Survey of Six Myths and Oversights about
Distributed Hash Tables’ Security

Sylvain Dahan and Mitsuhisa Sato
High Performance Computing System Laboratory
Institute of Information Science and Electronics,
Unwversity of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573 Japan
sdahan@hpcs. cs.tsukuba.ac.jp

Abstract

Distributed Hash Tables (DHT) was not designed to
be secure against malicious users. But some secure sys-
tems like trust and reputation management algorithms
trust DHT with their data. Several propositions have been
made to make DHTs appear secure but they fail in prac-
tice. We review some of those propositions and explain
why they do not work. Our main conclusion is that DHT
should not be used to create secure systems.

1. Introduction

People interact with each other. Some cheat, but
most of the people do not. So, Community, then civi-
lization can emerge and benefit everybody. Even if bar-
tering is profitable most of the time, it can be costly
for a person if the other one cheats. This problem leads
several researchers to design trust and reputation man-
agement algorithms that tell to a user who he can trust
or not by analyzing past transactions. To work, those
algorithms need to store information about the past
transactions inside a database.

In one hand, this database needs to be secured
against malicious users because anyone that can mod-
ify the data, can also control the algorithm output. If
an algorithm is fed with data that said A is trustworthy,
even if A is not trustworthy in reality, then the algo-
rithm has no other choice and tells that A is trustwor-
thy. In the other hand, peer-to-peer Distributed Hash
Tables (DHT), the last fashion distributed database,
are reputed to be highly scalable and completely dis-
tributed. Some of their applications are file systems,
look-up directories or database for trust and reputa-
tion management mechanisms.

However, peer-to-peer Distributed Hash Tables
(DHT) were not designed to be secured against mali-

cious nodes. Some issues about their routing mecha-
nisms and node identification have already been docu-
mented [11,25-28,31] and many others are too obvious
to be documented. Knowing the DHT’s security weak-
ness, it is difficult to understand why some people
use them to build secure systems. They probably for-
got one of the golden security rules: a security system
is only as strong as its weakest link.

To hide this issue, the peer-to-peer trust and repu-
tation management community has developed certain
unfounded claims about DHT’s security. Some of those
claims are used and believed by most of the commu-
nity, some others just by a few. Another reaction was
to simply forget some of the issues. The aim of this ar-
ticle is to describe some of those myths and oversights
and to explain what is wrong with them. All the de-
scribed issues have already be documented in various
place. The contribution of this article is to describe all
of them in a unique place in a way that are understand-
able by non specialists. We hope that researchers will
stop to use DHT to build secure systems after read-
ing this document.

In “Securing P2P networks using peer reputations:
is there a silver bullet?” [14], P. Dewan and P. Dasgupta
already explained what should be done. This docu-
ment focus on what is going wrong. Each myth comes
with a list of articles co-wrote by the members of the
TRAM’07’s organizing committees that supports it.
We consider believes are transitive: if A believes in M
and B uses A but says nothing about M then we con-
sider that B also believes in M.

We start by giving a short description of DHTs.
Then we criticize several myths. Finally, the conclu-
sion gives our personal vision about DHT and about
how researchers should design their algorithms.

2. DHT Terminology

This section gives a simplified description of what is
a DHT. Readers are encouraged to read the survey [22]
to get more detailed descriptions.

ode A ’s data space
Node F\

ode B
E’s data space\

Node E—

~—Node C

Node D
Figure 1. A DHT identity space.

A DHT can be view as a directory that stores iden-
tified data. Each data has an identifier and users access
the data through the identifier. The list of identifiers
is sorted to allow quick access to the data. The identi-
fier space (ID space) is bounded but infinite. In Fig. 1,
the ID space is represented by the big circle. This ID
space is split and distributed between several users. To
do it, each user has a name that is an element of the
ID space and each user manages the data that are in-
cluded between his name and the next user’s name.
This is possible because the ID space is a sorted list.
We call X'’s data space the ID space part managed by
a node X.

3. Current Implementations are Not
Reliable

Several DHT implementations exist. Some like
Chord and Pastry are widely popular and several re-
searchers [6,7,10,19,32] wrote that they could be used
to implement trust and reputation management al-
gorithms. The problem is that none of them are se-
cure.

Myth 1 Wecanusea DHT like Chord or Pastry to build
secure systems.

To understand the issue with the Chord implemen-
tation, it is important to remind that software qual-
ity plays a big role in software security. Many soft-
ware vulnerabilities come from bugs like buffer over-
flow, condition race or bad input checking. From the
Chord Project home page [2], we can read:

At this point no official release for Chord is
available, but you are welcome to check out
the latest version from the CVS repository.
This version is experimental, under active de-
velopment, and may frequently be broken.

The previous citation let us to presage that Chord
has an important number of bugs. So, we have to con-
sider the existence of bugs that allow an attacker to
get complete control of the database or worst: like giv-
ing shell access via a buffer overflow. For this reason,
Chord should not be considered as reliable and should
not be used to build secure systems. What about Pas-
try?

Pastry has two implementations. The first, SimPas-
try, is just a simulator, the second, FreePastry, as the
following limitation [4]: “Minimal security (no support
for insecure networks or malicious nodes)” .

In brief, none of those two systems propose a reli-
able implementation that can be used to build secure
systems.

Fact 1 Popular DHT implementations should not be de-
ployed on insecure network without compromising the
system security.

We found that another DHT implementation, P-
Grid, is popular in the trust and reputation manage-
ment community [7,29,32]. It was difficult to judge the
P-Grid security when this document was written: we
were unable to find the P-Grid source code nor adverse
security reviews. By default, the security community
tends to untrust algorithms that did not have been re-
viewed sufficiently, and we encourage doing so.

4. Secure Identifier is an open issue

To make a DHT secure, several issues have been un-
successfully addressed. One of them is the need of what
they call secure ID. As we explained before, in a DHT, a
user manages all the data include in its data space and
this data space is defined by the user name. If the user
can freely choose his name, then he can virtually man-
age any stored data. Secure ID algorithms have been
proposed to solve this issue. Two of them are IP based
identities and Public Key Infrastructures (PKI).

4.1. IP based identity

P.Dewan and P. Dasgupta have proposed to imple-
ment IP based safeguard [14]. The aim is to create an
identifier based on the user IP address. The idea is that
a user only has few IP addresses in disposition, and by
logical consequence, few identities to choose from. This
is similar to the IP based secure ID proposed by Chord

who generates the identity by hashing the user IP ad-
dress with the SHA-1 algorithm [30].

Myth 2 If a peeridentifier is made by hashing its IP ad-
dress, then we have a secure I1D.

In theory, IP spoofing makes this kind of secure ID
inadequate. The concept of IP spoofing [12] is to mod-
ify an IP packet header in a way that the packet ap-
pears to come from another host. If this is coupled with
the possibility to capture the response [24], then an at-
tacker can virtually own any IP address. If an attacker
can use any IP address, it makes no sense to create
a system where the security lies in the limited num-
ber of available IP addresses.

Fact 2 In theory, a peer can “spoof” the IP address of
any other computer.

However, this kind of attacks is difficult to put into
practice and an attacker will probably not use this
weakness. The real problem with the myth 2 is that
using IP address as unique identifier is not possible in
practice. Chord itself is a good illustration of this prob-
lem. The Chord team wrote “Requiring (and checking)
that nodes use IDs derived from the SHA-1 hash of their
IP addresses makes this attack harder” [30]. But their
code [1] shows! something different:

bool is_authenticID (const chordID &x,
chord_hostname n, int p, int vnode) {
static int max_vnodes = 0;
if (max_vnodes == 0) {
bool ok = Configurator::only().get_int(
"chord.max_vnodes", max_vnodes);
if (lok) {
max_vnodes = 1024;
}
}
if (p <0 || p > 65535)
return false;
if (vnode > max_vnodes)
return false;
chordID ID = make_chordID (n, p, vnode);
return (ID == x);

The is_authenticID function aims to limit the num-
ber of identifiers that a peer can use by checking that
the identifier follows strict construction rules. But the
default Chord limit is not really useful because a peer
can choose between more than 6.7 millions? of differ-
ent identifiers.

max_vnodes defines the maximum number of accepted
virtual nodes by peers. “Virtual nodes” is a mecha-
nism that allows a peer acting as several virtual peers.

1 We took the liberty to reformat the code and to delete com-
ments.

2 1 x 1024 x 65534 > 6.7 x 108

This is useful to put more load on powerful comput-
ers. In a security context, we can consider that a peer
can only have one virtual node and then reducing the
number of available identifiers to 65534. But this num-
ber is still important and gives too many choices if the
number of users is no enough, let us say 100000 con-
nected users.

Another step to reduce the number of available iden-
tifiers is to not take into account the port number. But
this solution is not practicable because today, lots of
computers share the same IP address, thanks to fire-
walls and Network Address Translation mechanisms.
The consequence of only allowing one peer per IP ad-
dress has too bad effects on corporate networks that
only have few IP addresses that are visible from the
Internet to be practical in a general context.

Fact 3 In practice, it is not possible to have one IP ad-
dress per peer without banning lot of users from the sys-
tem.

4.2. Public Key Infrastructure

The universal PKI dream has been proposed numer-
ous times [10,29,32]. The idea is that the PKI gives a se-
cure ID to every user. The problem is that the universal
PKI dream does not work in practice. R. Anderson [9],
N.Ferguson and B.Schneier [17] gave comprehensible
explanations about PKI issues in their books.

In short, the universal PKI works the following
way: it supposes the existence of a central Certificate
Authority (CA) that knows everybody and who are
trusted by everybody. We call this CA god. Then ev-
erybody has a certificate that contains his name, his
signature and god’s signature to prove the certificate
authenticity. To authenticate a user A, we just need to
make A signing a piece of paper and checking his cer-
tificate.

There are two major issues with it. Firstly, not ev-
erybody believed in the same god. Practically, it is not
possible to have a CA that is trusted by everybody. Sec-
ondly, we never meet a god that knows everybody. In
practice, by taking into account that fake documents
exist, it is almost impossible for a CA to know the real
identity of thousands of people that it never mets. This
is why Verisign allows you to get a certificate under a
false name for $19.95 [3].

Thus scalable secure ID is still an open issue and
we should consider, for security reason, that a user can
choose its identifier freely.

5. Randomness is Not a Protection

K. Aberer [5] seams to believe that if there are lots
of users, then the probability that a defined user stores
a defined data is low.

Myth 3 Because there are lots of users, the probability
that a user stores [per accident] a data is small.

The problem of this myth lies in the “per accident”
assumption. It is true that if there are lots of users,
then the probability that a random user stores a spec-
ified data is low. But this hypothesis is false ; a mali-
cious user is not a common random user. Like explained
in the secure ID section, if a user can choose his iden-
tifier, then he can store any data that he wishes and
in his article, K. Aberer explicitly lets the user choos-
ing his identifier.

Fact 4 Fwven if there are lots of users, a malicious user
will take the right name to be in the right place and so, he
will manage his coved data.

6. Replication is not a silver bullet

Most Researchers [5-7,13,19,29, 32] are aware that
in a peer-to-peer system, a malicious peer can mod-
ify the data that it stores. To solve this problem, they
propose to duplicate the data.

Myth 4 Because a peer can store a coveted data, storing
the data in various place improves the robustness.

There are two problems with this myth. First, a peer
can have multiple identities. This is called a Sybil At-
tack and has been documented by J.R.Douceur [15].
Without secure ID, a malicious peer can choose a tar-
geted data space. If he can do it once, he can do it for
all the duplicates by using several identities.

Fact 5 If a malicious peer can choose a targeted data
space once, then it can choose as many targeted data
spaces as it wants.

By duplicating the data, we can actually reduce the
security instead of increasing it. For example, if there
are two copies, then the attacker as two times more
chance to store a copy, and if it modifies one copy, how
can we distinguish the authentic data?

If we have x copies, we need to be sure that an at-
tacker store less than § —1 copies and that the consen-
sus protocol used to find the authentical value has no
vulnerability. So depending on how easy it is for a ma-
licious peer to store a coveted data, using duplicates
can increase or decrease the reliability of the DHT.

Fact 6 By having several copies, it is easer for an at-
tacker to control some copies of the data and everything
is lost if an attacker control the majority of them. The
added protocol to discriminate the authentical data open
a new path to attack.

So replication is not a silver bullet. If it is imple-
mented the right way and if secure ID is available, then
replication is a good way to increase the robustness of
the stored data. But firstly, there is no working se-
cure ID mechanism that we are aware about. Secondly,
we need to consider the pro and cons of using repli-
cation mechanisms because the replication algorithm
adds a new attack vector to the system.

7. Access Control is Needed

Common DHTSs do not implement read, write and
delete access control. Cryptography has been proposed
to resolve this issue. Encryption can be used to deny
read access and signature can be used to ensure data
integrity. Deletion is a more difficult matter. It is pos-
sible to deny deletion access to everybody, but the cost
in the long run — in term of data processing — can be-
come considerable. However, none of these techniques
assure data availability: an attacker can always store
lot of data under a specified identifier to drown the au-
thentic data in the middle of the fake ones.

But the real issue is not how to implement a se-
cure DHT access control mechanism, but how to de-
fine correct access policies. Proposed trust and reputa-
tion algorithms need to give write access to every peer.
So, how is it possible to protect against data sabotage
if anyone needs and has write access to run the algo-
rithms?

Oversight 1 Because the algorithms are peer-to-peer,
every peer is granted with database write access. Because
everyone has write access to all the data, anyone can eas-
ily subvert the database.

The lack of access control is a common flow in trust
and reputation management algorithm. One notable
exception is the TrustGuard algorithms proposed by
M. Srivatsa et Al. [29]. They resolve this issue by mak-
ing two hypotheses: a peer can prove that a transaction
really happened and the database only accepts data
concerning proved transaction. However, the presented
deletion algorithm is not secure and can be abused to
erase any data.

Another solution is to run a trust algorithm to know
if some data are trustworthy or not. The problem with
this solution is how we check the data that are used to
check the trustworthiness of a data?

R. Anderson wrote a good introduction [8] about ac-
cess control issues that can be used as a starting point
for discussion about how to define access control poli-
cies.

8. Taking Botnet into account

Some overconfident researchers [19, 32] propose to
use their trust and reputation management algorithms
in financial applications. But, it seams that they do not
take into account the various tools that are available
to organized crimes. Botnets [16, 23] are one of these
tools and its usage has a devastating effect on an im-
portant hypothesis:

Myth 5 [t is practically impossible for an attacker to
control 100 000 or more computers.

The truth is that, even for no technical people, it
is easy to get control of several hundreds of thousands
computers, thanks to the botnets black market [18]. A
botnet is a set of computers that has been compromised
by a worm which continuously attacks other comput-
ers and that listen for orders to execute. This way, a
botnet owner has an army of computers at his com-
mand. Botnets are mainly used to send spam, to install
spyware (some companies pay few dollars for every in-
stall) and to do extortion (if a company refuses to pay,
they shutdown its entire network with a distributed
denial of service attack). Usually, a botnet controls at
least 10000 computers and a botnet with 1.5 million
computers has already be shutdown by the Dutch po-
lice [20,21].

Fact 7 Organized crime has potentially access to mil-
lions of computers.

It is true that it is a bit expensive to rent a botnet
to get priority slots on a files sharing service. But if
there is some money to steal, then the designer must
take botnets into account.

This is a serious issue, because all the reviewed algo-
rithms suppose that the attacker control a minority of
computers. If he takes control of the majority of the ac-
tive computers (users that are currently connected to
the service) then he took over the system.

9. Conclusion

Considering that the system complexity is one of the
first causes of security failure, it is not surprising that
using a DHT brings a plethora of problems. Lack of se-
cure ID, lack of good implementations, lack of secure
routing, lack of access control and the existence of bot-
nets are some of the problems we face. Secure DHT's

do not exist and will probably never exist due to their
complexity.

It is difficult to understand why so many researchers
use them to describe their algorithms in the first place.
Naivety, buzzwords and fashion come in mind. But
those are not acceptable explanations. The truth is that
none of the reviewed articles really need a DHT. They
only need a secure and scalable database. Proposing
a DHT as an example is one thing, making the algo-
rithm dependent of it is another.

Continuing to follow this way is not serious and we
recommend to use a modular design. Specifying that
the algorithm needs a secure and scalable database in-
stead of a particular technology gives you three advan-
tages. Firstly, modular designs reduce the complexity
of the system making it more understandable and so,
it is easer to find its weakness. Secondly, if a particu-
lar implementation becomes weak, you can use another
one without the need to completely review the algo-
rithm. Finally, this allows the chance for database spe-
cialists to propose their best implementation without
having to understand how trust and reputation man-
agement algorithm really works.

References

[1] chord-0.1-20060908.tar.bz2, utils/id_utils.C, line 358.

[2] The Chord/DHash project. http://pdos.csail .mit.
edu/chord/.

[3] Digital ids for secure email. http://www.verisign.
com/products-services/security-services/pki/
pki-app%lication/email-digital-id/index.html.

[4] Pastry - a scalable, decentralized, self-organizing and
fault-tolerant substrate for peer-to-peer applications.
http://freepastry.org/.

[5] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, R. Schmidt, and J. Wu. Ad-
vanced peer-to-peer networking: The P-Grid system and
its applications. Prazis der Informationsverarbeitung
und Kommunikation, 26(3), 2003.

[6] K. Aberer and Z. Despotovic. P2P reputation manage-
ment: Probabilistic estimation vs. social networks. Jour-
nal of Computer Networks, 2005.

[7] Karl Aberer and Zoran Despotovic. Managing trust in
a peer-2-peer information system. In Conference on In-
formation and Knowledge Management, pages 310-317,
Atlanta, Georgia, USA, 2001. ACM press.

[8] Ross Anderson. Security Engineering, a guide to build-
ing dependable distribut ed systems, chapter 4, Access
Control. Wiley, 2000.

[9] Ross Anderson. Security Engineering, a guide to build-
ing dependable distributed systems. Wiley, 2000.

[10] Yu Bin, Munindar P. Singh, and Katia Sycara. Devel-
oping trust in large-scale peer-to-peer systems. In First
IEEE Symposium on Multi-Agent Security and Surviv-
ability, pages 1-10, 2004.

(11]

[12]

[13]

[14]

[15]

[16]

(17]
18]

(19]

20]

(21]

22]

(23]

24]

[25]

[26]

Miguel Castro, Peter Druschel, Ayalvadi Ganesh,
Antony Rowstron, and Dan S. Wallach. Secure rout-
ing for structured peer-to-peer overlay networks. In
ACM SIGOPS Operating Systems Review, 5™ sympo-
sium on Operating systems design and implementation,
volume 36, pages 299-314, 2002.

daemon9, route, and infinity. IP-spoofing demysti-
fied (trust-relationship exploitation). Phrack Magazine,
1996.

Prashant Dewan. Countering identity farms in reputa-
tion systems for P2P networks. Technical report, Ari-
zona State University, 2004.

Prashant Dewan and Partha Dasgupta. Securing P2P
networks using peer reputations: Is there a silver bul-
let? In IEEE Consumer Communications and Network-
ing Conference (CCNC 2005), 2005.

John R. Douceur. The Sybil attack. Lecture Notes In
Computer Science, 2429:251-260, 2002.

Noam Eppel. Security absurdity: The complete, unques-
tionable, and total failure of information security, 2006.
http://www.securityabsurdity.com/failure.php.

Niels Ferguson and Bruce Schneier. Practical Cryptog-
raphy. Wiley Publishing, Inc., 2003.

Dan Goodin. Calif. man pleads guilty to felony hacking.
Breitbart.com, Jan. 23 2006.

Kai Hwang and Runfang Zhou. PowerTrust: a robust
and scalable reputation system for trusted peer-to-peer
computing. Manuscript submitted to IEEE Transac-
tions on Parallel and Distributed Systems.

Gregg Keizer. Dutch botnet bigger than ex-
pected. InformationWeek, Oct 21 2005. http:
//www.informationweek.com/story/showArticle.
jhtml?articleID=172303%265.

Gregg Keizer. Dutch botnet susptects ran 1.5 milion ma-
chines. TechWeb, Oct 21 2005. http://www.techweb.
com/wire/security/172303160.

Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and
S. Lim. A survey and comparison of peer-to-peer over-
lay network schemes. Communications Surveys € Tuto-
rials, IEEFE, pages 72-93, 2005.

John Markoff. Attack of the zombie computers is grow-
ing threat. The New York Times, 7 Jan. 2007.

S. Murphy. BGP security vulnerabilities analysis.
Technical Report RFC4272, Internet Engineering Task
Force, 2006.

Thomas Reidemeister, Klemens Bohm, Paul A. S. Ward,
and Erik Buchmann. Malicious behaviour in content-
addressable peer-to-peer networks. In 8™ Annual Com-

munication Networks and Services Research Conference
(CNSR’05), pages 319-326, 2005.

Atul Singh, Miguel Castro, Peter Druschel, and Antony
Rowstron. Defending against eclipse attacks on overlay
networks. In ACM SIGOPS European Workshop, 11"
workshop on ACM SIGOPS European workshop: beyond
the PC, Leuven, Belgium, 2004.

27]

(28]

29]

(30]

31]

32]

Emil Sit and Robert Morris. Security considerations for
peer-to-peer distributed hash tables. In Lecture Notes
in Computer Science, Revised Papers form the First In-
ternational Workshop on Peer-to-Peer Systems, pages
261-269, 2002.

Mudhakar Srivatsa and Ling Liu. Vulnerabilities and se-
curity threats in structured overlay networks: A quanti-
tative analysis. In 20™ Annual Computer Security Ap-
plications Conference (ACSAC 2004), Hilton Tucson El
Conquistador Tucson, Arizona, USA, December 2004.
Mudhakar Srivatsa, Li Xiong, and Ling Liu. Trustguard:
countering vulnerabilities in reputation management for
decentralized overlay networks. In 14" international
conference on World Wid Web, pages 422—-431, Chiba,
Japan, 2005.

Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In
ACM SIGCOMM 2001, pages 149-160, San Deigo, CA,
2001.

Dan S. Wallach. A survey of peer-to-peer security is-
sues. In International Symposium on Software Security,
Tokyo, Japan, 2002.

Li Xiong and Ling Liu. PeerTrust: Supporting
reputation-based trust in peer-to-peer communities.
IEEE Transactions on Knowledge and Data Engineer-
ing, 6, 2004.

