Multiple IA cores 16-wide vector units (512b) 1024-bit ring bus
- In-order, short pipeline - Extended instruction set GDDR5 memory
- Multi-thread support Fully coherent caches - Supports virtual memory

Standard IA Shared Memory Programming

http://www.google.co.jp/url?sa=i&rct=j&q=Xeon+Phi&source=images&cd=&cad=rja&docid=KZV9UbYrdiOVzM&tbnid=GlhifIeeHLziBM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.anandtech.com%2Fshow%2F6265%2Fintels-xeon-phi-in-10-petaflops-supercomputer&ei=GislUeCBAY2nkAX5roGwCw&bvm=bv.42661473,d.dGI&psig=AFQjCNG_CDkJyy6IOkNE7xQxk_Eq7JEZEg&ust=1361476759366337
http://www.google.co.jp/url?sa=i&rct=j&q=Xeon+Phi&source=images&cd=&cad=rja&docid=KZV9UbYrdiOVzM&tbnid=GlhifIeeHLziBM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.anandtech.com%2Fshow%2F6265%2Fintels-xeon-phi-in-10-petaflops-supercomputer&ei=GislUeCBAY2nkAX5roGwCw&bvm=bv.42661473,d.dGI&psig=AFQjCNG_CDkJyy6IOkNE7xQxk_Eq7JEZEg&ust=1361476759366337

E@@m Pf@@f@mmlm@ f@j@m@m Intel® MIC Architecture — Knights Family

Architecture of Xeon Phi

)

Memory Controller
1

Spedial Function
[

I

Multi-Threaded
Wide SIMD

15 D$

Multiple IA cores 16-wide vector units (512b) 1024-bit ring bus
- In-order, short pipeline - Extended instruction set
- Multi-thread support Fully coherent caches - Supp

Standard IA Shared Memory Programming

@

GDDR MC ®
GDDR MC ®

GDDR MC
GDDR MC

@
@

1
®
1}
@
1

&
Tt

Xeon Phi Core architecture

Programming Environment

Xeon Phi Server

- Current Xeon Phi [=
(Knight Corner) used as 2 b

“QPIr
a Co-processor

WDR3 |

KRR cPU

The “Knights” Family

Future Knights
Products

Knights Corner

1t Intel® MIC product
22nm process
>50 Intel Architecture Cores

Within PCle Power Envelope
Knights Ferry Additional Enhancements

Software Development Platform

(@) 0

| —

Proge

20

ing Envizonment

Comparison Xeon(host) and Xeon Phi

factors Xeon Xeon Phi
Clock Freq. 2.6 GHz 1.1GHz
Length of Vector 4 8

Peak DP perf /Core 20.8GFLOPS |17.6GFLOPS
Peak DP Scalar Perf/Core |5.2GFLOPS 1.1(0.55)GFLOPS
Number of Core 38 61

Peak DP perf. of Chip 332GFLOPS 1073GFLOPS
Cache size / core 20MB 512KB
Number of Threads /Core 2 4

Memory Freq. 1600MHz 2750MHz
Size of Main Memory 32GB 8GB

Peak Memory Bandwidth 102.4GBS 350GBS

61

Environment

QINMING

Programming model

offload model: hybrid execution of host and Phi by
specifying a region to off-load to Phi

Native model: execution by only Phi (note MPI can be
used to communicate between host-Phi and Phi-Phi)

Example: Computing Pl

define NSET 1600800
int main (int argc, const char** argv)
{ long int i;
float num_inside, Pi;
num_inside = @.6F;
One additional line from the CPU version
#pragma omp parallel for reduction(+:num_inside
for(i = @; i < NSET; i++)
{ float x, y, distance_from_zero;
// Generate x, y random numbers in [8,1)
x = float(rand()) / float(RAND_MAX + 1);
y = float(rand()) / float(RAND MAX + 1);
distance_from_zero = sqrt(x*x + y*y);
if (distance from zero <= 1.8f)
num_inside += 1.8f;

It
Pi = 4.8f * (num_inside / NSET);
printf(“Value of Pi = %f \n",Pi);
1

Proge

AEmineG BEnvionment
g

OpenMP 4.0

slide

Released July 2013

— A document of examples is expected to release soon

Changes from 3.1 to 4.0 (Appendix E.1):
— Accelerator: 2.9

— SIMD extensions: 2.8

— Places and thread affinity: 2.5.2, 4.5

— Taskgroup and dependent tasks: 2.12.5, 2.11
— Error handling: 2.13

— User-defined reductions: 2.15

— Sequentially consistent atomics: 2.12.6

— Fortran 2003 support

by Yonghong@UH

63

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

20

Proge

Accelerator (2.9): offloading

Execution Model: Offload data
and code to accelerator

target construct creates tasks to
be executed by devices

Aims to work with wide variety

of accs
— GPGPUs, MIC, DSP, FPGA, etc

— A target could be even a remote
node, intentionally

slide by Yonghong@UH

ing Envizonment

Application
data

target
Copy in
—remote—>
data Application
data
Copy out
remote
data
Tasks - acc. cores
pffloaded
to
arcelerator

#pragma omp target

{

/* it is like a new task
* executed on a remote device */

»
~

Programming

Envizonment

Accelerator: explicit data mapping

Relatively small number of
truly shared memory
accelerators so far

Require the user to
explicitly map data to and
from the device memory

Use array region

slide by Yonghong@UH

long a = 0x858;
long b = 0;
int anArray[100]

#pragma omp target data map(to:a) ¥¥
map(tofrom:b,anArray[0:64])

{

[* a, b and anArray are mapped
* to the device */

/* work here */

}

[* b and anArray are mapped
* back to the host */

65

Programm Envizonment

l@

Accelerator: hierarchical parallelism

Organize massive number of threads
— teams of threads, e.g. map to CUDA grid/block

Distribute loops over teams

#pragma omp target

S
#pragma omp teams num_teams(2) acq? @a\f'e
num_threads(8) A © xe"
5% ?
y
//-- creates a “league” of teams 6 < 2° o
:)'O

/I-- only local barriers permitted >)
#pragma omp distribute
for (inti=0; i<N; i++) {

}
slide by yYonghong@UH

66

Proge

20

ing Envizonment

target and map examples

void vec mult(int N)

{

int i;

fleocat p[N], v1[N], v2[N];

init(vl, v2, N);

#pragma omp target map(to: vl, v2) map(from: p)

#pragma omp parallel for

for (i=0; i<N; i++)
pl(i] = v1[i] * w2[1i];

output(p, N);

}

void vec_mult(float *p, float *vl, float *v2, int N)

{

int i;

init(vl, v2, N);

#pragma omp target map(to: v1[0:N], v2[:N]) map(from: p[0:N])

#pragma omp parallel for

for (i=0; i<N; i++)
pl[1] = v1[i] * w2[1i];

output(p, N);

}

slide by Yonghong@UH

Programming Environment

Final remarks

GPGPU is a good solution for apps which can be parallelized for GPU.
— It can be very good esp. when the app fits into one GPU.

— If the apps needs more than one GPU, the cost of communication will Kill
performance.

Programming in CUDA is still difficult ...
— Performance tuning, memory layout ...
— OpenACC, and OpenMP 4.0, will help you!

Manycore (Xeon Phi) is emerging!
— Still offload model ... like GPU

For large scale computing, ... we will need multiple GPUs or MIC
— Hardware support for communication between GPU/MIC
— AND, good programming environment

