Grid Programming (1)

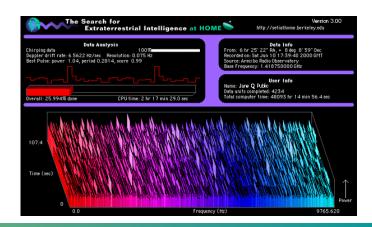
Osamu Tatebe University of Tsukuba

Overview

Grid Computing

- Computational Grid
- Data Grid
- Access Grid

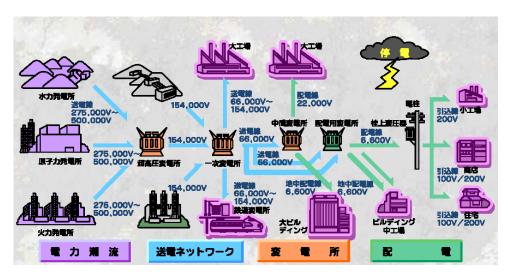
Grid Technology


- Security Single Sign On
- Information Service
- Data management
- Widearea Data Transfer
- Resource Management

Open Grid Forum (OGF)

http://www.ogf.org/

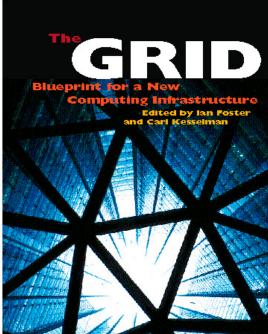
Example of Grid Technology


- Distributed computing: a technology to connect among supercomputers and to share them
- P2P desktop computing: SETI@Home, UD Cancer research project, or Fight AIDS@home
 - http://setiathome.berkeley.edu/
 - http://fightaidsathome.scripps.edu/
- New Internet technologyIPv6, QoS, IPsec, . . .

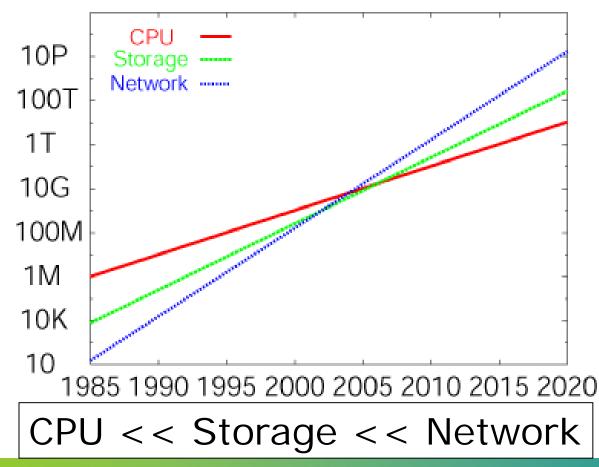
- So Cant

Grid

- Used after the middle of '90
- From similarity to Electric Power Grids
 - Electric Power Grids provides enough power, using another route in case of trouble. It is monitored, controlled, and operated.
 - Quite important invention besides power generator, electronic products



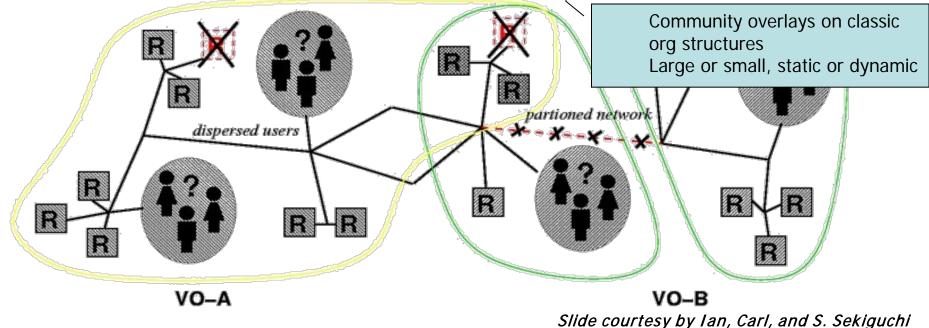
http://www.tepco.co.jp


Definition of Grid in 1999

A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities
 From "The GRID – Blueprint for a New Computing Infrastructure", 1999
 http://www.mkp.com/grids/

Technology Trend : Grid is feasible!

- CPU speed doubles every 18 months (Moore's law)
- Storage capacity doubles every 12 months
- Network speed double every 9 months


- 100 times in each 5 years
- We can use not only local resources, but also resources in wide area
 - Computers, storage, visualization devices, super computers, special purpose machines, experiment devices, researchers, applications, libraries, data, ...

Computers, storage, sensors, networks, ... Sharing always conditional: issues of trust, policy, negotiation, payment, ...

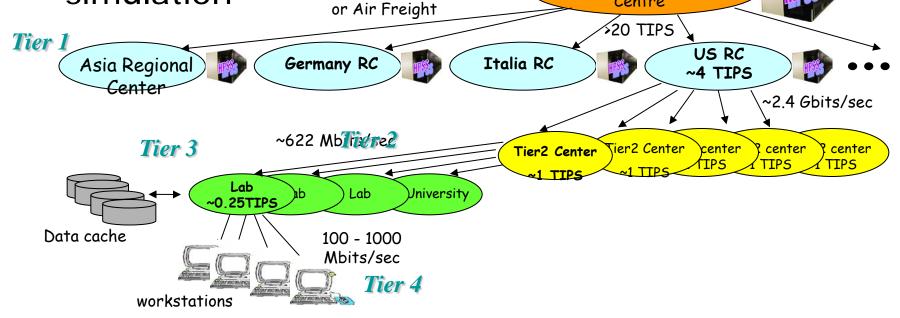
Beyond client-server: distributed data analysis, computation, collaboration,

Resource sharing & coordinated problem solving in dynamic, multi-institutional virtual organizations

- Communities committed to common goals
 - Assemble team with heterogeneous members & capabilities
 - Oistribute across geography and organization
 - Q Assuming the absence of central location, central control, omniscience, existing trust relationships, . . .

Virtual organization (VO) and Grid

- A set of dynamic and flexible resources
 - Including several institutes managed independently
 - One institute may belong to several VOs
- Large and small
- Secure and controlled resource sharing
 - Computers, storage, sensor, experiment device, application, data, ...
- Some restrictions
 - ▶ Idle time, only morning, a part of resources, limited programs, ...
- Client-server, P2P
- Technology to construct a VO flexibly, and to share resources securely
 - Secure authentication and proper authorization
 - Resource access protocol, discovery protocol
 - Fault tolerance
 - Common protocol


Several scenarios

- A small VO consisting of companies A and B
- Company A has a supercomputer, Company B has a visualization device
- Both employees shares these resources securely
- A customer would like to introduce a ventilation system
- It is not clear which location is efficient to install due to a complex room structure
- Use an ASP for Computational fluid dynamics simulation, store the result in an SSP, and send it to a house company

Large scale scenario

- Large Hadron Collider (LHC) experiment
- 3000 researchers in 20 countries
- Hierarchical regional center model

Petabyte scale data analysis and validation by simulation
~622 Mbits/sec Tier 0
CERN Computer Centre

Grid Architecture and standard

Requirement for Grid Technology

- Support various security policy required by resource providers and users
- Enough flexibility for various resources and sharing policy
- Scalability for many resources, many users, many programs
- Dynamic resource management
 - Dynamic extensibility of resources
 - Fault tolerance and self organization
 - Resource status is often changed

- Efficient execution for large-scale data intensive computing and large-scale simulation
 - ► HPC, HTC
 - Support high bandwidth and long latency
- Standard protocol to share resources flexibly among different groups
 - Support various resources, policies, protocols
- Common software stack to avoid duplicate development

Standard based Grid Architecture

Development of Standard Protocol, Standard Service

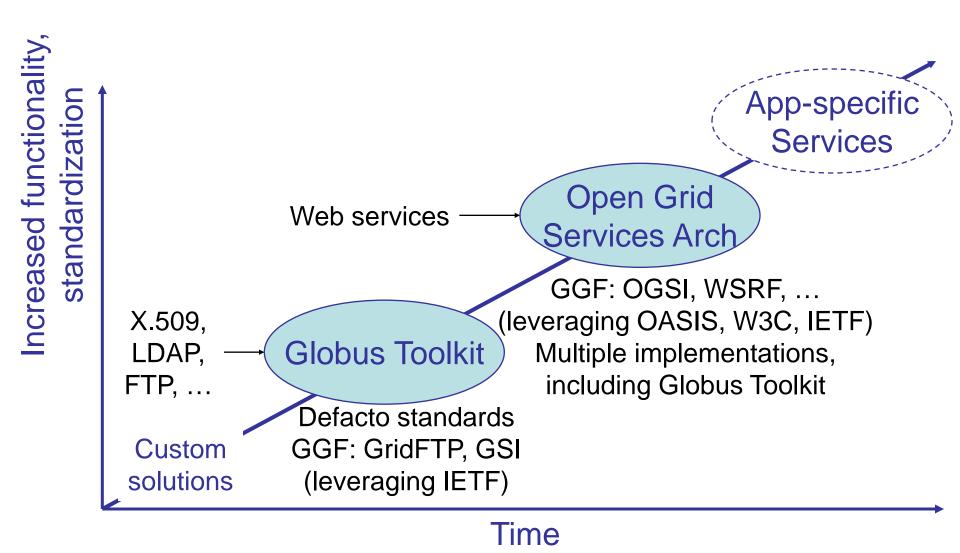
- Common access protocol to remote resources
- Based on existent protocols

Development of Grid API and SDK

- Interface for Grid Protocol and Grid Service
- Higher level of abstraction to develop applications
- Success story: Internet
 - ► HTTP and HTML
 - ► TCP/IP, telnet, ftp, mail, . . .

Important points

Based on Internet Protocol, Web Services TCP/IP, WSDL, SOAP, etc.


Define minimum services required for the Grid

Grid Security

- Addressing WS-A (WS-Addressing)
 - <u>http://www.w3.org/Submission/ws-addressing/</u>
- State WSRF (WS Resource Framework)
 - @ http://www.oasis-open.org/committees/wsrf/
- Notification WS-N (WS-Notification)

@ http://www.oasis-open.org/committees/wsn/

Evolution of the Grid

Papers: Grid technology

Ian Foster, Carl Kesselman. Computational Grids. In The Grid: Blueprint for a Future Computing Infrastructure, Morgan-Kaufmann, 1999. <u>http://dsl.cs.uchicago.edu/papers/gridbook_chapter2.pdf</u>

I. Foster, C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure, Second Edition, ISBN 978-1-55860-933-4, 2003. <u>http://www.mkp.com/grid2</u>

I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.. International J. Supercomputer Applications, 15(3), 2001. <u>http://www.globus.org/research/papers/anatomy.pdf</u>

I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration.; June 22, 2002. <u>http://www.globus.org/research/papers/ogsa.pdf</u>

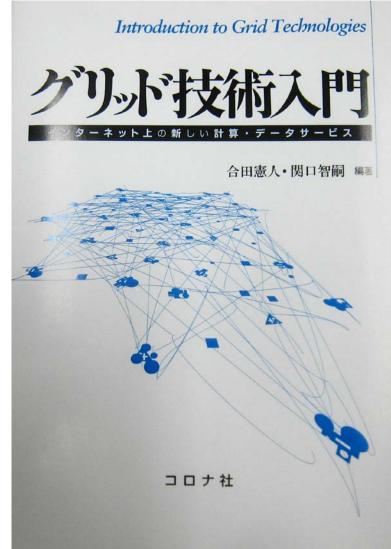
Papers: Web Services

- Web Services Addressing, <u>http://www.w3.org/Submission/ws-addressing/</u>
- Web Services Resource Framework, <u>http://www.oasis-open.org/committees/wsrf/</u>
- Web Services Notification, <u>http://www.oasis-open.org/committees/wsn/</u>

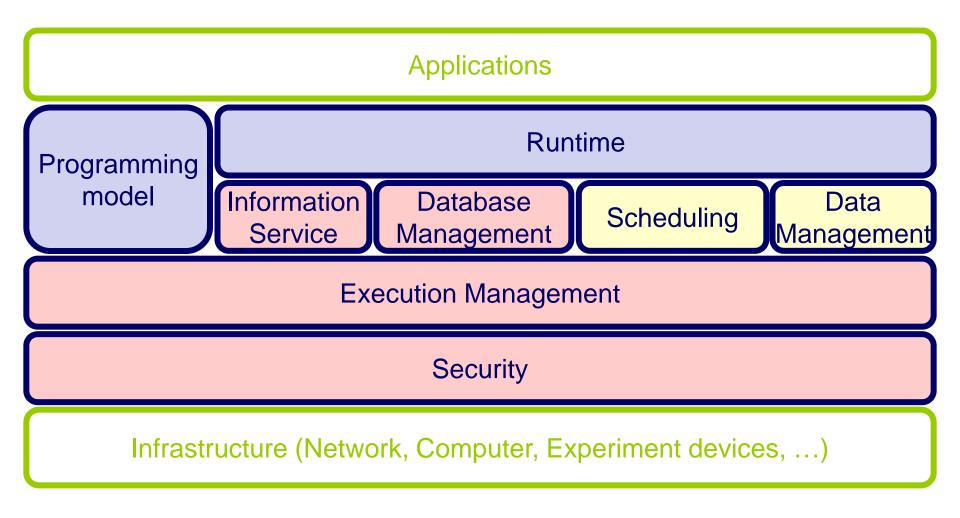
Papers: Grid Software

Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International Journal of Supercomputer Applications, 11(2):115-128, 1997.

ftp://ftp.globus.org/pub/globus/papers/globus.ps.gz


Andrew Grimshaw, Michael Lewis, Adam Ferrari, and John Karpovich. Architectural Support for Extensibility and Autonomy in Wide-Area Distributed Object Systems. University of Virginia CS Technical Report CS-98-12, June 1998.

http://www.cs.virginia.edu/~legion/papers/CS-98-12.ps


Grid Technology

Introduction to Grid Technology

- New Computational and Data Service in the Internet
- Editors: Kento Aida, Satoshi Sekiguchi
- Corona publishing, 2008
- ISBN: 978-4-339-02426-5

Grid Technology (1)

Grid Technology (2)

- Grid Security Infrastructure (GSI)
- Grid Information Service (GRIS)
- Widearea data transfer (GridFTP)
- Resource Manager (Grid inetd, GRAM)
- Aggregation of Information Service (Grid Index Information Service, GIIS)
- Resource broker (Condor-G, Nimrod/G)
- Data replica management service
- Co-allocation and co-reservation service
- Workflow management service

2

Grid Security (GSI)

Single Sign On

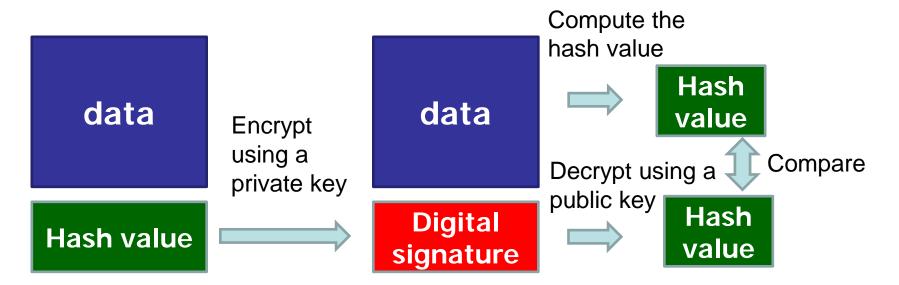
Access authentication and authorization by a single user authentication (pass phrase, onetime password)

Certificate delegation

Limit the delegated certificate

Expiration, level of delegations, limited authority

Mitigate the damage when it is stolen

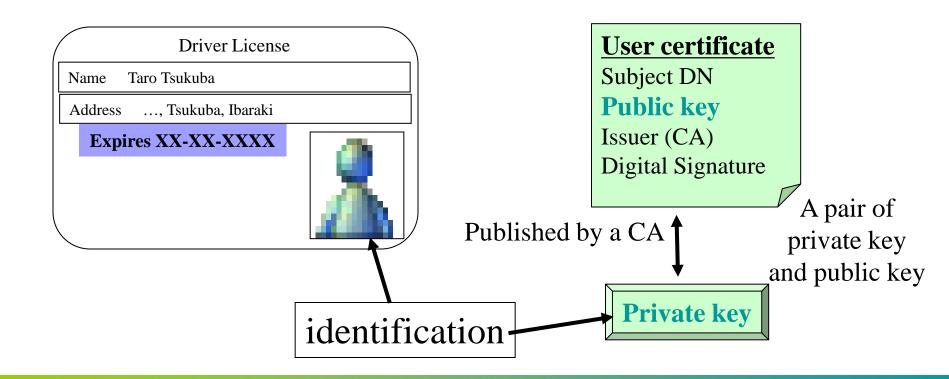

- Support dynamic service creation
- Protect a private key

Public-key Cryptosystem

- Asymmetric key cryptosystem
- A public key e and a private key d
- Plain text e \rightarrow cryptogram d \rightarrow plain text
- Computation from e to d is computationally difficult
- A public key not needed to be secret. It is easy to be provided
- Digital signature is required to authenticate a sender and to check a falsification
- Since it is often slow than symmetric key cryptosystem such as DES, it is used to send small messages such as a key of a symmetric key cryptosystem for data transfer of the rest, and credit card information
- Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996 <u>http://cacr.math.uwaterloo.ca/hac/</u>

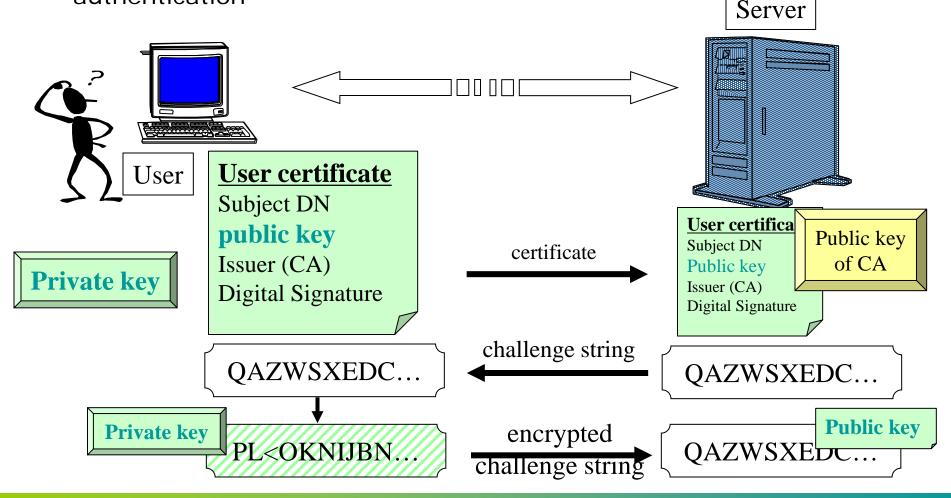
Digital Signature

- Ensure the integrity. The data is not altered or not falsified
- Encrypted hash value of the data
- At a receive side, compare the hash value of the data and decrypted value of the digital signature


Grid Security Infrastructure (GSI)

- Basically public key cryptosystem + X.509 certificate + TLS (Transport Layer Security)
- Mutual authentication and certificate delegation using a proxy certificate
- Public key cryptosystem (asymmetric key cryptosystem)
 - Public key is used to encrypt the data
 - Private key is used to decrypt the cryptogram
- Entity (user, machine, ...) keeps a certificate signed by a certificate authority
- X.509 certificate includes
 - Subject name of an entity (user ID, host name)
 - Public key
 - Issuer (Certificate Authority)
 - Digital signature signed by the CA
 - e Ensure the certificate is issued by the CA
 - e Ensure the Subject name
 - Ensure the relationship of the subject name and the public key

<u>Certificate</u> Subject DN **Public key** Issuer (CA) Digital Signature


Certificate

- It is like a drivers license. A picture, a method to identify an entity, corresponds to a private key
- Signed by a certificate authority
- Whether it is credible or not depends on the CA is dependable

Authentication by GSI

The following example shows the user authentication, but the server will be authenticated later by the user. Thus it is called mutual authentication

Extension by GSI

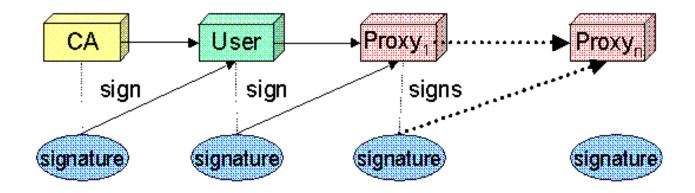
Proxy Certificate Profile

- Proxy Certificate Profile based on X.509 (RFC 2459)
- restricted impersonation within a PKI based authentication system.

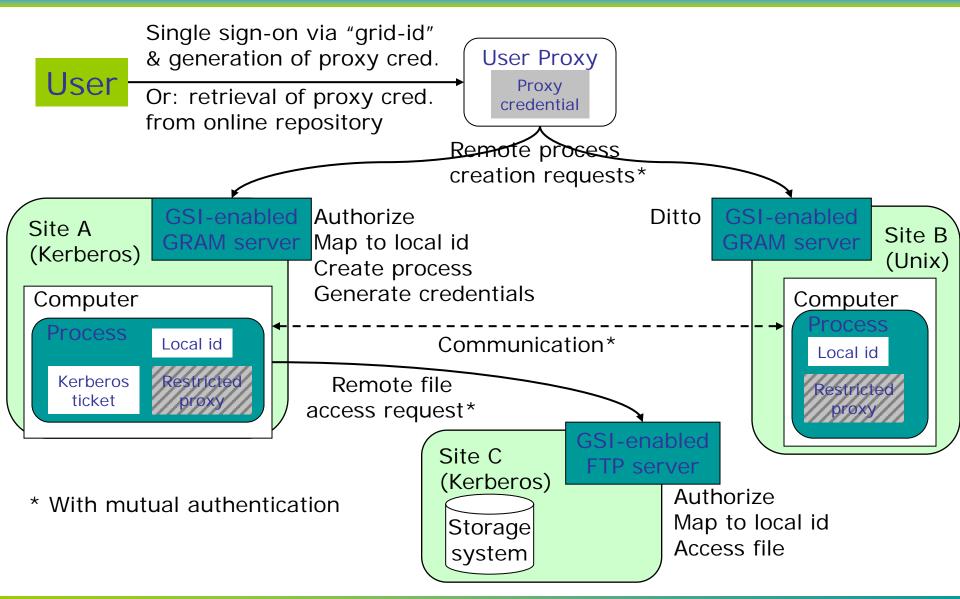
Extension of GSS-API (RFC 2743)

- Export and import of the credential
- Delegation at any point of timing
- Extension of Credential operation
 - e Limited delegation

Internet X.509 Public Key Infrastructure Proxy Certificate Profile

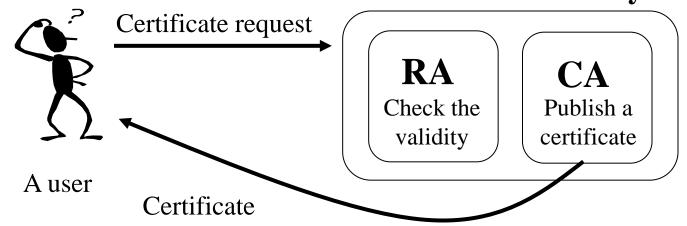

- RFC 3820 by Grid community OGF
- GSS-API Extensions
- ftp://ftp.rfc-editor.org/in-notes/rfc3820.txt

Delegation of the certificate


A pair of public and private keys are generated, and signed by a user not a CA

Private key is NOT transferred

Proxy certificate can be validated by the valid user certificate



GSI in Action "Create Processes at A and B that Communicate & Access Files at C"

Certificate authority

- A third party to publish a certificate
- Two roles: Registration Authority (RA) and CA
 @RA: identify users and computers
 @CA: publish a certificate
- No way to know how and where published certificates are used Certificate authority

Initial Setting for Certificate Authority (In case of Globus Toolkit)

Setup for a certificate authority

- \$GLOBUS_LOCATION/setup/globus/setup-simple-ca
 - Subject DN for CA

cn=CA, ou=CS, o=Univ Tsukuba, c=JP

- e Email address
- expiration date
- Passphrase for a private key
 - It is used to sign a certificate requested by a user
 - + 'space' cannot be used
- \$GLOBUS_LOCATION/setup/globus_simple_ca_CA_Has h_setup/setup-gsi -default
 - The public key of the CA is stored at /etc/gridsecurity/certificates

How to obtain a host certificate

Request for a host certificate

- grid-cert-request -host <hostname>
 - @ /etc/grid-security/hostkey.pem (private key)
 - @ /etc/grid-security/hostcert_request.pem
 - @ /etc/grid-security/hostcert.pem (empty file)
- Ask RA to identify yourself
- Send hostcert_request.pem to CA, and ask to be signed
 - grid-ca-sign -in hostcert_request.pem -out signed.pem
- Receive the signed hostsigned.pem, and store it at /etc/grid-security/hostcert.pem
- Display a content of the certificate
 - openssl x509 –in hostcert.pem -text

How to obtain a user certificate

Request for a user ceritificate

- grid-cert-request
 - ~/.globus/userkey.pem (private key)
 - @ ~/.globus/usercert_request.pem
 - ~/.globus/usercert.pem (empty file)
- Ask RA to identify yourself
- Send usercert_request.pem to CA, and ask to be signed

sprid-ca-sign -in usercert_request.pem -out signed.pem

Receive the signed signed.pem, and store it at ~/.globus/usercert.pem

Register to Grid-mapfile

- Grid-mapfile-add-entry -dn "/C=JP/O=Univ Tsukuba/OU=CS/OU=tatebe.net/CN=Osamu Tatebe" -In tatebe
 - @Add an entry to /etc/grid-security/grid-mapfile

Setting of GSI-enabled OpenSSH

Copy \$GLOBUS_LOCATION/sbin/SXXsshd to /etc/init.d/gsisshd

service gsisshd start

Proxy Certificate and login

Create a proxy certificate

prid-proxy-init [-debug] [-veriry]

Display the certificate

▶grid-proxy-info

Login using GSI authentication

- gsissh hostname
- User proxy certificate will be delegated

FTP using GSI authentication

gsisftp hostname

Papers: Grid Security

- Ian Foster, Carl Kesselman, Gene Tsudik and Steven Tuecke. A Security Architecture for Computational Grids. Proc. 5th ACM Conference on Computer and Communication Security, 1998. <u>ftp://ftp.globus.org/pub/globus/papers/security.ps</u>. <u>.gz</u>
- Eshwar Belani, Amin Vahdat, Thomas Anderson, and Michael Dahlin. The CRISIS Wide Area Security Architecture. Proc. USENIX Security Symposium, January 1998.
 - http://now.cs.berkeley.edu/WebOS/papers/uss.ps

Information Service

- Discovery, monitoring, planning, basic mechanism for adaptive applications
- Various, many, dynamic, geographically distributed resources
- Fault tolerance
 - Network disconnectivity and node failure are the norm not exceptions

Information

- IP address, administrator
- ► CPU, OS, software
- Network bandwidth, latency, protocol, logical topology
- CPU load, network load, disk usage, load

> . . .

Usage Scenario of Information Service

Service discovery service

► Find a new service

Super scheduler

Select appropriate computational resources depending on system configuration, CPU load, ...

File replica selection service

Choose most appropriate file copy

Adaptive application agent

Change application behavior depending on runtime resource situation

Failure discovery service

Find too much load, and failure

Performance monitoring

Examine a bottleneck of performance

Requirement (1)

Distribution of information providers

- ► All information is old due to the distribution
- Need the confidence of the information
 @ Timestamp, expiration date, ...
- Transfer the information as soon as possible
- Generally speaking, no need to provide consistent view of the global status
 - If it provides, the system does not scale to the number of providers

Focus on efficient information transfer from a single source

Requirement (2)

Cope with failure

- Resources and network tend to fail
- Should be fault tolerant
 - A single failure should not prevent from collecting information of other resources
 - Provided information may not be complete. or inconsistent

- Information service should be distributed and not centralized as much as possible
 - Increase possibility to obtain information of available resources
- Should assume failure is not an exception but the norm

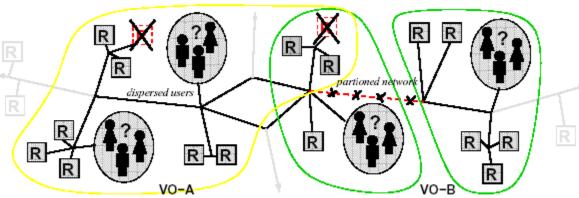


Figure 1. Distributed virtual organizations. Users in VO-A and VO-B have access to partially overlapping resources. While VO-B is split by network failure, it should operate as two disjoint fragments.

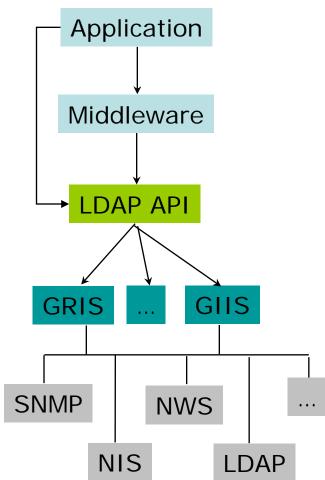
Requirement (3)

Variation of information service component

- There are various kinds of resources. Some may require a special requirement to discover and to monitor
- Various kinds of discovery and monitoring methods
- Various kinds of access policy since resources are located in several administration domains
 @ Access control

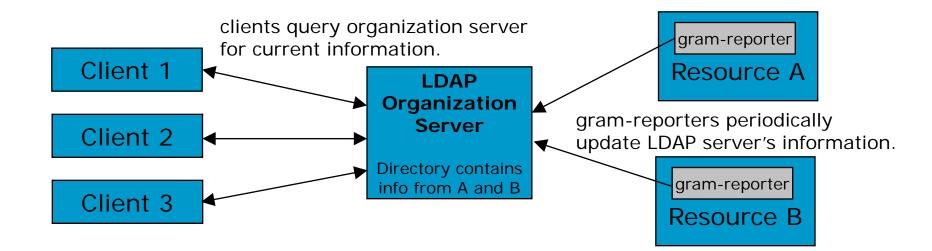
Globus MDS Approach

Based on LDAP

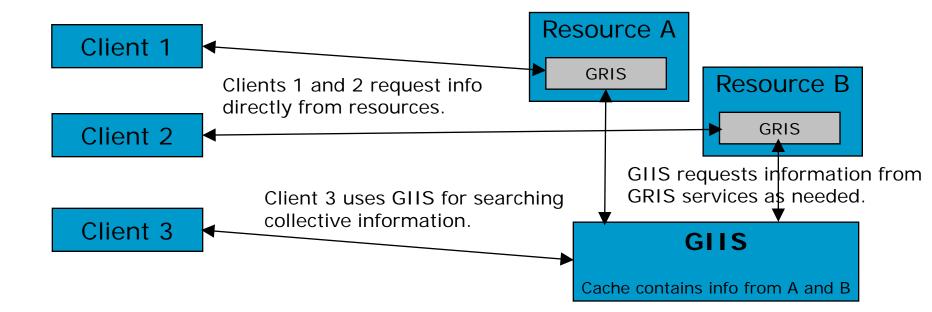

- Lightweight Directory Access Protocol v3 (LDAPv3)
- Standard data model
- Standard query protocol

Globus Toolkit schema

Host-centric representation


Globus tools

- ► GRIS, GIIS, gram-reporter
- ► Data discovery, publication,...


"Classic" MDS Architecture

- Resources push information into a central organization server via regular updates (globus-gram-reporter), where it can be retrieved by clients.
- Regular updates don't scale as the number of resources grow rapidly. Commercial LDAP servers are optimized for "read" requests, and can't handle frequent "write" requests.
- If organization server is unavailable, no information is available.

"Standard" MDS Architecture (v1.1.3)

- Resources run a standard information service (GRIS) which speaks LDAP and provides information about the resource (no searching).
- GIIS provides a "caching" service much like a web search engine. Resources register with GIIS and GIIS pulls information from them when requested by a client and the cache as expired.
- GIIS provides the collective-level indexing/searching function.

Component of MDS (Metacomputing Directory Service)

Grid Resource Information Service (GRIS)

- Provide the information of a single resource
- Multiple information providers can be supported
- LDAP protocol to inquire

Grid Index Information Service (GIIS)

- Provides the information collected by multiple GRIS servers
- Help to provide the information distributed by multiple GRIS servers
- LDAP protocol to inquire

Papers: Information Service

- K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. Grid Information Services for Distributed Resource Sharing. Proc. Tenth IEEE International Symposium on High-Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.
 - http://www.globus.org/research/papers/MDS-HPDC.pdf