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 Many Scientific Fields

◦ Astronomy, Bioinformatics, Earth Science, 
Particle Physics, … 

 Data I/O > Computation

◦ Interaction through File System

 Handles huge amount of data

◦ HSC for Subaru Telescope generates 
~300GB/night.

◦ Requires Parallel processing on Distributed 
Computer Systems

Background: Data-intensive Science
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Example of scientific workflow:
Montage (Astronomy image processing)

mProjectPP

mDiff+mFitplane

mBGModel

mBackground

mShrink

mAdd

mAdd

mJPEG

Output image

Workflow DAG

Input images…

Process

file

output

input

Task
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Pwrake Workflow System
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 Parallel Workflow extension to Rake

 Target: data-intensive and many-task 
scientific workflow

 Pwrake is based on:

◦ Rake : Ruby version of UNIX Make

 Workflow definition language for Many-Task 
Scientific Workflows

◦ Gfarm : Distributed File System

 Scalable I/O performance

 Use local storage of compute nodes

Pwrake Workflow System
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 Task definition format

◦ e.g. DAX

◦ Need script to define many tasks.

 Design a new language

◦ e.g. Swift (Wilde et al. 2011)

◦ Learning cost, Niche community.

 Use an existing language

◦ e.g. GXP Make (Taura et al. 2013)

◦ Extension rule is not enough for scientific 
workflows.

Workflow Definition Language
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 Build tool written in Ruby

 Widely-used tool in the Ruby 
community

 Rake is an internal DSL 

◦ Ruby is an host language

 reduces learning cost

 able to use Ruby language features

Our solution: Rake – Ruby Make

Dec 4, 2014ISP2S2 8



 For-Loop

BASENAMES = Array of basenames

for i in BASENAMES
file "out/#{i}.fits" => "src/#{i}.fits" do |t|
sh "mProjectPP #{t.prerequisites[0]} #{t.name} region.hdr"

end
end

 Complex Rule using script

FILEMAP = Mapping input files to output files

rule /^d¥/.*¥.fits$/ => proc{|x| FILEMAP[x]} do |t|
p1,p2 = t.prerequisites
sh "mDiff #{p1} #{p2} #{t.name} region.hdr"

end

Useful features of Rake 
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 Inherit Rake

◦ Workflow (task) definition language

◦ File-based task dependency

 Resume/Restart

◦ Implementation, e.g., Task class, Application module

 Implement Pwrake extension

◦ remote process execution

◦ parallel task execution

◦ task queue (includes scheduling)

◦ find file location using Gfarm API

Design of Pwrake
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Pwrake Archetecture

Pwrake process

Worker nodes

worker thread

worker thread

worker thread

worker thread

Master node

enq
deq

process

process

process

process

SSH

Task Graph

Task

Queue

Gfarm

files

files

files

files
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Design of Task Queue

TaskQueue

Node 1

Node 2

Node 3

deqenq

NodeQueue

Other nodes

Task

worker thread
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I/O-aware Task Scheduling

 Issues:

◦ File Locality

◦ Disk cache
 (buffer/page cache)
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Locality-aware Scheduling
based on MCGP

(Multi-Constraint Graph Partitioning)

(CCGrid 2012)
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1. Naïve locality scheduling

◦ Assign a task to a node where its input file is 
stored.

2. Method using MCGP (Multi-Constraint Graph 
Partitioning)

◦ Our proposal (CCGrid 2012)

(Idle workers steal tasks)

Locality-aware Scheduling Methods
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 Is Graph Partitioning also 
applicable to Workflow 
DAG?

◦ Vertex ⇔ Computation

◦ Edge ⇔ Communication

◦ Minimize:

 Edge-cut ⇔ Data movement

Graph Partitioning ⇔ Task Scheduling
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Graph Partitioning on DAG

Standard Graph Partitioning Ideal Partitioning for Scheduling

Node-A Node-B Node-C Node-D

Former Tasks Latter Tasks

Standard GP is not aware of parallelizable tasks
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Multi-Constraint Graph Partitioning 
(MCGP)
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Proposed method: MCGP
(Multi-Constraint Graph Partitioning)

w1 = (1,0,0,0,0)

w2 = (0,1,0,0,0)

w3 = (0,0,0,0,0)

w4 = (0,0,1,0,0)

w5 = (0,0,0,1,0)

w6 = (0,0,0,0,1)

w7 = (0,0,0,0,0)

w1 w1 w1 w1

w2 w2 w2

w4 w4 w4 w4

w5 w5

w7

w3

w6 w6

Ntask ≧ Ngroup ：
• set 1 at ith dim
• set 0 at others

Ntask < Ngroup ：
• set 0 to all 
dims
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w1 = (1,0,0,0,0)

w2 = (0,1,0,0,0)

w3 = (0,0,0,0,0)

w4 = (0,0,1,0,0)

w5 = (0,0,0,1,0)

w6 = (0,0,0,0,1)

w7 = (0,0,0,0,0)

Result of MCGP

Uniform Distribution
in each phase

Node-A Node-B

Minimize Edge-cut
applied to Entire Graph
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Image Position and Task Nodes

Naïve locality MCGP

(Initially, input files are stored in one node)
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Data Movement between nodes
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Workflow Execution Time
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Disk cache-aware
Task Scheduling

(Cluster 2014)
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 LIFO queue:

◦ Intermediate files are read soon. 

◦ High probability that the file is cached.

◦ Trailing task problem (Armstrong et al. MTAGS 2010)

Disk Cache-aware Task Scheduling

Workflow DAG
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Proposed Scheduling methods
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Core Utilization

mProjectPP mDiff

Sequential tasks

Trailing Task

No Trailing Task
mDiff overlaps mProjectPP

FIFO

LIFO+HRF

LIFO

Rank Eq+HRF (different setting)
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Measurement of Strong Scaling
(1-12 nodes, Logarithmic)

1node

8cores

4nodes

32cores

∝ 1/ncores

Next Slide

x1.9 speedup

from FIFO
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Measurement of Strong Scaling
(4-12 nodes, Linear)

4nodes
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∝ 1/ncores

12 %
speedup

from LIFO
(trailing task)
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 We developed Pwrake workflow system 
for data-intensive, many-task workflows.

 I/O-aware workflow scheduling:

◦ Locality-aware scheduling using MCGP

 remote file access: 88% ⇒ 14%

 workflow execution: 31% speedup 

◦ Disk cache-aware scheduling

 LIFO: 1.9x speedup

 HRF: ~12% speedup

Conclusion
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