Distributed Spanning Tree Algorithms
for Large Scale Traversals

Sylvain Dahan
Laboratoire d’Informatique de I’Université de Franche-Comté
16, Route de Gray - 25030 Besangon cedex - France
Email: dahan@lifc.univ-fcomte.fr

Abstract— The Distributed Spanning Tree (DST) is an overlay
structure designed to be scalable. It supports the growth from
small scale to large scale. The DST is a tree without bottlenecks
which automatically balances the load between the nodes.

This sound paradoxale, but the DST breaks the common
assumption that a tree is build of leafs and intermediate nodes.
In a DST every nodes are equal. The nodes are put together
into small cliques. Then, the cliques are put together into small
cliques of higher level recursively. The cliques are represented in
each node by a routing table. The memory space complexity of
the routing tables is O(log(n)) for a n nodes DST.

A theorical description of the DST was already published but
it does not provide enough information about the capacities of
the DST. The purpose of this article is to give a practical view of
what can be done with a DST. This document can be considered
as a DST traversal catalog. It also outlines some characteristics
and shares the lessons learned from our implementation errors.

Keywords: Unstructured overlay network, Grid, scalability,
traversal algorithms, fairness, data structure.

I. INTRODUCTION

GRID applications federate huge set of resources. Those
resources can be files, databases or processing units. They need
communication and discovery mechanisms. Without them, the
resources are unable to cooperate and the system is unusable.
Simple cluster mechanisms like cliques or centralized sched-
ulers do not support large scale systems and can not be used
by GRID applications. Thus, peer-to-peer mechanisms become
an interesting scalability model for the GRID.

Peer-to-peer applications are mostly build on top of overlay
networks. The surveys [1] and [2] are good introductions about
them. Some overlays are used to build distributed hash tables.
The distributed hash tables are well to implement indexes and
rendez-vous points. But, those are not the only mechanisms
that need overlays. The tree is also an overlay network used by
several distributed algorithms. However, trees have bottlenecks
and are not scalable overlays. Thus, peer-to-peer applications
prefer random graphs to trees.

Usually, to remove a bottleneck, distributed algorithms share
the load between several components. The distributed spanning
tree (DST) is a theoretical structure which is able to distribute
the load of the root and the intermediate nodes of a tree
toward its leafs. This is possible because, the intermediate
nodes do not have a physical existence in a DST. However,
the DST is organized into a hierarchy identical to the tree
by the following way. The leafs are put together into small

groups. Those groups are the DST intermediate nodes. Then,
recursively, the groups are put together into small groups of
higher level creating another level of intermediate nodes. This
way, the DST is able to fairly share the load of the structure
between all the participants and to keep all the advantages of
the tree structures.

The theorical aspects and related works of the distributed
spanning tree are described in [3]. The DST is, in the same
time, a hierarchical and a completely fair structure. Thus, the
DST is disturbing at the first sight and theorical descriptions
are not enough to understand the whole capacities of the DST.
Despite that the structure and its algorithms are really simple,
it was difficult to use the DST at its full potential. We made
several mistakes on how-to operate a DST. Sometime seeing
it as a simple tree and sometime forgetting that the DST is
also a tree.

The aim of the present article is to share our experiences by
explaining the various ways to operate a DST. The correctness
proofs of the presented algorithms are straightforward and
are not included in this document leaving more space for the
explanations. This article can be viewed as a list of traversal
algorithms corresponding to different use cases. Those use
cases present progressively the different aspects of the DST
and are illustrated with an example.

This paper starts by a practical description of the distributed
spanning tree data structure. Then, the section III describes
the main concepts that should be used to operate a DST at its
optimum. The following sections (IV-X) introduce different
traversal algorithms running on top of the DST. Finally, some
hidden faces of the DST are discussed before the conclusion.

II. THE DATA STRUCTURE

The distributed spanning tree structure can be studied at 3
different levels. This section describes the 2 higher levels: the
logical level and the interconnection level.

A. Logical Level

The example drawn in Fig. 1 is used all along this document.
This DST has 21 nodes. Nodes are represented with plain line
rectangles. Each node has a unique and permanent address
which is a, b, ..., or u. At the logical level, nodes are called
subject. Subjects have a virtual name which is here a 3 digits
number. The nodes are organized into a hierarchy of groups.



Groups are represented with dotted line rectangles. Groups
also have a virtual name.

Fig. 1. Logical level of the example

Depending of the level, an element can be a subject or
a group. The elements virtual name depends on their level
and their position. Here, a virtual name is always a z digits
number. x is equal to the number of levels minus the group
level number. Subjects have the level 0. So, in the example
subjects have 3 digits number virtual name, groups of level 1
have 2 digits number virtual name and the group of level 3
has the 0 digit number virtual name, e.

The elements are indexed in their group. The last digit of
an element virtual name is the index of the element. The
other digits are the virtual name of the group that contains
the element. All the elements of a group must have a unique
index. Here, the index is an integer that is bounded by 1 and
the number of elements in the group. The Fig. 1 and the Fig.2
respect this naming convention.

The logical level of the DST structure is defined by the
following properties:

1) A group has between a and b elements. An element can
be a group or a subject depending of the group level.

2) The top level group can have less than a elements.

3) There is only one top level group.

4) The subjects are put together to form groups of level 1.

5) If 7 is not the top level, the groups of level ¢ are put
together to form groups of level ¢ + 1.

6) Every element of a group must know all the other
elements of its group.

The example has 3 levels, so its height is 3. The example
sets a at 2 and b at 3. Those values have been chosen to draw
aesthetics figures. But in real applications, having 2 < a < g
is strongly recommended to simplify the algorithms that insert
or remove a node.

The hierarchical structure of the DST is the same as a tree
where groups act as fathers and elements act as children. The
Fig. 2 clearly shows the example as a tree by displaying it with
another format.

The DST is fully distributed because the load of a group
is fairly shared between its elements. This is true because the
groups delegate their works to their elements. For example,
when € needs to send a message to 1, 2 and 3, this is one of
these 3 elements which sends the message to the 2 others. This
is why all the elements of a group must know each others. Or

Fig. 2. Tree representation of a logical level

more formally, the elements of a group must form a clique.
The DST avoids to use always the same element to balance
the load between the elements of the groups.

B. Interconnection Level

The logical level explained that groups delegate their works
to their elements. This is a recursive process and finally, it is
the subjects that do all the works. In the interconnection level
subjects and groups are abstract elements. Nodes are the real
entities which act as subjects and groups.

The DST is linked by routing tables shared by all the nodes.
The table I shows the routing table of the node d. The routing
table has one row by DST level. So, the example routing
tables have 3 rows. Each row stores the addresses of the
elements of a group. But it is not possible to have the address
of a whole group, because groups are abstract entities in the
interconnection level. Instead, it stores the address of a node
for each element of the group. For example, the node d, is
member of 1. So, it uses the node d to represent 1, the node |
to represent 2 and the node t to represent 3. The node d is
also member of 12. So, it needs to knows an 11’s node to
uses it as 11’s representative and a 12’s node to uses it as
12’s representative. As shown in tablel, each time a node
needs a representative for one of its group, it uses itself as
representative. This is to avoid unnecessary links. So, the
node d uses itself as representative of the groups €, 1 and
12. Every node has a routing table build on the same model.
The different cliques can exist because each node has a link
toward a node for every element of its group for each level.

TABLE I
THE NODE D’S ROUTING TABLE
position representatives
1vl idx 1 2 3
3 1 d j t
2 2 a d -
2 c d e

The tablel also displays the index of the node d for every
level. By reading the indexes from top to down, we get {, 1,
12, 122} which are the virtual names of the different elements
that contain the node d.



The Fig. 3 shows how to build spanning trees with a DST.
Two trees are build in Fig.3. One rooted by the node d and
another one routed by the node k. In the first step, the links
of the top level group are used to contact a node of each
element of the group of level 3. Then, in the second step, each
contacted node uses its links of level 2. Now each group of
level 1 has been contacted. In the third and last step, the links
of level 1 are used and the whole set of nodes are contacted.
The last pictures show the resulting spanning trees. This way,
each node can have its own mapping of the DST which is
distinct of the others.

(a) Spanning tree rooted by d

(b) Spanning tree rooted by k

Fig. 3. Spanning trees build from a DST

Two hypothesis are made about load balancing. Firstly, the
DST supposes that each node has the same probability to be an
initiator and nodes use the spanning tree rooted by themselves.
This is important because the routing tables of the DST are
static. They are easy to update when a node joins or leaves the
structure or when a bottleneck is detected. But it is impossible
to get a new representative each time that the structure is
traversed. If only one or two nodes are used as root, the DST
behaves like all the other trees and lost its main interest.

The second hypothesis is that the algorithms that insert
or remove a node are careful about the DST balance. By
balance, we mean that each group should mostly has the same
number of nodes and every node should be the representative
of its groups the same number of times. If a node is used as
representative by a lot of nodes when other nodes are not used
as representative, the load is not equitably shared. However,
this hypothesis is not inviolable. Some applications do not
need a strong balance, others break it to put more load on
powerful computers.

III. ADVANTAGES OF THE DISTRIBUTED SPANNING TREE

The data structure of the distributed spanning tree has been
presented above. This section describes the main advantages
of the DST. To be able to make an optimal use of the structure,
the associated algorithms should take care about the concepts
explained below.

As a tree, to contact n nodes, only n messages are needed.
And 2n messages are needed to query m nodes. This can be

always true and all the presented algorithms use at most 23
messages to query ¢ nodes.

The structure has its own hierarchical organization. The
traversal algorithms should use this organization to know
which nodes have been already visited or not. Then, it becomes
useless to stamp the visited nodes or to generate a list of
visited nodes. At most, O(log(n)) information are needed to
store the state of a traversal. This correspond to one piece of
information for each level of the DST.

Each node of a DST chooses different nodes as represen-
tatives of the elements of each group. Usually, each node
represents a group for the same number of times that the other
nodes of the group. So, if each node has the same probability
to initiate a traversal, each node has the same probability to be
used as representative of a group. We call it the equiprobability
rule.

If all the nodes of a DST are contacted and if each node has
the same probability to initiate a multicast, then the structure
is able to fairly share the load between the nodes. But some
mechanisms need only partial traversals and contacting the
whole set of nodes is only done in the worst cases. Those
algorithms should care about fairness.

If an in-order traversal is done, the nodes are always
contacted in the same order. If only partial traversals are done,
the first node is visited every time and the last one can be
never visited. This is against the fairness concept of the DST.
Instead each node must be careful about its traversal order
which should be harmonized with the traversal order of the
other nodes. We call it the fairness rule.

Finally, it is possible to start a traversal locally. It is usually
better for a node to visit its own lower group before starting to
visit distant groups. This is useful to build a locality approach
that are needed by some heuristics. As a fully distributed
structure, the DST supports well this kind of optimization
without adding cost.

IV. A PARALLEL TRAVERSAL ALGORITHM

The first presented traversal is a parallel traversal algorithm.
This is the simplest one and the key ideas have already been
explained in section II. The aim of a multicast is to send a
message to every node as fast as possible.

The parallel traversal algorithm sends recursively the mes-
sage (7). Each node represents several elements. In the ex-
ample, a node represents itself, a group of level 1, a group
of level 2 and the group e of level 3. ¢ indicates the level
that receives the message. For example, if the node d receives
the message (2), it knows that the addressee is the group 12,
because the group 12 is its group of level 2.

When a node receives the message (i) with ¢ > 0, it sends
the message (i — 1) to every element of its group of level .
1 = 0 means that the node has received the message as a leaf
and it does not forward it. If i is the number of levels of a
DST, a node send (h) to itself to initiate a multicast. Then
recursively, the message goes down through each level and
is received by every node. The Fig.4 shows step by step a
parallel traversal initiated by the node d.



Fig. 4. Parallel traversal initiated by d

V. A BREADTH FIRST SEARCH ALGORITHM

The breadth first search algorithm is used by several dis-
covery mechanisms like the Gnutella protocol [4] when flow
control or ultrapeers are not available.

The breadth first search is used to query the nodes step by
step. In the first step, the root is queried. After, the children of
the root are queried. Then, it is the turn of the grandchildren.
And so on. The characteristic of this algorithm is that at each
step the number of queried nodes increases exponentially.

With a DST and some distributed algorithms, it is not
possible to contact directly the grandchildren of the root,
because there is no centralized knowledge of the structure.
Each node knows only its neighbors. In a tree, the neighbors
of a node are its father and its children. Thus, to query its
grandchild, a root node need to pass through its children. The
Fig.5 is an example of this breadth first search traversal.

Fig. 5.

A naive breadth first search initiated by d

We discover that this DST traversal is not optimal. The need
to pass each time through its descendants to go a step ahead is
an overhead. The DST can avoid this overhead. So, mapping a
classical tree breadth first search algorithm directly on a DST
is not the better solution.

The main interest of the breadth first search is the number
of queried nodes for each step. Most of the time, the number
of queried nodes is significant and the order of the traversal
is not an problem. In this case, by implementing the locality
concept (§ IIT) only 2¢ messages are needed to contact ¢ nodes.

Instead of starting by the root and going down progressively,
the DST breadth first search algorithm starts from a leaf and
goes up. The initiator queries itself as a leaf. After, it queries
the other leafs of its group of level 1. Then it queries all the
nodes of its group of level 2 but its nodes of level 1. And
so on. By queried recursively all the nodes of its group of
level 7+ 1 without contacting the nodes of its group of level 1,
it is impossible to query a node twice.

The Fig.6 shows a DST breadth first search traversal.
Firstly, the node d query itself as a leaf. Then it queries the

other nodes of the group 12 which is its group of level 1. It
can pursue by querying the nodes of the group 11 which is
the other element of its group of level 2. To finish, it queries
the nodes of the group 2 and 3 which are the other elements
of its group of level 3, e.

Fig. 6. An optimal breadth first search initiated by d

By querying successively groups of higher level, this traver-
sal queries a number of nodes which grows exponentially. This
is true, because the number of nodes inside a group grows in
average exponentially with the level of the group. The number
of elements of a group of level i is always bounded by a’ and
b

VI. A LIMITED DEPTH PARALLEL ALGORITHM

The main problem with the bread first search traversal is
that the number of queried nodes grows exponentially. This
can cause serious scalability drawback as explained in [5]. To
resolve this issue, a limit is implemented. A maximal depth is
set to avoid that to many nodes are queried in parallel for a
unique request.

But another problem comes. What appends when the result
of a traversal is not successful. Some mechanisms return a
failure, other try a new traversal. Doing the same traversal
again and again does not always resolve this problem. Some
mechanisms try to run a new traversal which queries new
nodes. This was an approach used by Mutella, a Gnutella
servants. Despite that this new feature seem to come from a
bug of Mutella [6], the idea is interesting. Its connections does
not last more than few seconds. Thus, it always jumps from
place to place in the Gnutella network. If the servant waits
few minutes between two limited depth parallel traversals, it
is certain that new nodes are queried.

This method can also be used on a DST but in a most
efficient way. Querying every element of a group of level ¢
is like a parallel traversal of depth i. The parallel traversal
algorithm (§IV) can be easily used.

To query new nodes, the algorithm queries a group which
has not been already queried. This is similar to a sequential
traversal, despite that the groups of level ¢ are considered as
leafs. Sequential traversals are explained below. The Fig.7 is
an example of this algorithm with a depth limited at 1. The
centralized traversal (§ VIII) is used in this example to travers
the groups one by one.

VII. A SEQUENTIAL ALGORITHM

The previous sections described parallel traversals. The
following sections focus on strictly sequential algorithms.



Fig. 7.

Limited depth parallel traversal initiated by d

Finding a good sequential traversals algorithm was not a trivial
task. In our applications, we always use the traversal algorithm
to do partial traversals and prefer parallel ones when every
node must be visited. But the issue presented here should also
be interesting for complete sequential traversals. Our first trials
were complete failures because some nodes were overloaded
when other were underloaded. At that moment, we were not
aware about the fairness rule (§III).

The issue did not come from the DST, but came from our
bad usage of it. We thought that the locality concept was
enough. We thought that visiting the lowest groups and visiting
successively the upper groups will balance the load between
the nodes. This approach improves greatly the load balancing
but it was not enough.

When the elements of a group were visited, we always
start by the local element. The local element is the initiator
of the traversal, or the representative element that received
a query from its father group. Then the remaining elements
of the group were visited one by one by following their
index number. Thus the elements inside a group were visited
approximately in the same order. Then, the elements with a
low index got more load than the others.

We found several methods to resolves this problems like
random path, consensus between the elements or overload
detection. But some of them are very difficult to implement
and the cure was worst than the disease. The random path was
the only usable algorithm before we found a better one.

The bottlenecks did not come from the fact that the elements
were visited in following the index numbers. It came from the
fact that the first ones were visited before the others. Our best
heuristic is to follow the elements index number starting by the
representative element. From the equiprobability rule (§III),
which said that every node has the same probability to initiate
a traversal and each node has the same probability to be used
as a representative of one of its group, all the elements of a
group as the same probability to be a representative element.
Visiting the elements by following their index number, starting
by the current representative element, gives to every elements
of the group the same probability to be visited.

The Fig.8 is an example of this sequential traversal. The
index number of the elements can be find in Fig. 1. The last
digit of their virtual name is the index number (see §II-A)
used by the sequential algorithm.

VIII. A CENTRALIZED ALGORITHM

The use of a centralized algorithm with a DST is not an
antinomy. One of the interesting result of the Andrew and

O O O 000
0 0 0 000
. Q.0

00000 00 0.0
@]
0 0. 0:i0 0 00 0 O

000000000
Q
0 000 0 00 0 0

000000000
Q
0 000 0 0o 0 0

0
0

‘O”W

e
0

0.0 010 0 0110 0 0

000

Fig. 8. Sequential traversal initiated by d

Coda File System about scalability is: Whenever there is
a choice between performing an operation on a client and
performing it on a server, it is preferable to pick the client [7].

This algorithm put all the load on the initiators of the
traversals. This is possible and the overhead is small. A node
can not know the whole structure because there are too much
nodes in a DST. But a complete DST traversal can be done
because each node has its own routing table that allows it to
send messages to the elements of its groups. The size of those
routing tables are small and can be sent to every node which
requests it. But a node can not store all these routing tables
at once.

With the previous algorithm (§ VII), 2¢ messages are needed
to contact ¢ nodes. One for the request and one for the answer.
If a node queries directly 7 nodes, 2¢ messages are also needed.
Furthermore, those two methods take the same time to send
all their messages.

The traversals are done with the information stored inside
the routing table of each node. If a node is able to get those
information, it can do a traversal by itself. But the node must
gather this information in parallel of the traversal, because
it can not store the routing tables of the whole DST. This is
possible, if each node that is queried returns, with its response,
its routing table. The overhead is small because the size of a
routing table is small and these information are encapsulated
in the response. If n is the number of nodes of a DST, then
each node stores only [O(log(n))] information.

As all the other centralized tree traversals, the initiator node
uses a stack to store the state of the traversal. Each element
of the stack is the routing table of an intermediate node. In
our case, the intermediate nodes are nodes that were used as
representative of a group.

The Fig. 9 shows a centralized traversal. The traversal order
is exactly the same as the Fig. 8. This is normal, because the
same routing tables are used in the two cases.

elelieleleilelele elelele 0
0 @00 0iooo oiooo o
. 0io 0o 0o 0i0 _ O o,
elelielelell olale eielele ole!
Ogoooooo 0000 0
7777777 0 0o 0O 0i0 . O Ol
C")meOO 000 06 G O ofe
O @00 0000 0000 0
@0 o0io O oio o Ol

Fig. 9. Centralized traversal initiated by d

To resume, by returning the visited node routing table to



the initiator node, the initiator is able to do a traversal and to
query every node by itself. This selfish view can be interesting.
If the system helps everybody and every node works for the
others, it is possible that few nodes launch lot of traversals
overloading the system. With this system, it is not possible
for few nodes to overload the network, because they should
never have enough resources to do it.

The most interesting part of this algorithm is that it has a low
overhead. In fact, it is possible to return only a subset of the
routing tables. Furthermore, in average, there is no difference
in term of node load between the centralized traversal and the
sequential traversal presented previously (§ VII) because every
node sends the same number of messages.

However, this methods has a cost. Every DST node is able
to draw a map of the structure with the references of all
the participants. This can be see as an offense of the user
anonymity. Moreover, this can be used to pinpoint an attack
against the structure.

IX. A RING HIERARCHY ALGORITHM

This algorithm, compared with the two previous sequential
ones reduces the needed number of messages. Each group of
a DST is a clique of its elements. Thus, a group can be used
as a ring because its elements are also indexed. The Fig. 10
illustrates this approach similar to the hierarchical cliques
interconnection network [8]. But in a DST there is no real
intermediate nodes. So, it is possible to visit every node by
only following the rings (Fig. 11.a).

Fig. 10. A ring hierarchy

The fairness of the traversal is provided by the rings. The
use of those rings is closely similar to the heuristic presented
in the two previous traversals. The Fig. 11 illustrates a ring
hierarchy traversal.

For every ring, this algorithm follows all its links. Thus
the message is returned to the initiator or the node used
as representative. The fact that the initiator of a ring walk
received its message at the end of the walk is interesting
for fault tolerance mechanisms. By receiving its message, the
initiator is certain that every element of the ring has received
the message and that the message was not corrupted in the
process. This ring property is used by some protocols like
Pilgrim [9] to assure the consistency of the system.

X. A HAMILTONIAN PATH

A Hamiltonian path, also called a Hamilton path, is a path
between two vertices of a graph that visits each vertex exactly
once [10]. Build a DST Hamiltonian path do not require
any processing. It is done by using the rings of the previous
algorithm. The main difference with a DST Hamiltonian path

Ooibooibo o eielele 060
0 @i000i00O0 0000 00O
777777 oio _o0io_ o 0io .0 0.0,
00000600 06 6 O o060
ozoooooo 0000 000
7777777777 o _oilo o oio .0 O O,
O@ioooiooo ielele 00 0
O@iooo0iooo0 0000 000

0 00 .0 0i0 .0 0 . 0

(b) the firsts steps of the traversal

Fig. 11. A ring hierarchy traversal initiated by d

is that the message is not returned to the representative
element.

A Hamiltonian path traversal is done by sending the mes-
sage (c1, €2, ..., ¢p). This is a list of counters that stores
the number of elements which as been visited in the ring of
each level. The initiator sends the message (0, 0, ..., 0) to the
next elements of its group of level 1. When a level 1 element
received the message, it increments cy. If ¢; is less than the
number of elements in the group, it sends the message to the
next element. If ¢; is equal to the number of elements of the
current node group of level 1, it set ¢; at 0 and increments ca.
Then it send the new message to a node of the next element
of its group of level 2. And so on.

This is possible because the groups are indexed cliques.
Thus, every node knows how many elements are in its group
for every level. And, every node knows a node member of the
next elements of its group for every level. When ¢y, co, ..., ¢,
are respectively equal to the number of elements of each level,
the end of the path is reached. The Fig. 12 is an example of
this traversal.

O
O

Q.0

00 01000

0000 00000
@]
0 0 00 0 0o 0 0O

@] P O 0 O 00 0O O
O O: O O
eee cee8 o0

000000000
0.0
00 0:i0 0 00 0 O

000000000
: @]
0.0 00 0 00 0 0O

00010 00000
Q
0 0 00 0 00 0O O

0o

Fig. 12. A simple d’s Hamiltonian path.

This Hamiltonian path is interesting in theory, but it has a
significant drawback in practical use. A DST is not strictly
balanced. Some groups have more nodes than others. Thus, in
the whole DST, some nodes have more chance to be used
as representative than others. This balancing breach is not
significant in the other traversals because the lost of balance
depends on the height of the DST which is in O(log(n)).



But in the Hamiltonian path, there is no comeback that
permit to erase the lost of balance. Then the lost of balance is
accumulated from step to step. Practical uses show that there
is a convergence of the paths and a subsets of nodes got more
visits than the others when partial traversals are done.

A solution is to add some salt to destroy the convergence.
Instead of visiting one element after the others by following
their index number, the elements of a group are visited
randomly. The state of a element — it is already visited or
not — can be stored with a flag. So, the space needed to store
the element list which are already visited or not, takes few
memory space and can be easily sent with the message.

Thus, when a node receives the message, it picks randomly
an element of its level 1 that was not already contacted. If all
the element of level 1 are already visited, it picks randomly
an element of level 2 that was not already contacted. The
resulting representative will start a level 1 walk by picking
randomly an element of its level 1. And so on. This second
Hamiltonian path destroys the convergence observed in the
first one. The fairness rule is honored. The Fig. 13 shows one
of these Hamiltonian paths.

Fig. 13.

A fair d’s Hamiltonian path.

XI. THE HIDDEN FACES OF THE DST

The last algorithm outlines an hidden faces of the distributed
spanning tree. This last section discuses about them and
explains which aspects are easy to implements and where are
the difficult parts.

A. Balance of the DST

The DST is balanced like a red-black tree. A strictly
balanced tree can be done if the total number of nodes is
known in advance. This is also possible if the DST structure
is rebuild each time that the number of node change.

But those optimal cases are not realist. Most of the time
the number of nodes is unknown and best effort algorithms
are needed to keep the load balanced. The DST structure itself
assures that no groups of level 4 has more than b’ nodes and
less than a’ nodes.

Some heuristics are also available to populate in priority
small groups. Picking a group randomly is not a good one
because groups with more groups than the others will get more
nodes a become bigger. A better approach is to pick a node
— randomly or not —, and to go down the tree by choosing
randomly an elements each time we go one step above. The
resulting leaf is chosen and the new node is inserted into its
group of level 1. Like that, each group has the same probability
to get new nodes.

Another method is to transfer some nodes from a group to
another if the DST becomes unbalanced. But this method has
the two following drawbacks: it need some global knowledge
to know which groups are more loaded than the others; and
a ping pong effect can appear when groups of nodes are
exchanged periodically by two groups.

B. Faults Tolerance

It is assumed that the DST has strong faults tolerance
properties. But it was not proved formally. The cliques are
very tolerant toward node failures. But an assembly of cliques
can be frail if the glue which maintains the cliques together
is weak. This is not the case of the DST because the glue
is inside every node. Each node links together its groups of
every level and this glue is only broken when the node fail.

In our implementation, the fault detection is done in the
groups of level 1. A and B are any two nodes of a same group
of level 1. If A does not received any message from B after a
certain period of time, A initiates the algorithm that removes
B from the DST. This algorithm does not need that B is alive
to be run. When the activity is low, ping messages are sent to
avoid accidental removing of nodes.

This document does not explain what happens if a fault is
discovered when a traversal is run. This is intentional because
the real question is: what does a traversal means when nodes
come and back in the structure randomly. The answer is
closely dependent of the implemented system and not of the
DST structure.

Checking the consistency of a DST is easy. Each time a
message is sent to an element, the sender puts inside the
message its knowledge about the group. This is the number of
elements in the group, its virtual name and the group virtual
name. Only few bytes are needed. The addressee checks those
information to see if they are consistent or not. Dealing with
inconsistency is difficult. If an inconsistency is detected, the
other elements of the group are contacted to know who is right.
If no solution is found, the whole structure is disconnected and
rebuild from scratch.

C. Implementation Difficulties

The presented algorithms are all relatively easy to im-
plement. Adding and removing a node is also easy. The
insertion and deletion algorithm are based on the B-trees
algorithms [11].

When a group is full and there is a need to add a new
element, this group should split into two groups. When a group
as the minimum required number of elements and an element
leaves the group, the group should merge with another group.
This is easy to implement in centralized context but not in a
distributed context.

Mutexes are used in this algorithm. Each group has its own
mutex. The mutex is the first element of the group. Every
element of a group knows the elements order, so it can contact
the mutex easily. Each mutex are doubled for fault tolerance
issues. The split or the merge are done by multicasting the
order to all the concerned nodes.



What’s append if only a part of the concerned nodes
received the message and not the other due to a fault ? The
DST become inconsistent and can not be repaired. This a
unresolved issue.

XII. CONCLUSION

The main originality of the distributed spanning tree is
that the intermediate nodes of the trees are replaced by
groups of nodes. Classify elements in groups and groups of
groups is not new. Zoologists did it from the antiquity. The
object oriented programming and the Internet Protocol address
space also use this technique. TOPLUS [12] also specify a
classification in groups of groups to optimize the network
use for the distributed hash tables. But using those groups
as tree intermediate nodes without creating bottlenecks was
the challenge of the DST.

Plenty of structures were studied to build parallel computers.
There are all interesting because they efficiently organize the
nodes. They address bottlenecks and fault tolerance. Unfortu-
nately, few structures are available for large scale system and
the random graph seem to be the better solution. A notable
exception is the distributed hash tables. But the distributed
hash tables can not do everything. The DST adds a new
element to the scalable overlay network list.

The section III explains that the DST has some properties
describes as the equiprobability rule and the hierarchical
structure. The hierarchical structure is used to do efficient
traversals, and the equiprobability rule helps to avoid bottle-
necks. All the described algorithms use at most 27 messages
to query ¢ nodes. It is also possible to send a message to @
nodes in parallel or by following a Hamiltonian path with only
7 messages.

But those properties do not provides fairness alone. The
traversal algorithms can not do whatever and enjoy the fairness
property of the DST. The fairness property means that if only
a partial traversal is done, every node has the same probability
to be visited. This is of primary importance for discovery
mechanisms. If the traversal is not equitable some nodes are
found more often than the others, so these nodes receives more
load than the others.

Seven DST traversal algorithms have been presented. The
parallel traversal is used to send efficiently a message to every
node. The breadth first search is used to query in parallel a
number of node which grows exponentially with the number
of steps. Then the limited depth parallel traversal limits the
number of nodes contacted in parallel and pursues the traversal
with a sequence of small flooding. After, the first sequential
traversal was presented. Then the centralized algorithm shows
that it is possible to put all the works of a traversal on its
initiator. Finally, the ring hierarchy was used to introduce some
Hamiltonian paths.

The distributed spanning tree is a scalable structure. But
this is not the case of its algorithms and great care should
be take when using them in large scale systems. If nodes
use an unbounded traversal to locate rare items, then lot of
messages are sent and the system collapse under the load. But
if multicast mechanisms are implemented, the DST can be
used. However, If the multicast is one source only, the DST
behaves as a simple tree and specialized multicast tree should
be use instead.

The DST has been tested in small systems and simulations
have been made for large scale systems. However, no real use
of the DST in large scale system has been done. So, it is not
known if another hidden factor will show up and if the system
will degenerate in a not obvious way in large scale.

REFERENCES

[1]1 E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of perr-to-peer overlay network schemes,” IEEE Commun.
Survey, submitted for publication.

[2] X. Li and J. Wu, “Searching techniques in peer-to-peer
networks,” Handbook of Mobile Computing, accepted to appear.
[Online]. Available: http://www.cse.fau.edu/~jie/research/publications/
Publication_files/p2psearching.pdf

[3] S. Dahan, J.-M. Nicod, and L. Philippe, “The distributed spanning
tree: a scalable interconnection topology for efficient and equitable
traversal,” internal report, Dec. 2004. [Online]. Available: http:
/Mifc.univ-fcomte.fr/publis/pub/2004/RR2004-17.pdf

[4] T. Klingberg and R. Manfredi, “Guntella 0.6,” RFC draft, June
2002. [Online]. Available: http://groups.yahoo.com/group/the_gdf/files/
Development/

[5] (2000) Gnutella: To the bandwidth barrier and beyond. Clip2 DSS.
[Online]. Available: http://lambda.cs.yale.edu/cs425/doc/gnutella.html

[6] M. Zaitsev and P. Verdy. (2004) Mutella is abusing the GWebCache
network. forum. [Online]. Available: http://sourceforge.net/forum/forum.
php?thread_id=823417&forum_id=114921p

[7] M. Satyanarayanan, “The influence of scale on distributed file system
design,” IEEE Trans. on Software Eng., vol. 18, no. 1, Jan. 1992.

[8] S. Campbell, M. Kumar, and S. Olariu, “The hierarchical cliques
interconnection network,” Elsevier J. Parallel Distrib. Comput., vol. 64,
pp. 16-28, Jan. 2004.

[9]1 H. Guyennet, J.-C. Lapayre, and M. Tréhel, “Distributed shared memory

layer for cooperative work,” IEEE Computer Society and TC Computer

Communications, Minneapolis, USA, pp. 72-78, Nov. 1997.

E. W. Weisstein. Hamiltonian path. web page. MathWorld. [Online].

Available: http://mathworld.wolfram.com/HamiltonianPath.html

D. E. Knuth, The Art of Computer Programming. 75 Arlington Street,

Suite 300, Boston, MA 02116: Addison-Wesley, 1998, vol. 3, ch. 6.2.4.

L. Garcé-Erice, E. Biersack, P. Felber, K. W. Ross, and G. Urvoy-

Keller, “Hierarchical Peer-to-Peer Systems,” in Proceedings of the 9™

International Euro-Par Conference on Parallel Processing (Euro-Par

2003), 2003, pp. 1230-1239.

[10]
(1]

[12]



