
Design and implementation of PVFS-PM:
a cluster file system on SCore

Koji SEGAWA Osamu TATEBE Yuetsu KODAMA Tomohiro KUDOH
Toshiyuki SHIMIZU

Grid Technology Research Center,
National Institute of Advanced Industrial Science and Technology (AIST)

k.segawa@aist.go.jp

Abstract

This paper discusses the design and implementation of
a cluster file system, called PVFS-PM, on the SCore clus-
ter system software. This is the first attempt to implement
a cluster file system on the SCore system. It is based
on the PVFS cluster file system but replaces TCP with
the PMv2 communication library supported by SCore to
provide a scalable, high-performance cluster file system.
PVFS-PM improves the performance by factors of 1.07 and
1.93 for writing and reading, respectively, with 8 I/O nodes,
compared with the original PVFS on TCP on a Gigabit
Ethernet-connected SCore cluster.

1. Introduction

Recently, cluster systems are widely used as high per-
formance computing environments. A cluster system can
not only provide increased computing power by aggregat-
ing the performance of processors, but can also provide a
large, high-performance file system by combining the local
file systems of computing nodes. To provide such a com-
bined file system, a parallel cluster file system software ap-
plication required.

The Real World Computing Partnership (RWCP) devel-
oped cluster system software called SCore [3] to provide
a parallel processing environment for cluster systems. As
described in the next section, SCore provides a parallel
processing environment, including various tools and com-
mands. A high-performance, low-level communication li-
brary called PMv2 [7] is available on SCore. PMv2 uses
a lighter communication protocol than TCP/IP. However,
SCore does not yet have its own cluster file system that has
performance scalable to the number of nodes.

PVFS [2] is an open-source cluster file system on Linux.
PVFS is implemented on top of a TCP/IP communication

stack. We ported PVFS to the SCore cluster system soft-
ware. In this paper, we call the original PVFS, “PVFS-
TCP,” and the ported one, “PVFS-PM.” PVFS-PM is the
first cluster file system implemented on SCore. By using
the PMv2 communication library instead of TCP/IP, PVFS-
PM yields better performance than PVFS-TCP on the same
hardware.

Since the PMv2 API for Gigabit Ethernet and Myrinet
are the same, PVFS-PM can be used for both networks.
PMv2 on Myrinet does not support TCP/IP communication.
Therefore, when SCore is used on top of Myrinet, PVFS-
PM is the only way to provide a cluster file system using
Myrinet. When Gigabit Ethernet is used, communication
using PMv2 and TCP/IP can use the same network. There-
fore, not only users who use a SCore-based programming
environments but also those who use the basic Linux en-
vironment with TCP/IP communication can enjoy the high
performance of PVFS-PM without additional hardware.

2. PVFS and SCore

2.1. PVFS

PVFS is a freely distributed parallel file system for Linux
clusters, and it has been developedmainly by Clemson Uni-
versity. It is a parallel file system using local disks dis-
tributed on each node of a PC cluster. PVFS is designed
as a client/server system. This system consists of I/O dae-
mons (iods) executed on the I/O nodes providing the local
disks, a meta data manager (mgr) that is holding the meta
data of the file system, and client libraries for accessing the
parallel file system (Figure 1).

PVFS stripes files using uniform-sized stripes across the
I/O nodes in the cluster. The local file system is used for
storing the file stripes. Client libraries provide the PVFS
I/O API. In the API, the client accesses the meta data man-
ager to get file information, such as a list of I/O nodes and

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 



 

mgr 

I/O Client 

iod 

iod 

PVFS 

iod 

Figure 1. Configuration of PVFS

stripe size, when the file is opened. This information can be
freely specified to set up file arrangement. When the file is
accessed for read and write, the client accesses I/O nodes di-
rectly without accessing the meta data manager. Therefore
PVFS can achieve efficient file I/O. PVFS also supports
Linux VFS. By mounting PVFS using VFS, programs that
use standard UNIX I/O API such as open(), read(),
write(), close() can access files on PVFS without
any changes.

NFS is a commonly used file system for clusters. Since
NFS uses a single file server, its performance is limited and
it becomes a bottleneck when many clients accesses the file
server at the same time. On the other hand, since PVFS has
multiple I/O nodes, it can achieve disk performance scal-
able to the number of I/O nodes involved, and can tolerate
simultaneous access by many clients. PVFS is a user-level
system and it can be used without any kernel modifications.

2.2. SCore

The SCore Cluster System Software is a high-
performance parallel programming environment for work-
stations and PC clusters. It was developed by the Parallel
Distributed System Software Laboratory of the RWCP, and
is currently maintained and distributed by the PC Cluster
Consortium [6].

SCore supports a single system image for a cluster. Us-
ing SCore, users are not aware of whether or not a sys-
tem is a cluster of single/multi-processor computers or a
cluster of clusters. A parallel application or an ordinary
UNIX command may be run by just specifying a computer
node group of such a cluster. A Unix command runs in the
SIMD execution mode. To utilize processor resources and
to enable an interactive programming environment, SCore
multiplexes parallel processes in the processors’ space and
time domains simultaneously. Parallel processes are gang-
scheduled when multiplexed in the time domain.

SCore uses a high-performance, low-level communica-
tion library called PMv2. PMv2 is described in detail in the

next section.

3. Design and Implementation on PVFS-PM

PVFS-PM was designed based on the original frame-
work of PVFS. The implementation is based on PMv2, ver-
sion 2.1 and PVFS, version 1.5.5.

3.1. PMv2

PMv2 is a high-performance, low-level communication
library dedicated to cluster computing using many types of
networks. Currently, PMv2 drivers for Myrinet, Ethernet,
UDP, and the Shmem shared memory interface have been
implemented. To achieve low latency and high-throughput
communication, PMv2 uses a lighter weight user-level com-
munication protocol compared to TCP/IP, and eliminates
kernel traps and data copies between kernel and user space.
PMv2 provides not only point-to-point message passing
APIs, but also remote memory operations.

PMv2 provides a virtual network mechanism called
PMv2 channel in order to realize a multi-user environment
on the SCore software. The channel provides reliable data-
gram communication, instead of connection-oriented com-
munication such as that of TCP/IP. Each process of a par-
allel application uses the same PMv2 channel exclusively,
which forms a virtual network. The PMv2 context stores
the status of the PMv2 channel, and enables context switch-
ing on the SCore scheduler.

3.2. PVFS-PM

Since PMv2 does not support socket APIs, it is necessary
to emulate the socket layer using PMv2 APIs. Basically,
the PMv2 message-passing APIs are quite useful to emulate
this layer, for instance, replacing read() and write()
with pmReceive() and pmSend(), respectively, while
taking the following considerations into account.

1. First, a program using PMv2 should initialize PMv2
devices. The program acquires a list of nodes that are
used in the cluster system. It then opens a new context
and associates this with nodes and channels. Lastly, it
obtains its own node number in the context.

2. Replacing socket APIs with PMv2 messages-passing
APIs is not enough to implement PVFS-PM. PVFS
needs the source node id of the connection, which is
not obtained by PMv2 APIs because it is not included
in the PMv2 packet header. In PVFS-PM, the source
node id , Sender, of each packet is added in the packet
data format, which is depicted by Figure 2.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 



Sender Payload DataHeader

PM packet data field

Figure 2. PVFS-PM packet format

3. In PVFS-TCP, the select() or poll() system
call is used for processing remote I/O requests or ac-
knowledgments basically in order of data arrival. For
instance, an iod may receive requests from multiple
clients, and a client may either wait for data or ac-
knowledge requests from multiple iods. Since pmRe-
ceive() receives messages from multiple senders in
order of arrival, select() and poll() can be re-
placed with pmReceive().

4. Performance evaluation for large files

4.1. Evaluation environment

We compared the performance of PVFS-TCP and PVFS-
PM by measuring the write and read bandwidth of large
files. The performance of PVFS-TCP was evaluated using
Linux 2.4.18 and Linux 2.4.19. Since the performance us-
ing 2.4.19 was much higher (especially for write) than that
using 2.4.18, we only show the results using 2.4.19 in this
paper. For PVFS-PM, Linux 2.4.18-2SCore, which is used
in the SCore 5.2 package, is used.

Other elements of the evaluation environment are as fol-
lows (Figure 3).

� cluster node

– Fujitsu PRIMERGY L200 �17

chipset : ServerWorksHE � SL

CPU : PentiumIII1:13GHz� 1

memory : 1GB

HDD : FujitsuMAN3184MC �

2; SeagateST373307L C� 1SCSI

– System files and the transferred data are
stored on different disks.

network

� NIC: 3Com 3C996B Gigabit Server NIC

� Switch: 3Com SuperStack 3 4924 (non-blocking Gi-
gabit Ethernet switch)

Gigabit Ethernet driver

� Broadcom Gigabit Ethernet Driver bcm5700 with
Broadcom NIC Extension (NICE), ver. 2.0.18
(08/24/01)

Gigabit Ethernet switch

Meta data manager node
(mgr)

8 Client nodes8 I/O nodes
(iod)

Figure 3. Evaluation environment

4.2. Benchmark program

To evaluate bandwidth, we wrote a disk I/O benchmark-
ing program which uses PVFS client libraries. This pro-
gram executes read/write operations of files on the PVFS
file system from a client node using the native PVFS API.
It accurately measures elapsed time using the processor’s
timer register to investigate the cause of a performance bot-
tleneck. File size, Read/write block size, PVFS stripe size
and the number of I/O nodes can be specified as parameters
of this program.

A read or write operation is executed as follows. First,
the client calls pvfs read()/pvfs write() with a
specified block size value. Then, the PVFS library func-
tion divides the block size into units of the stripe size, and
assigns the units to I/O nodes and communicates with the
I/O daemons (iods) in the order described in a configuration
file. This process is repeated until the specified file size is
accessed. In this program, a meta data manager process, an
I/O daemon process, or a client process is run on each node.

Clients execute this benchmarking program as follows.
(Client processes access different files.)

1. Each client node starts writing a file simultaneously,
and repeats writing three times without synchroniza-
tion. We measured the elapsed time of the second write
to get the write bandwidth. By skipping the first write,
the effects of write buffers are eliminated. Linux uses
unused memory as write buffer. I/O daemons receive
a certain amount of written data and stores it in the
write buffer, without writing to the hard disk. This
write buffer is filled up during the first write, and then
the data received (or an amount of data equal to it) is
actually written to the hard disk. In doing the third
write, the network utilized resources uniformly during
the measurement.

2. After all processes finish the previous operation, all
the client nodes start reading the written file simultane-
ously. Reading is repeated three times, and the elapsed
time of the second read is measured.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 



0

100

200

300

400

500

0 2 4 6 8
Number of Clients

B
an

dw
id

th
 [M

B
/s

]

1iod 2iods 4iods 8iods

Figure 4. PVFS-TCP write bandwidth

0

100

200

300

400

500

0 2 4 6 8

Number of Clients

B
an

dw
id

th
 [M

B
/s

]

1iod 2iods 4iods 8iods

Figure 5. PVFS-TCP read bandwidth

4.3. Evaluation Results

Bandwidth used for writing and reading with PVFS-
TCP, and writing and reading with PVFS-PM are shown in
Figures 4 and 5, and Figures 6 and 7, respectively. The file
size was 2 Gbytes and the stripe size was 64 Kbytes. Band-
widths shown are the aggregate bandwidth of all clients. In
this measurement, the bandwidth of each client was almost
the same. The highest bandwidth with PVFS-TCP was 349
Mbytes/sec (8 iods, 8 clients) and 164 Mbytes/sec (8 iods,
2 clients) for writing and reading, respectively. The highest
bandwidth with PVFS-PM was 373 Mbytes/sec (8 iods, 8
clients) and 316 Mbytes/sec (8 iods, 8 clients) for writing
and reading, respectively.

Without the effects of write buffers, theoretical maxi-
mum bandwidth is limited by the aggregate network band-
width or the aggregate hard disk I/O bandwidth, whichever
is smaller. Gigabit Ethernet, the link bandwidth of which
is 125 Mbytes/sec, is used as the network, and the disk I/O
bandwidth of each node is about 50 Mbytes/sec. Therefore,

0

100

200

300

400

500

0 2 4 6 8
Number of Clients

B
an

dw
id

th
 [M

B
/s

]

1iod 2iods 4iods 8iods

Figure 6. PVFS-PM write bandwidth

0

100

200

300

400

500

0 2 4 6 8
Number of Clients

B
an

dw
id

th
 [M

B
/s

]

1iod 2iods 4iods 8iods

Figure 7. PVFS-PM read bandwidth

the aggregate network bandwidth is calculated as

number of clients� 125Mbytes/sec;

and the aggregate hard disk bandwidth is calculated as

number of iods� 50Mbytes/sec:

When the number of iods is smaller than the number of
clients, the network bandwidth is limited by the number of
iods. However, in such a case, the total bandwidth is lim-
ited by the hard disk bandwidth. Figure 8 shows the the-
oretical maximum bandwidth and the measured bandwidth
when the number of iods is 8.

Considering that the theoretical maximum bandwidth is
calculated without taking any overhead into account, PVFS-
PM almost fully utilizes the bandwidth of the network and
hard disks. The read bandwidth of PVFS-TCP does not
scale to the number of client nodes. The overhead of TCP
alone is not sufficient to explain this large bandwidth dif-
ference between PVFS-TCP and PVFS-PM. Further inves-
tigation is needed to identify the cause of this bandwidth
degradation with PVFS-TCP.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 



Figure 8. Comparison of theoreticalmaximum
and measured bandwidth

0
10
20
30
40
50
60
70
80
90

100

(m
s)

close

write

open

LO
C

A
L

N
F

S

P
V

F
S

-T
C

P
(k

er
ne

l)

P
V

F
S

-P
M

(k
er

ne
l)

P
V

F
S

-T
C

P
(n

at
iv

e)

P
V

F
S

-P
M

(n
at

iv
e)

Figure 9. Breakdownofwrite accesses for 1M-
byte file

5. Performance evaluation for small files

5.1. Breakdown of file creation and file access

Figure 9 and Figure 10 shows the breakdown of the file
creation and file access time with 1 Mbyte file size. When
the file size is changed, the open() and close() time
is almost the same and the read()/write() time is
changed in proportion to the file size. We compared the
six types of file systems; local, NFS, PVFS-TCP kernel,
PVFS-PM kernel, PVFS-TCP native and PVFS-PM native.
The local is the result of the file I/O on the local disk, and
the NFS is the result of the file I/O on the NFS file system.
The PVFS kernel is the result of the file I/O on the PVFS
file system that is mounted using the kernel module, and the
PVFS native is the result of file I/O using the native PVFS
API. In the results, PVFS uses a mgr, an iod and a client,
which are run on the different hosts. There is no major dif-

0

10
20

30
40
50

60

70
80

90

(m
s)

lo
ca

l

N
F

S

P
V

F
S

-T
C

P
(k

er
ne

l)

P
V

F
S

-P
M

(k
er

ne
l)

P
V

F
S

-T
C

P
(n

at
iv

e)

P
V

F
S

-P
M

(n
at

iv
e)

close

read

open

Figure 10. Breakdown of read accesses for
1M-byte file

ference between PVFS-TCP and PVFS-PM.

PVFS takes about 37 msec in open() for both reading
and writing, actually which is comparable with the time for
read() and write() in this case. In the result, PVFS
is about three times slower than the local in write and four
times slower than the local in read. It is a little faster than
the NFS in write and a little slower than the NFS in read.
When writing, NFS spends a lot of time in close() op-
erations compared to others. For writing, NFS is provided
with a write buffer, and thus a part of the actual writing op-
eration to the disk may be postponed and processed when
close() is invoked.

The breakdowns of write access on PVFS native and
PVFS kernel are similar. The total writing time of PVFS
kernel is 1.2 times larger than that of the PVFS native. This
may be caused by the overhead of the kernel module of
VFS. On the other hand, the breakdown of read access in
PVFS kernel is quite different from that of PVFS native.
The open() time of PVFS kernel is quite a bit smaller
than that of PVFS native, but the read() time of PVFS
kernel is more than three times larger than that of PVFS na-
tive. This is caused by the difference of file management.
PVFS native call always obtains the file system metadata
from a meta data manager when opening a file regardless
of the open mode for reading or writing because there is
no metadata cache at the client side. On the other hand,
the PVFS kernel module utilizes file system inodes in the
Linux VFS at the client side, and does not need to obtain
the updated file system metadata especially when opening a
file for only reading not for writing. That is why opening a
file for reading takes only 0.8 msec using the PVFS kernel
module, while it takes 38 msec using the PVFS native API.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 



0

20

40

60

80

100

120

140

local NFS PVFS-TCP
kernel

PVFS-PM
kernel

Ex
ec

ut
io

n 
Ti

m
e 

[s
ec

]

Figure 11. Building time of the PVFS version
1.5.5

5.2. PVFS compilation and file cache effect

From the above breakdown, it is obvious that the perfor-
mance of small files on PVFS is lower than the local and
NFS file systems because of the overhead of open(). We
also evaluated the performance by compiling PVFS source
code on the file systems. By using the kernel module of
PVFS, we can use the PVFS file system via the VFS inter-
face. We measured the execution time of the make com-
mand which compiles the pvfs-1.5.5 source tree on local,
NFS, PVFS-TCP and PVFS-PM file systems. It consists of
68 C language source files, of which the average file size is
5 Kbytes. The file sizes differ from 300 bytes to 57 Kbytes.
Figure 11 shows the results.

Here, PVFS uses one iod node. While the execution time
on NFS is double that of local, PVFS, both of PVFS-TCP
and PVFS-PM, is about ten times that of local.

The poor performance of the PVFS seen in the compila-
tion process comes from the effect of the file cache.

Figure 12 shows the breakdown of file creation and read
access for relatively small number of small files which fits
the in-core cache enough. In this evaluation, twenty 1-MB
files are created, all of which will be read twice. Between
the write test and the first read test, all in-core cache is
copied to disk using fsync(2). In the local file system, the
bandwidth of write and the second read achieved about 200
Mbytes/sec on average due to the in-core cache, while the
bandwidth of the first read achieved only 44 Mbytes/sec. In
the case of the NFS, the second read performed almost the
same as the case of the local file system. On the other hand,
the PVFS kernel module does not utilize the in-core cache
at all even in the second read case, which makes the differ-
ence of the performance more than 12 times compared with
both the local file system and the NFS.

0

10

20

30

40

50

60

70

W
R

IT
E

R
E

A
D

-1

R
E

A
D

-2

W
R

IT
E

R
E

A
D

-1

R
E

A
D

-2

W
R

IT
E

R
E

A
D

-1

R
E

A
D

-2

W
R

IT
E

R
E

A
D

-1

R
E

A
D

-2

local NFS PVFS-TCP PVFS-PM

(m
s)

close

read/write

open

0

10

20

30

40

50

60

70

W
R

IT
E

R
E

A
D

-1

R
E

A
D

-2

W
R

IT
E

R
E

A
D

-1

R
E

A
D

-2

W
R

IT
E

R
E

A
D

-1

R
E

A
D

-2

W
R

IT
E

R
E

A
D

-1

R
E

A
D

-2

NFS PVFS-TCP PVFS-PM

(m
s)

close

read/writeread/write

open

Figure 12. File cache effects in small file ac-
cess

This result shows that the current PVFS is not suitable
for daily use, such as compilation of small files.

6. Related Work

Vollestad [8] ported PVFS to SCI (Scalable Coherent
Interface). He measured the result using 2 iods and 1
client, and achieved 52.4 Mbytes/sec and 29.9 Mbytes/sec
for write and read, respectively.

Carns et. al. [2] evaluated the performance of PVFS on
the Chiba City cluster using TCP/IP on Myrinet [5]. How-
ever, their Myrinet only achieves 37.7 Mbytes/sec as mea-
sured by the ttcp test. Therefore, with 8 iods, the aggre-
gate bandwidth of PVFS is 180 to 255 Mbytes/sec for read
and write, respectively. They achieved 687 Mbytes/sec ag-
gregate read bandwidth using 32 iods and 28 clients.

In [1], the performance of PVFS over TCP/IP is evalu-
ated, using Myrinet. TCP on top of Myricom’s GM mes-
sage passing system is used. They achieved about 260
Mbytes/sec aggregate bandwidth when the number of iods
is seven. Since they assigned both an iod and a client to
each node, the result can not be directly compared with our
result. No performance degradation such as that shown in
our measurement of PVFS-TCP was reported.

Mache et. al. [4] reported that they achieved over 1
Gbyte/sec I/O throughput by using a 32-node cluster, Giga-
bit Ethernet and PVFS. However, most disk accesses were
local in this benchmark.

7. Conclusion

We implemented a cluster file system, PVFS-PM, on the
SCore cluster system software. Compared with PVFS-TCP,
PVFS-PM shows scalability up to eight iods, and improved

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 



the performance by factors of 1.07 and 1.93 for writing and
reading, respectively, with eight iods. PVFS-PM provides
users a high-performance cluster file system which fully uti-
lizes the network and hard disk performance.

On the other hand, the performance of the meta data
manager is insufficient for use as a general file system, and
improvement of the performance seems to be necessary in
future.

We evaluated PVFS performance using Gigabit Ethernet.
We plan to measure the performance using Myrinet both
with TCP and with PMv2 to investigate the essential ad-
vantage of using a light-weight communication library for
PVFS implementation.

Since PVFS-PM is implemented using PMv2 APIs, it
can be made available on a cluster connected by Gigabit
Ethernet and Myrinet.

Acknowledgment

We would like to acknowledge Mr. Satoshi Sekiguchi,
Director of the Grid Technology Research Center, AIST, for
supporting the research presented in this report.

References

[1] A. W. Apon, P. D. Wolinski, and G. M. Amerson. Sensitivity
of Cluster File System Access to I/O Server Selection. In
Proceedings of CCGrid2002, pages 183–192, May 2002.

[2] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur. PVFS: A
Parallel File System For Linux Clusters. In Proceedings of the
4th Annual Linux Showcase and Conference, pages 317–327,
Atlanta, GA, October 2000.

[3] A. Hori, H. Tezuka, and Y. Ishikawa. User-level Parallel
Operating System for Clustered Commodity Computers. In
Proceedings of Cluster Computing Conference 1997, March
1997.

[4] J. Mache, J. Bower-Cooley, J. Guchereau, P. Thomas, and
M. Wilkinson. How to achieve 1 gbyte/sec i/o throughput
with commodity ide disks. In Poster presentation of SC2001,
November 2001.

[5] Myricom, Inc. http://www.myri.com/.
[6] PC Cluster Consortium. http://www.pccluster.org/.
[7] S. Sumimoto. A Study of High Performance Communication

Using a Commodity Network of Parallel Computers. PhD
thesis, Keio, 2000.

[8] J. E. Vollestad. A high performance cluster file system using
sci. InMaster’s Thesis, Department of Informatics, University
of Oslo, 2002.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 


