
Pwrake: A parallel and distributed flexible workflow
management tool for wide-area data intensive computing

Masahiro Tanaka
University of Tsukuba

1-1-1 Tennodai, Tsukuba
Ibaraki 3058577 Japan

tanaka@hpcs.cs.tsukuba.ac.jp

Osamu Tatebe
University of Tsukuba

1-1-1 Tennodai, Tsukuba
Ibaraki 3058573 Japan

tatebe@cs.tsukuba.ac.jp

ABSTRACT
This paper proposes Pwrake, a parallel and distributed flexi-
ble workflow management tool based on Rake, a domain spe-
cific language for building applications in the Ruby program-
ming language. Rake is a similar tool to make and ant. It
uses a Rakefile that is equivalent to a Makefile in make, but
written in Ruby. Due to a flexible and extensible language
feature, Rake would be a powerful workflow management
language. The Pwrake extends Rake to manage distributed
and parallel workflow executions that include remote job
submission and management of parallel executions. This pa-
per discusses the design and implementation of the Pwrake,
and demonstrates its power of language and extensibility of
the system using a practical e-Science data-intensive work-
flow in astronomical data analysis on the Gfarm file system
as a case study. Extending a scheduling algorithm to be
aware of file locations, 20% of speed up is observed using
8 nodes (32 cores) in a PC cluster. Using two PC clus-
ters located in different institutions, the file location aware
scheduling shows scalable speedup. The extensible Pwrake
is a promising workflow management tool even for wide-area
data analysis.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Distributed systems;
D.4.3 [File Systems Management]: Distributed file sys-
tems

General Terms
Design,Performance,Measurement

Keywords
workflow, file system, performance evaluation

1. INTRODUCTION
Improvement of network bandwidth in wide area enables
large-scale data sharing and analysis. Data-intensive com-
puting especially in wide area is expected to promote so-

called e-Science, a scientific research area conducted in col-
laboration among several institutes. E-Science infrastruc-
ture which federates geographically distributed computer re-
sources through the Internet is under research and develop-
ment. In the astronomy field, the application of e-Science is
indispensable to studies that require terabytes or petabytes
of observational data taken by several observatories. There
have been several activities of data analysis in astronomy
using TeraGrid [12] and EGEE [3]. Pegasus [2] provides a
mapping task from an abstract workflow defined by a di-
rected acyclic graph (DAG) in XML to concrete workflow
executions for DAGMan [1] using underlying cyberinfras-
tructure. In the case of Montage [7], which is a tool for
astronomical image mosaicing, a workflow DAG depends on
a set of input data. It means that another DAG needs to
be generated for another set of input data. Visual workflow
generation systems, including Kepler [5], Taverna [11], and
Triana [13], make it easy for users to create and edit work-
flows by drag and drop of icons. However, it is still error
prone and not easy to correctly create a practical complex
scientific workflow.

The GXP make [10] is one of research activities to easily
write and execute workflows. It utilizes Makefile to define
a workflow. The features of Makefile including suffix rules
and wildcard expressions are useful to define general work-
flows also. Users can avoid writing the same kind of tasks
repeatedly by writing rules. Even if an execution fails by
some reason, the workflow can be restarted without execut-
ing completed tasks.

Through a case study of the Montage workflow, it turns out
that it requires more flexibility to define a scientific workflow
than Makefile. A simple version of the Montage workflow
requires dynamic creation of a sub-workflow since a part of
workflow is undetermined before execution and it depends
on the result of tasks. Such a workflow can be defined as
follows; the parent make process generates a sub-Makefile
during the workflow execution, and executes it as a child pro-
cess. However, dynamic creation of Makefile is not easy to
maintain nor easy to understand the behavior. Furthermore,
scientific workflows often require programming features.

Therefore, we propose Pwrake, a parallel and distributed
flexible workflow management tool based on a widely-used
open-source tool “Rake” [8], a build tool in Ruby [9]. A
Rakefile has enough flexibility to define the workflow that
includes dynamic workflow creation during the workflow ex-

ecution. This paper describes the design and implemen-
tation of Pwrake, and demonstrates its power of language
and extensibility of the system using a practical e-Science
data-intensive workflow in astronomical data analysis on the
Gfarm file system [4] as a case study.

2. RELATED WORK
GXP [10] is a parallel shell tool written in Python, which
executes a command line on specified multiple computers at
the same time. The GXP make exploits the GNU make for
workflow management and uses GXP as the underlying exe-
cution engine to distribute tasks across cluster nodes. Task
dependencies are defined in Makefile, which is a powerful
language to express workflows. It has implicit and explicit
rules to execute, variable values, and shell scripts. It is pos-
sible to reduce the length of a workflow description dramat-
ically compared to the DAG input file, and to generate a
general workflow for applications. This research is inspired
by the GXP make.

Swift [14] is a scientific workflow system designed for loosely
coupled computations. It uses a statically typed language
called SwifScript for workflow definition. Swift dispatches
a workflow to another scheduler, such as Karajan, while
it is not intended for users to extend the scheduler. Such
batch job submission needs granularity of jobs for efficient
execution. In contrast, Pwrake is designed for executing
workflows consisting of more than thousands of short jobs
efficiently without detail configurations.

3. DESIGN AND IMPLEMENTATION
3.1 Rake
Rake [8] is a build tool similar to make and ant, and is in-
cluded in Ruby version 1.9 or later. The following is an
example of Rakefile:

task :default => "hello"

rule ’.o’ => ’.c’ do |t|
sh "cc -c #{t.source}"

end

file "hello" => ["main.o", "util.o"] do |t|
sh "cc -o #{t.name} #{t.prerequisites.join(’ ’)}"

end

The syntax of Rakefile is same as the Ruby language. This
is an internal Domain Specific Language (DSL) which ex-
ploits a host language for a particular kind of problem. In
this example, the words task and file are Ruby methods
defined in Rake for task definition. Each method takes ar-
guments including a target name, a list of the prerequisite
tasks, and an action described in a code block embraced by
do and end. When task and file methods are called, an
instance of Rake::Task class and Rake::File class are created,
respectively. (Here“Rake::” represents the namespace of the
Rake module.)

3.2 Design of Pwrake
The original Rake has the MultiTask class for parallel ex-
ecution of prerequisite tasks in Ruby threads. The Ruby
thread is implemented in user level. It means that Ruby

Figure 1: Design of Pwrake parallel and distributed
workflow extension. Prerequisite tasks are en-
queued to a task queue, which will be dequeued by
a worker thread in a thread pool that executes the
task in a remote host.

threads are executed in a single process by sharing time. Al-
though it is able to utilize multi-core processors by invoking
external processes using the MultiTask class, Rake has no
mechanism for controlling the number of threads nor thread
pooling. Furthermore, Rake does not have a mechanisms for
invoking processes on remote hosts.

Pwrake is an evolution of Rake for distributed parallel work-
flows. Figure 1 shows the basic design of Pwrake. Pwrake
has a task queue and a thread pool to execute tasks in a
remote host or another process. Instead of creating a Ruby
thread to execute a prerequisite task in the same process,
enqueue it to a task queue. Each worker thread in a thread
pool dequeues a task from the task queue, and executes it in
a remote host. After requesting the execution in a remote
host, the worker thread can yield the CPU cycle another
worker thread. This design can utilize parallelism of multi-
cores and cluster nodes.

3.3 Implementation of Pwrake
We implemented Pwrake by extending Rake. The following
new classes are implemented.

PwMultiTask class is the major part of Pwrake for dis-
tributed parallel workflows. It inherits the Rake::Task class,
and overrides the invoke_prerequisites method, which is
one of Rake::Task class methods, to implement the mech-
anism shown in Figure 1. This method operates as fol-
lows: First, it creates TaskQueue and enqueues prerequi-
site tasks to it. Next, it creates a thread pool of worker
threads for SSH connections to remote (or local) hosts. Fi-
nally, each worker thread dequeues a prerequisite task from
the TaskQueue.

SSH class is a class for invoking a process in a remote host
using the ssh command. It is created before the execution
of a Pwrake workflow for each remote host, more precisely
for each core, as specified by a user, and keeps the ssh con-
nection during the workflow execution.

TaskQueue class manages a task queue. Prerequisite tasks
will be enqueued, which will be dequeued by a worker thread.

Figure 2: Implementation of Affinity Queue class.

3.4 Extensibility of Pwrake
With the modular design of Pwrake, users can add new func-
tions to Pwrake. This design enables making the best use of
modern middleware for distributed computing. In the case
study, we use the Gfarm [4] global distributed file system
to access data in wide area environment. The Gfarm file
system utilizes local storage of compute nodes, which can
be distributed to multiple sites. The Gfarm file system has
many functions for efficient file access such as automatic file
replica selection. However, task scheduling is managed not
by a file system, but by a workflow scheduler. The task
scheduling that is aware of the file location improves file
access performance further. The following two classes are
option classes for task scheduling.

AffinityQueue class is a class to dispatch remote processes
depending on the location of input files. Figure 2 shows
the implementation of AffinityQueue. When an instance
of the AffinityQueue is created, it creates a set of queues
assigned to every host where parallel processes are executed.
AffinityQueue has push and pop methods as interface. The
push method takes two arguments; one is a process string
and the other is the name of a host where an input file is
stored. When the push method is invoked, the process is
enqueued onto all the queues assigned to the affinity hosts.
On the other hand, the pop method takes one argument; the
name of the host to which the thread is connecting. When
the pop method is invoked from a worker thread, it dequeues
the process from the queue assigned to the host.

PwAffinityMultiTask is a subclass of PwMultiTask class.
Using the AffinityQueue class instead of TaskQueue, it dis-
patches prerequisite tasks to a proper worker thread. Before
queuing tasks into AffinityQueue, it investigates the loca-
tions of input files. If a task requires multiple input files, it
is not obvious which file is better to be chosen. The PwAffin-
ityMultiTask class chooses the first input file passed as an
argument so that users can specify.

GfarmSSH class is a subclass of the SSH class. To access
the Gfarm file system, every worker thread requires a mount
point to the Gfarm file system using gfarm2fs command.
For this purpose, we extended the SSH class for mounting
the Gfarm file system just after the start of an SSH session.

4. ASTRONOMY WORKFLOW

We apply Pwrake to a workflow for Montage, an astronom-
ical image processing tool, as a case study.

Montage [7] is a collection of programs for combining astro-
nomical images to generate a custom mosaic image. It is
designed for science uses which require accuracy in astrom-
etry and photometry of astronomical objects. Every task
of Montage is written in a C program and can be invoked
independently. This design enables parallel execution of in-
dependent tasks.

Montage workflow consists of the following tasks. In the first
step, the mProjectPP program projects an input image to
the coordinate system of the output image. The next step
is the correction of sky brightness. In this step, the mDiff
program extracts the difference of overlapped area between
two images. Then the mFitplane program calculates fit-
ting parameters of the diff images by first order. Using this
parameter the mBgModel program calculates fitting param-
eters all over the target image. Using unified parameter,
the mBackground program make brightness correction for
each image. Finally the mAdd program integrates into one
image.

The mProjectPP part of Rakefile is as follows (line numbers
are added for explanation):

1: SRCFITS = FileList["#{INPUT_DIR}/*.fits"]
2:
3: file("pimages.tbl") do
4: OUTFITS = SRCFITS.map do |i|
5: o = i.sub(/^(.*?)([^\/]+).fits/,
6: ’p/\2.p.fits’)
7: file(o => [i, HDR]) do |t|
8: t.rsh "mProjectPP #{i} #{o} #{HDR}"
9: end
10: o
11: end
12: pw_multitask("Proj" => OUTFITS).invoke
13: sh "mImgtbl p pimages.tbl"
14: end

At line 1, SRCFITS is defined as an array of input file names.
The whole block at lines 3-14 is the definition of a file task
whose target is pimages.tbl. At lines 4-11, the SRCFITS ar-
ray is iterated over with the map method. At lines 5-6, each
input file name (i) is substituted to an output file name
(o) by a regular expression. The file method defines a
file task (lines 7-9), supplied with prerequisite files (i, HDR)
and a target file (o). At line 8, a Rake::Task instance (t)
receives the method rsh, which is extended for Pwrake, sup-
plied with a command string of mProjectPP program as an
argument. Note that defined tasks are not executed at the
time of definition. Each target file name (o at line 10) is
collected into the OUTFITS array (at line 4). After that, the
pw_multitask method is called (line 12) with the OUTFITS

array as prerequisite files. The method creates an instance of
the PwMultiTask class. This instance immediately receives
the invoke method, which is a method to execute tasks. Al-
though the invoke method is automatically called from the
Rake system, it is explicitly called here since such dynamic
tasks are not involved in a global dependency. This example
is demonstrating that the Rake system has the capability to
define dynamic workflows. In the invoke method, the mPro-
jectPP tasks are executed as prerequisites, and command

 1000

 10000

 4 8 16 32 48

el
ap

se
d

tim
e

(s
ec

)

number of cores

ideal scalability

NFS

Gfarm

single site 2 sites

#1
#2
#3
#4
#5
#6

Figure 3: Elapsed time of workflow. See text for
measurement details.

strings are added to AffinityQueue along with node infor-
mation of input files. We note that there is no description
on scheduling or file affinity in this Rakefile. We consider
that this design makes it easy for users to utilize distributed
resources of computers.

5. PERFORMANCE EVALUATION
The performance of Montage workflow with Pwrake is mea-
sured using two clusters at University of Tsukuba and at the
National Institute of Advanced Industrial Science and Tech-
nology (AIST). In each cluster, up to eight nodes are used
for the measurement. Each node at University of Tsukuba
has CPU AMD Opteron 2218 (2.6 GHz), 4 cores/node, and
4 GB memory. Each node at AIST has CPU Intel Xeon
CPU (2.80 GHz), 2 cores/node, and 1 GB memory. The
round trip time (RTT) between two clusters is 0.8 msec.

Figure 3 shows the elapsed time of Montage workflow exe-
cutions from projection of input images by mProjectPP to
integration into one image by mAdd, in various configura-
tions using 2MASS all-sky image data. The data set used in
the measurement consists of 1,580 files with the total data
size of 3.3 GB.

The plot #1-#4 is the measurement using 4-32 cores of one
cluster at University of Tsukuba. #1 is the result that
uses NFS. Using 16 cores and more, the elapsed time in-
creases. #2-#4 are the results that uses Gfarm. All three
plots show scalable performance improvement in terms of
the number of cores. #2 uses Gfarm but without data lo-
cation aware scheduling. #3 uses Gfarm with data location
aware scheduling. #4 uses also Gfarm but input data is dis-
tributed across compute nodes. #3 and #4 improves 14%
and 20%, respectively, than #2 in the elapsed time in the
case of 32 cores.

#5 and #6 are the case of 48 cores in two clusters at Uni-
versity of Tsukuba and AIST. Both cases use Gfarm with
data location aware scheduling. The difference is the distri-
bution of input data. In the case #5, each cluster has one
file replica for each input file. In the case #6, the input files
are grouped by celestial coordinate of the image and each

group of files is assigned to each host. This spatial grouping
method reduces the intermediate file transfer between clus-
ters as described in [6]. It improves 41% of performance.

6. CONCLUSION
This paper proposed design and implementation of Pwrake,
a parallel and distributed flexible workflow management tool.
Pwrake is extensible and has flexible and powerful workflow
language to define scientific workflow. This paper demon-
strated its powerful workflow language feature and extensi-
bility by a case study of a practical e-Science data-intensive
workflow in astronomical data analysis on the Gfarm file
system in wide area environment. Extending a scheduling
algorithm to be aware of file locations, 20% of speed up was
observed using 8 nodes (32 cores) in a PC cluster. Using two
PC clusters located in different institutions, the file location
aware scheduling showed scalable speedup. The extensible
Pwrake is a promising scientific workflow management tool.

7. ACKNOWLEDGMENTS
This work is a part of research on resource linkage for the
formation of research communities (research on data sharing
technology), which is a subtheme in the research and devel-
opment of REsources liNKage for E-scIence (RENKEI) for
building next-generation IT infrastructure, funded by the
Ministry of Education, Culture, Sports, Science and Tech-
nology.

8. REFERENCES
[1] DAGMan (Directed Acyclic Graph Manager).

http://www.cs.wisc.edu/condor/dagman/.

[2] E. Deelman, G. Singh, M.-H. Su, J. Blythe, et al.
Pegasus: a Framework for Mapping Complex Scientific
Workflows onto Distributed Systems. Scientific
Programming Journal, 13(3):219–237, 2005.

[3] EGEE. http://www.eu-egee.org/.

[4] Gfarm. http://datafarm.apgrid.org/.

[5] Kepler. http://kepler-project.org/.

[6] L. Meyer, J. Annis, M. Wilde, M. Mattoso, and
I. Foster. Planning spatial workflows to optimize grid
performance. In SAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pages
786–790, New York, NY, USA, 2006. ACM.

[7] Montage. http://montage.ipac.caltech.edu/.

[8] Rake. http://rake.rubyforge.org/.

[9] Ruby. http://www.ruby-lang.org/.

[10] K. Taura. Grid Explorer : A Tool for Discovering,
Selecting, and Using Distributed Resources Efficiently.
IPSJ SIG Technical Report 2004-HPC-99, pages
235–240, 2004.

[11] Taverna. http://www.taverna.org.uk/.

[12] TeraGrid. http://www.teragrid.org/.

[13] Triana. http://www.trianacode.org/.

[14] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, and
M. Wilde. Swift: Fast, reliable, loosely coupled parallel
computation. 1st IEEE International Workshop on
Scientific Workflows, pages 199–206, 2007.

