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Abstract

The peer-to-peer and GRID applications currently have
few structures that allow efficient discovery mechanisms
in large scale system. The trees are the most appropriate
structures for this task. However, the tree’s bottlenecks are
a significant drawback in large scale architectures and con-
nected graphs are used most of the time.

In this paper we propose an appropriate architecture
named Distributed Spanning Tree (DST) to allow discovery
in large scale environment. This structure is organized into
a hierarchy of groups. The nodes are put together in groups
and groups are gathered in groups of higher level, recur-
sively. This organization, built on top of routing tables al-
lows the instantaneous creation of spanning trees rooted by
any nodes and keeps the load balanced between the nodes.

The first studies about the Distributed Spanning Tree
suggest that it has all the advantages of a tree without its
drawbacks. This can be explained by the following com-
plexity order: each node stores only O(log(n)) informa-
tion; a parallel traversal needs n − 1 messages and takes
O(log(n)) units of time; adding or removing a node needs
O(n) messages in the worst case but only needs in average
O(log(n)) messages. Load balancing and fault tolerance
are ensured by the architecture of the Distributed Spanning
Tree itself.

1 Introduction

Sending messages efficiently between components is of
primary importance for the distributed systems. The mes-
sages passing methods can be classify into three fami-
lies: point-to-point communication, multicast and sequen-
tial traversal. The sequential traversal means an in-order
n-ary tree traversal. The sequential traversal visits all the
components one by one and it is mostly used by search al-
gorithms.
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Several solutions like hypercube, torus, tree and mesh
have been extensively studied to build parallel computers.
However parallel computers and distributed systems do not
have the same constraints. Their algorithms needs a per-
manent, known and regular architecture which makes them
unusable in most of the distributed systems. On the other
side, distributed applications should be dynamic, and use an
indeterminate number of computers. The number of links is
a minor issue for the distributed systems because they are
mostly build on top of the Internet Protocol or hardware
like Fast/Ethernet, Myrinet or ATM switches. So, when the
computers are connected to the network, the cost of creat-
ing links between two components is negligible. For these
reasons, few distributed system algorithms are based on par-
allel architectures.

Distributed systems traditionally prefer the use of sim-
pler topologies like cliques, rings, connected graphs or
trees. Although these topologies perform efficiently in
small systems, they are not always scalable. In a clique,
each node must know all the other nodes at all time, which
is difficult when the number of nodes raises. The ring la-
tency is proportional to the number of nodes and becomes
unworkable at high scale. A connected graph has a better
scalability, but not for the traversal algorithm. Graph traver-
sal algorithms need to stamps the nodes and are not scalable
because the number of stamps is proportional with the num-
ber of simultaneous requests. In this context, the tree has a
better scalability. But the load is not equally distributed be-
tween nodes and a node can reach its limits quicker than if
the load was equally distributed.

Recent papers have demonstrated the abilities of the Dis-
tributed Hash Tables (DHT). The DHT was initially de-
signed to route efficiently a message to a node and to be
scalable. Their main advantages are their scalability, a fair
load distribution and their simplicity. Lately the DHT are
used to build easily efficient spanning trees which can be
used for multicast and traversal. But these spanning trees
are just like the other trees and do not share the specificities
of the DHT.



The present work addresses the following issue. A dis-
tributed system is composed of a large number of nodes.
Each node provides some dynamic resources like available
services. The system should be able to find one or several
nodes which match some properties. This system is too dy-
namic to use a lookup directory. As explains by R. E. Mc-
Grath [13], the system implement a discovery mechanism
which queries the nodes until the requested nodes are found.
Thus the sequential traversal of the nodes is of primary im-
portance for this system. Unfortunately, the existing struc-
tures are not able to allow traversal at high scale. So, we
propose the Distributed Spanning Tree (DST), a architec-
ture which address this issue.

The aims of the Distributed Spanning Tree are scala-
bility and efficient traversal. To achieve these two objec-
tives, the DST is a hierarchical architecture that makes each
node plays the same role than the others. By a simple rout-
ing mechanism, each node is able to create instantly and
without communication a spanning tree with itself as root.
The memory space complexity order of the route tables is
O(log(n)) and the tables are easily updated when a node
join or leave the structure.

This paper is organized as follows. Section 2 presents
the aims of the DST. Section 3 explains the precepts under-
laying the structures and gives the specification of the DST.
Then section 4 describes the algorithms used by a node to
join or leave the structure. Section 5 presents a multicast
algorithm and a sequential traversal algorithm running on
top of a DST. Section 6 reviews several structures which
are related to our works. At the end, section 7 concludes
and discusses about future works.

2 The Structure

A Distributed Spanning Tree structure can be described
with three points of view. Those are the logical level, the
interconnection level and the physical level. The logical
level is useful to understand the basics concepts of a DST
and its organization. The interconnection level is used by
software to run a distributed tree and it is responsible of
linking the nodes together. Finally, the physical level is the
mapping of the interconnection level on a physical network
layer.

2.1 The Logical Level

2.1.1 Description

The DST’s Logical level is a straightforward description of
a DST. At this level, we do not care about how the nodes
are linked together but how the nodes are organized. At the
logical level, a DST is composed of subjects and groups. A
DST can be described as a multicast tree make of two kinds

of elements: processors or leaves which received the mes-
sages and relays which forward the messages to the leaves.
Subjects take the role of the processors. Groups take the
role of the relays which forward the messages to the sub-
jects.

At the logical level a DST is like a pyramid. The subjects
form the base of the pyramid. The subjects are put together
to form groups of level 1. The groups of level 1 are also
put together to form groups of level 2. And so on until all
the groups of level n − 1 can be put together in a unique
group of level n which is called the top level group. For
efficiency and balancing reasons, each group has between
a and b elements. To simplify the live cycle of the DST
(adding and removing of a node), the relation 2 ≤ a ≤ b
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should be respected.
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Figure 1. The Logical level of a DST

The Fig. 1 is an example of the logical level of a DST.
The figure represents the subjects with continuous line rect-
angles and the groups with dotted line rectangles. In the ex-
ample, there are seventeen subjects, seven groups of level 1,
three groups of level 2 and the top level group is the group
ε of level 3. Each group contains between two and three
elements in this example.

Creating groups is not enough. They must be linked to-
gether to allow communication between the groups. The
following paragraphs explain how and why the groups are
connected together.

A group is an abstract entity made of elements. Depend-
ing on the level, an element can be a group or a subject.
But an abstract entity can not affect the reality directly. So,
a group can not do anything by itself. This is its elements
which act for the group. For example, a basketball team can
not play by itself. But players can play together for a team.

To take this fact into account, each group must have
at least one group representative. The representative of a
group must know all the other elements to be able to send
a message to the whole group. But there is no reason why
an element is the representative and not the others. This is
why all the elements of a group are linked together to form
a clique. This way, every element can represent its group.



2.1.2 Definition

An element can be a group or a subject. Each group must
have between a and b elements with 2 ≤ a ≤ b

2 except
the top level group which can have less than a elements.
Groups of level 0 are composed of subjects and groups of
level i are composed of groups of level i − 1.

2.2 The Interconnection Level

2.2.1 Description

The following metaphor is interesting to understand the in-
terconnection level of a DST. Mr McLeod lives at Edin-
burgh. Thus, Mr McLeod is Scottish, British, European and
Human. Mr McLeod can not be the Scottish people, but he
can act as a Scottish. He can also acts as a human being but
can not be the humanity. Otherwise, Scotland is a province
(something abstract) that can not act by itself, but a Scottish
like Mr McLeod can act for Scotland. The same is true for
the humanity, Mr McLeod can act for the humanity.

The interconnection level of a DST follows the same
principles. At the interconnection level subjects are re-
placed by nodes. A node can be a software, an hardware
or something else which acts as a subject and as a group
representative for each level. The goal of nodes is to par-
ticipate together to multicast a message or to participate to
a tree traversal. If the DST has h levels, each node acts as
a subject, as a member of a group of level 1, ..., as a mem-
ber of the group of level h. As well, any node can not be a
group by itself.

In the logical level section, we explained that the subjects
are put together to form groups of level 1 and all of the
elements of a group form a clique. To meet this hypothesis,
the nodes are put together to form groups of level 1. Inside
those groups of level 1, every node knows each other and
form a clique. At this level, the nodes know nobody outside
their own group of level 1. The Fig. 2 shows how seven
nodes are linked together to form three groups of level 1.
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Figure 2. Interconnections between nodes to
form three groups of level 1

In the logical level, we also explained that the groups of
level 1 are put together to form groups of level 2 and every
element of the group forms a clique. To meet this second
hypothesis, the groups of level 1 are put together to form
groups of level 2. Every group of level 1 must know all
the other groups of level 1 that are members of the same
group of level 2. But how to form a clique of groups ? As
explained before, a group is something abstract that can not
do anything by itself.

The answer is that we do not link the groups together,
but we link the nodes that are members of those groups.
Because, like Mr McLeod can act as a Scottish, as a British,
etc., each node can act as a member of its group of level 1,
of its group of level 2, ..., of the top level group.

The purpose of a group is to be able to contact all of its
members. By watching the Fig. 2 it is clear that every node
can do it at level 1, because of the cliques. So it is enough
to send a message to a node by calling it “group of level 1”
to see the message send to every member of this group.

So, to form a group of level 2, all the nodes of the group
of level 2 have a link toward a representative of each group
of level 1 of the group of level 2. A group representative is
a node that can act as the group. The Fig. 3 give an example
of this clique. Here, clique means that all the groups of
level 1 form a clique because every node is connected to
a representative of every group of level 1, which form the
group of level 2.
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Figure 3. Interconnections between nodes to
form a group of level 2

By watching the Fig. 3, we can see that every node can
act as the group of level 2, because every node is able to
send a message to a representative of the three groups of
level 1. Then those three nodes send the message to the
nodes of their group of level 1. This way, every node of the
group of level 2 receives the message.

To share the load between the nodes, it is a bad idea to
have only one representative per group (Fig.4). All the work
of the group will be concentrated on it. It is better that each
node try to choose a different representative for each group



like shown by the Fig. 3. This way, each node shares the
load of the groups.
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Figure 4. A badly balanced group of level 2

It is also possible to form a group of level 3 by putting
together groups of level 2 with the same method. The only
invariant is that every nodes must know a node (a repre-
sentative) of each group of level 2 to be able to form a
clique. Recursively, we are able to build a h levels Dis-
tributed Spanning Tree.

Finally, as shown in the Fig. 3, a node always chooses
itself to be the representative of its own group. This is to
minimize the number of distant messages and maximize the
number of local messages. We consider the cost of a lo-
cal message to be negligible in term of time and processing
cost. So, only the distant messages are count in this paper.
By counting the number of distant messages, we can see
that, for a n nodes DST, only n − 1 distant messages are
sent to multicast the message to the n nodes.

Routings tables are used to store the representatives used
by each nodes. The table 1 displays the routing table of
the example node 221. For each level, the routing table has
a list of groups. For each group, it stores the name of the
group (grp) and the name of the node (rep) that is used to
represent the group. A group has at most b elements. If a
DST has n nodes, it has at most dloga(n)e levels. So, the
routing table can not have more than b.dloga(n)e entries
and has a complexity order of O(log(n)) because a and b
are constants.

Table 1. Routing tables of the node 211
level grp rep grp rep grp rep

2 1 112 2 211 3 322

1 21 211 22 222 23 231

0 211 211 212 12 213 213

2.2.2 Definition (continuation)

If a DST has h levels, each node must be able to be the
representative of itself and its groups for each level. To be
able to be the representative of a group of level i, a node
must know at least one node of each group of level i − 1
which form the group of level i. A node must always choose
itself as representative of its own groups.

2.3 The Physical Level

The DST structure has been defined in the two previous
sections. The physical level examines how the interconnec-
tion level map onto the physical links of a wired network.
There are two possibilities about the network: the topology
of the network is known or it is unknown. A known network
can be a company or a university network and an unknown
network can be the Internet. The following section studies
those two cases. But most of the time a real application
only knows a part of the network and knows nothing about
the other.

2.3.1 Mapping on a known network

A huge network can be seen as a set of interconnected net-
work. There are high speed local area networks which are
connected to form metropolitan networks which are con-
nected to form a world area network. A DST can take ad-
vantage of this structure to maximize the use of the local
area networks communication links.

Take a DST of n nodes with h levels and x = h
√

n the
number of elements per group. Each node has x − 1 links
toward the elements of its group of level 1. It has also x− 1
links toward the elements of each level (see section 2.2.2).

So, in a group of level 1, there is x.(x − 1) links that
connect the x nodes together. There is also xi.(x− 1) links
that connect the xi nodes of a group of level i.

To multicast a message from a node to the others, a mes-
sage transits on x − 1 links of the n.(x − 1) possible links
of the top level h. A message transits on x − 1 links of the
x.(x − 1) possible links of every groups of level i. Thus,
there are xh−i.(x − 1) messages that transit through the
n.(x − 1) links of level i.

Two remarks come from those values. If i and j are two
level numbers with i > j, xi−j more messages are sent at
the level j than at the level i. A link of level j has xi−j

more chance to transfer a message that a link of level i.
To optimize the network use, the group must take into ac-

count the topology of the network. The nodes of a local net-
work are put together to form the groups of the lower levels.
Those groups are put together following the metropolitan
networks to form the groups of metropolitan levels. Finally
the group of metropolitan levels are put together to form the
upper groups.



With this layout, most of the messages transit inside the
local area networks and a small minority of messages are
sent through the world area networks.

2.3.2 Mapping on an unknown network

From this hypothesis, it is a difficult task to describe how
a interconnection level structure map on a network because
nothing is known about the physical structure of the net-
work. The Internet is an example of such network because
the Internet Protocol hides the physical structure of the net-
work.

On the Internet, for a defined set of host, if we increase
the number of links between the hosts, we also increase the
number of paths use to route the message from host to host.
By increases the number of paths, we also increase the prob-
ability to use new physical links. Finally, by increasing the
number of physical links used to send messages, the prob-
ability that a link becomes a bottleneck decreases. So, the
following hypothesis is used: for a defined number of hosts,
if the number of logical communication links between the
hosts increases, there is less chance that the link becomes a
bottleneck.

In the next paragraphs, the graphs, trees, rings and DST
are compared in term of network use. Each topology has
n nodes. We count how many messages pass through each
logical links to multicast a message m from a node to the
n − 1 other nodes. We count how many messages are
sent through each logical links of those topologies and how
many messages are sent in total. The topology that send
less messages than the others and that use more links than
the others should have the better scalability in term of net-
work used.

A tree has n−1 links that connect n nodes. To multicast
m, n − 1 messages are needed and each link transfers one
message.

A ring has n links that connect n nodes. To multicast m,
n − 1 messages are needed and n − 1 of n possible links
transfer one message.

A graph has |E| links that connect n nodes into a con-
nected graph. To multicast m, 2.|E| messages are needed
and each links transfers two messages.

A DST of n nodes, h levels and x the number of elements
per group. This DST has n.h.(x−1) links that connect the n
nodes. The probability to use a link of the first level is much
more important that the probability to use a link of the other
levels. To multicast m, n−1 messages are needed. At level
1, n

x .(x − 1) links of the n.(x − 1) possible links are used.
At level i, n

xi .(x − 1) links of the n.(x − 1) possible links
are used. So, for the most loaded DST links which are the
links of level 1, each link has only a probability of 1

x to be
used. At level i, each link has a probability of 1

xi to be used.
We suppose that every node has the same probability to

be the initiator of a multicast. We can conclude that the DST
has a better scalability than the other topology in terms of
network use. It sends the minimum number of messages
which can be sent onto a number of links which are much
more important than the other topologies.

A comment can be made about this conclusion. If all
the logical links use the same physical link it is useless to
have lot of logical links, because the same number of mes-
sages transit through this physical links. This is true, but
this worst case is unlikely to occur. The Fig. 5 display the
logical links of each level of the Fig. 1 DST example. De-
spite the logical links are organized, the Fig. 5 suggests that
there are links everywhere. So the probability to use a lot of
different physical links should be hight.

Figure 5. Logical links of a DST

3 Life of a Distributed Spanning Tree

During a DST lifetime, nodes join and leave the struc-
ture. A simulator which is available [7] has been written to
study the behaviors of a DST when nodes join and leave the
structure. The principle of the join and leave algorithms are
described in this section.

There are similarities between DST and B-Trees.
D. E. Knuth [11] writes: B-tree of order m is a tree that
satisfies the following properties:

1. Every node has at most m children.

2. Every node, except for the root and the leaves, has at
least m/2 children.

3. The root has at least 2 children (unless it is a leaf).

4. All leaves appear on the same level, and carry no in-
formation.

5. A nonleaf node with k children contains k − 1 keys.

Both of them share those specifications: every node has
at most b children; every node, except for the root and the



leaves, has at least a children; the root has at least two chil-
dren (unless it is a leaf) and all leaves appear on the same
level. This is why our algorithms are based on the B-tree
algorithms.

3.1 The join algorithm

A node ni initiates the join algorithm to join a DST. To
be able to join the DST, ni must know at least one member
of it. We suppose that ni already knows this member node
nd before executing the join algorithm. The algorithm has
five steps.

1. ni asks nd to join the DST.

2. nd checks if there is enough space inside its group of
level 1. If there is already b nodes in its group of level
1, the group splits into two groups of level 1. To be
able to split, it must have enough space in the group
of level 2 to host the new group of level 1. If not, the
nd’s group of level 2 splits in two groups as well, and
so on. In the worst case, a new level must be added by
splitting the top level group. At the end of the second
step, there is always enough space in the group of level
1 to accept a new node.

3. nd sends to ni the list of the members of the group of
level 1, the list of its representatives of the other groups
for every level and the authorization to join the DST.

4. ni is added in the nd’s group of level 1.

5. ni need to have a representative for every group of each
level to be able to form a clique. ni had already got the
list of the nd representatives at the third step. ni can
use this list, but this way, every node uses the same set
of representatives. This is against the load balancing
expectations explained in section 2.2. Instead, ni asks
to every nd’s representative a reference on another rep-
resentative which has the same role.

If n the number of nodes which form a DST, the com-
plexity order of splitting a group is O(n). The complexity
order of adding a node if there is no need to split the group
of level 1 is O(log(n)) and O(n) otherwise.

3.2 The leave algorithm

A node ni initiates the leave algorithm to leave a DST.
This algorithm can be easily run by another node in case of
node failure. The algorithm has three steps.

1. ni asks to every node which use ni as a representative
to use another one. At the end of this step, no node de-
pends of ni to forward any messages. To simplify this
step, in our simulator, every node has a list of nodes

that use it as a representative and the new representa-
tives are chosen by ni.

2. ni checks if there is enough nodes in its group of level
1 to be able to leave. If there is already a nodes in
the group, ni merge the group of level 1 with another
group of level 1 which is in the same group of level 2.
If there is not enough groups in the group of level 2, ni

merges two groups of level 2, and so on. In the worst
case, a level is removed.

3. ni leaves its group of level 1.

Merging two groups together is a little more difficult than
splitting a group into two parts. If we suppose that the first
group has a elements and the second has x elements with
a ≤ x ≤ b, three cases appear. In the first case a + x < 2a,
then the two groups must be merged in one. In the second
case a + x > b, then the two groups must not be merged in
one. Instead, some nodes of the bigger group are transfered
to the smaller group. In the third case 2a ≤ a + x ≤ b, then
the two previous actions are possible.

If n is the number of nodes which form a DST, the com-
plexity order of merging groups is O(n). The complexity
order of removing a node if there is no need to merge the
group of level 1 is O(log(n)) and O(n) otherwise.

4. Distributed Spanning Tree Traversals

There are several algorithms to do a DST traversal. This
section explains two of them. A parallel traversal to send
a message m in O(log(n)) units of time and a sequential
traversal which visits the nodes one by one. If a DST has
n nodes, these two algorithms use respectively n − 1 and
2n − 2 distant messages. Those algorithms use these two
properties of a DST: every node knows a representant of
each element of its groups; a node must use itself to be the
representant of its groups.

For these algorithms, we suppose that the DST has n
nodes and h levels, and ni is the initiator of the traversal.
The local messages are considered to be transmitted instan-
taneously and to add no load on the network. We also sup-
pose that the time of the distant message transmission is
much more important that the processing time of a request.

The presented algorithms send recursively the message
〈group of level i, m〉. Each node acts as a leaf and as a
representative of its group for every level. This is why the
message states the name of the group that receives the mes-
sage. m is the message which is multicasted.

4.1. Parallel traversal

ni start the traversal by sending 〈group of level h, m〉 to
ni. This is a local message, so it has no cost.



When a node receives a 〈group of level i, m〉 message
with i > 0, the node send 〈group of level i − 1, m〉 to all
of the representatives of the elements of its group of level i.
If there are x elements in the group of level i, only x − 1
distant and 1 local messages are send. All of the messages
are sent at the same time, so it takes one unit of time to send
the messages to every element of the groups of a level.

When a node receives 〈group of level 0, m〉, the node
does not send any messages but it can process m. This is
the terminal condition of this traversal.

4.2. Sequential traversal

ni start the traversal by sending 〈group of level h, m〉 to
ni. This is a local message, so it is considered that it has no
cost. Then, ni waits for the result.

When a node receives a 〈group of level i, m〉 message
with i > 0, it sends 〈group of level i − 1, m〉 to itself and
waits for the result. After, for each representative of the
elements of the group of level i, if the representative is not
the node itself, it sends to the representative the message
〈group of level i− 1, m〉 and waits for the result. This loop
is done sequentially, waiting for the result before sending
the next message. Finally it sends the result to the node
which has sent the 〈group of level i, m〉 message. If there
are x elements in the group of level i, 2 local and 2x − 2
distant messages are sent.

Some uses of sequential tree traversal stop the traversal
before visiting every node. For example, this happend when
a particular node is found. This is why this algorithm gives
the priority to the local messages. If the elements of the
lower levels groups are linked through local network as ex-
plained in the section 2.3.1, going down first through the
local node gives the opportunity to visite the node of the
local area network before the others.

Finally, when a node receives 〈group of level 0, m〉 mes-
sage, the node processes m and returns the result to the node
which sent the message.

5 Related Work

The Distributed Spanning Tree is not the first structure
which try to interconnect a set of nodes efficiently. Well
known structures like hypercubes or fat-trees was studied
extensively and are used to build parallel computer. Other
structures like the Distributed Hash Tables are interest-
ing because they are organized, completely distributed and
specifically designed to build distributed systems. Finally,
other algorithms are able to send a message to every node
and share the load between them, without any strict organi-
zation.

S. Campbell, M. Kumar and S. Olariu [2] proposed the
hierarchical cliques (HiC). The HiC is a k-ary tree, modi-

fied to enhance local connectivity in a hierarchical, modular
fashion. The k children of every node are grouped together
to form a clique. These cliques add robustness and alter-
nate paths to the tree structure. This topology was designed
to build parallel computer which combines the positive fea-
tures of the tree and the hypercube. But with the HiC, all
nodes are not equal. There are processor elements which are
the leaves and switching elements which forward the mes-
sages. Another disadvantage of the HiC is if the root and
its k children fail, the whole structure is split in k separated
groups.

Q. M. Malluhi and M. A. Bayoumi [12] proposed the Hi-
erarchical Hypercube (HHC). An n-HHC has three levels
with n = 2m +m. The first level is constituted of 2n nodes.
At the second level the 2n nodes are grouped into 2m hy-
percubes of 2m nodes called SonCubes. At the third level,
the 2m SonCubes are connected in an hypercube fashion to
form a father cube. Each SonCube has exactly 2m links that
connect it to the other SonCubes, and each link is incident
to one node of the SonCubes. This is interesting because
every node has the same role. It also share with the DST a
common vision: it uses recursively, a distributed structure
to add several levels and is able to keep a degree for each
node with a complexity order of O(log(n)). But the HHC
was designed to build parallel computers and not to build
distributed systems. So it has a low degree for each node
and need a static number of nodes. It is also a very static
structure where it is difficult to remove or to add a node.

S. D. Gribble et al. [9] introduced a data structure (DDS)
with a Distributed Hash Tables (DHT). The DHT provides
incremental scalability of throughput and data capacity as
more nodes are added to the cluster. To achieve this, they
horizontally partition tables to spread operations and data
across bricks. The DDS was used to build a large scale file
service. After the DHT become a peer-to-peer system, gain-
ing more scalability. Chord and Pastry are two implemen-
tations of DHT. A. Rowstron and P. Druschel [16] explains
that Pastry bear some similarity to the work by Plaxton et
al. [15]. In the Plaxon structure, each object has a unique
address x of n bits. The structure uses the address prefix
to route the message to the object. Each node has a routing
table of n

b levels. Each node has at the ith level of the rout-
ing table, a list of links with the following constraints: the
(i−1).b bits prefix of the pointed nodes must be the same as
the current node, for the 2b permutations of the i.b bits pre-
fixes with the same (i−1).b bits prefix, two nodes (for fault
tolerance) are pointed by the routing table. At most, n

b hops
are needed to route a message to an object with this struc-
ture. The approach of routing based on address prefixes can
be viewed as a generalization of hypercube routing. Pas-
try with its ring topology and its traversal links appears less
complex and more flexible. I. Stoica et al. [17] explains that
Chord, on the other hand, is substantially less complicated



and handles concurrent node joins and failures well.

The DHT are interesting because every node is able to
send a message to any other nodes in only O(log(n)) hops.
They also need only O(log(n)) entries in their routing ta-
ble. Finally, they are theorically scalable, resistant to fail-
ures and the load is equally balanced between nodes. Those
properties are common with the Distributed Spanning Tree.
But their use is completely different. The DST are able to
send efficiently one to all messages, the DHT are able to
send efficiently one to one messages. Research have been
made to use DHT topology to build multicast tree. M. Cas-
tro et al. [3] describe Scribe as a scalable application-level
multicast infrastructure. Scribe creates a multicast tree,
rooted at a rendez-vous point, to disseminate the multicast
messages in the group. The multicast tree is created using
a scheme similar to reverse path forwarding. The tree is
formed by joining the Pastry routes from each group mem-
ber to the rendez-vous point. Druschel et al. [4] explain that
Scribe can be used to build cooperative multicast environ-
ments called SplitStream. The key idea in SplitStream is to
split the content into k stripes and to multicast each stripe
using a separate tree. The challenge is to construct this for-
est of multicast trees such that an interior node in one tree
is a leaf node in all the remaining trees. All the interior
nodes that look for new children register in a Scribe multi-
cast group. When a new node arrives, it sends a message
to the Scribe groups and contact k interior nodes to join the
k trees. When an interior node has the desired number of
children, it leaves the Scribe group. With SplitStream, ev-
ery node is an interior node for only one tree. So, the load
is equally distributed between the participating nodes. But
SplitStream is one source only multicast structure and all
the data must be send from a unique set of nodes.

Some peer-to-peer system use less structured topology
and use best effort algorithm. The Gnutella specification [5]
explains that a Gnutella servent connects itself to the net-
work by establishing a connection with another servent cur-
rently on the network. The acquisition of another servent’s
address is not part of the protocol definition. So the topol-
ogy is a connected graph without more specification. In
such topology, search and multicast are done by flooding.
Despite the high bandwidth consumption of the flooding,
the structure is strong against faults and the algorithms that
add or remove a node are straightforward. The Kazaa net-
works allow to pass an additional scale by the use of supern-
odes [14]. Nodes elect supernodes to represent themselves.
The discovery is done between supernodes and the other
nodes are not longer queried by the discovery process. It re-
sults a reduction of messages. JXTA [1] also used a similar
methods, although supernodes are called rendez-vous peers.
JXTA also adds a cache mechanism to achieve better perfor-
mances. Finally, the supernodes method has been chosen
to implement the discovery mechanism of the Distributed

Integrated Engineering Toolbox (DIET) [8]. Initially, the
DST has been studied to build a scalable discovery service
for DIET which is a RPC-GRID middleware based on the
Application Service Provider architecture.

Few systems try to share the communication load be-
tween the peers like SplitStream and BitTorrent. B. Co-
hen [6] introduces BitTorrent as a file distribution system
with pareto efficiency. A BitTorrent platform is composed
of a tracker and peers. The tracker is a directory with the
reference of all the peers which replicate a file. With the
help of the tracker, each peer connect itself with twenty or
forty other peers. Peers exchange pieces of the data with a
“tit-for-tat” policy. This system uses a simple best effort al-
gorithm and are able to achieve good performance and scal-
ability by sharing the load between the peers efficiently. M.
Izal et al. [10] conclude that the performance achieved, in
terms of the throughput per client during download and the
ability to sustain high flash-crowd, demonstrate that BitTor-
rent is highly effective. Unfortunately, its latency is high
and BitTorrent can not be used to send a stream in real-
time.

6 Conclusion

In this paper, a novel structure which support efficiently
the traversal of its elements has been presented. The trees
are organized into a hierarchy by having a hierarchy of
nodes. By contrast, the Distributed Spanning Trees are or-
ganized into groups where all the nodes have the same re-
sponsibilities. The hierarchy is accomplished by making
groups of groups.

As a result, the Distributed Spanning Tree has the same
properties than the usual trees but without the bottlenecks.
This means, for a n nodes DST, the possibility to multicast a
message in O(log(n)) unit of time with n−1 messages and
the possibility to traverse sequentially the n nodes in 2n−2
messages. There is a small amount of the structure knowl-
edge in each node with a complexity order of O(log(n)).
The group organization involves the whole set of nodes, so
the load is mostly balanced between the nodes. Then, the
bottleneck caused by the usual tree structure does not exist
with the DST. However, the Distributed Spanning Tree is
a new structure which need more studies to be completely
known.
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