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1 Introduction

High performance and data-intensive computing and networking technology has
become a vital part of large-scale scientific research projects in areas such as
high energy physics, astronomy, space exploration and human genome projects.
One example is the Large Hadron Collider (LHC) project at CERN, where
four major experiment groups will generate an order of Petabyte of raw data
from four big underground particle detectors each year, data acquisition starting
from 2006. Grid technology will play an essential role in constructing world-
wide data analysis environments where thousands of physicists will collaborate
and compete for the particle physics data analysis at the energy frontier. A
multi-tier “Regional Centers” world-wide computing model has been studied
by the MONARC Project[1]. It consists of Tier-0 center at CERN, multiple
Tier-1 centers in participating continents, tens of Tier-2 centers in participating
countries, and many Tier-3 centers in universities and institutes.

Grid Data Farm is a Petascale data-intensive computing project initiated
in Japan. The project is collaboration among KEK (High Energy Accelerator
Research Organization), ETL/TACC (Electrotechnical Laboratory / Tsukuba
Advanced Computing Center), the University of Tokyo, and Tokyo Institute of
Technology (Titech). The challenge will involve construction of a data process-
ing framework that will handle hundreds of Terabyte to Petabyte scale data
emanated by the ATLAS experiment of LHC. Both KEK and the Univ. of
Tokyo will collaborate for building a Tier-1 regional center in Japan. The un-
derlying hardware will be a thousands node scale PC cluster, each node facilitat-
ing a near-Terabyte of storage, and incoming data of approximately continuous
600Mbps bandwidth from CERN will be systematically stored and will be sub-
ject to intensive processing. The Grid Data Farm will facilitate the following
features for collider data processing as well as serving as a framework for other
types of data-intensive scientific applications:

∗http://datafarm.apgrid.org/
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• Global distributed filesystem for Petabyte scale data,

• Parallel I/O and parallel processing for fast data analysis,

• World-wide group-oriented authentication and access control,
• Thousands-node, wide-area resource management and scheduling,
• Multi-Tier data sharing and efficient access,
• Program sharing and management,

• System monitoring and administration,

• Fault tolerance / dynamic reconfiguration / Automated data regeneration
or re-computation

Major components of the Grid Data Farm are the Gfarm client, the Gfarm
server and the Gfarm (distributed) filesystem with Gfarm parallel I/O. The
Gfarm filesystem consists of a thousands node scale PC cluster, each node with
a local disk and possibly distributed over the Grid, and Petascale data are dis-
tributed across the disks in the Gfarm filesystem managed by the Meta Data
Management System and the Gfarm Filesystem Daemon. The Meta Data Man-
agement System provides a mapping from logical file names to the distributed
physical file components and also stores metadata such as a replica catalog and
a history that is necessary to reproduce the data. The Gfarm filesystem dae-
mon provides a facility of remote file operations with access control as well as
remote program loading and resource monitoring. Large-scale distributed data
are accessed by the Gfarm parallel I/O library and processed in parallel.

The Grid Data Farm middleware is based on Grid-based RPC (GridRPC),
in particular an extended variant of our Ninf system[7, 5], and other lower level
Grid service middleware, especially Globus[2]; it makes it easy for the users to
register his analysis software and process massive amounts of data spread over
multiple nodes in an easy way. Load balancing, Job scheduling, Fault Tolerance,
and Data Maintenance are transparently or semi-transparently handled by the
system. Users can interact with the system using GUIs or a simple shell front
end; more sophisticated client program interaction is possible with GridRPC.

2 Software Architecture of Grid Data Farm

Figure 1 depicts a software architecture of the Grid Data Farm. Major compo-
nents of the Grid Data Farm are the Gfarm client, the Gfarm server and the
Gfarm filesystem. The Gfarm filesystem consists of the Gfarm Meta Database
and the Gfarm pool that is a thousands node scale PC cluster, each node with a
local disk and possibly distributed over the Grid. A large-scale distributed file,
called Gfarm file, is divided into several fragments and distributed across the
disks in the Gfarm filesystem. A Gfarm file, specified by the Gfarm file name
or the Gfarm URL such as gfarm:/path/name, is accessed using the Gfarm
parallel I/O library, and processed in parallel.

The Gfarm filesystem daemon (gfsd) runs on each node of the Gfarm pool
to facilitate remote file operations with access control in the Gfarm filesystem
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Figure 1: Software architecture of the Grid Data Farm

using a light-weight GFS RPC, as well as dynamic execution-loading from the
Gfarm server; other roles are node resource status monitoring and control.

Metadata of files in the Gfarm filesystem is stored into the Gfarm Meta
Database, which consists of a mapping from a logical Gfarm file name to physical
distributed fragment file names and file status information including file size,
protection, access/modification/change time and checksum as well as a replica
catalog and a history. The history is needed to re-compute the data when a
node or a disk fails, or to validate how the data is generated. Metadata is
registered at the close operation of each Gfarm fragment and checked validity
after all parallel processes terminate. When one of user processes terminates
unexpectedly without registering metadata while the other processes correctly
register metadata, metadata remains invalid and will be deleted by the system.

The Gfarm server is based on the network-enabled server[4] that is a major
component of the GridRPC, enhanced with the Gfarm filesystem capability.
The Gfarm server authenticates the Gfarm client using the Generic Security
Service[3] for mutual authentication and single sign-on, and executes a parallel
program that may be a user program registered by the Gfarm client, on the
Gfarm pool spread over the Grid. The Gfarm server analyses input and output
Gfarm files, and schedules Gfarm pool nodes to be executed by inquiring of the
Gfarm Meta Database. The scheduling should consider physical locations of
fragments of Gfarm files, the replica information and node status in the Gfarm
pool.

The Gfarm client interacts with the Gfarm server and the Gfarm system
using GUIs or a shell front end called the Gfarm shell ; more sophisticated client
program interaction is possible with GridRPC that makes it easy for the users
to execute a remote procedure with the feature of dynamic Interface Description
Language (IDL) loading and management. Users can register and execute his
analysis software as well as monitor and administer the system using the shell.

There are several tools to interact with conventional filesystems or network
streams by GridFTP[6] and so on. Gfimport imports and scatters large-scale
data, and gfexport gathers and exports the data. The Gfarm system handles
load balancing by redistributing the data based on program profiling.
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3 Grid Data Farm Applications

The Grid Data Farm provides not only parallel file access but also parallel
processing. In the typical usage of the Grid Data Farm, each node of the Gfarm
pool accesses only local files, processes in parallel and creates new files locally.

Data analysis in typical high energy experiments is often characterized as
“finding a needle in a hey stack”. Each single collision of particles in the accel-
erator is called an “event”. Information of thousands of particles emerging from
the collision point is recorded by surrounding particle detectors. In the LHC
accelerator, there will be 109 collisions per second. The events are then pro-
cessed and filtered “on-line” to pick up only physically interesting ones, which
are recorded into the storage media at the rate of 100 Hz for later “off-line”
analysis. During the first year of the accelerator run, an order of 1016 collisions
will be observed and 109 events will be recorded. Discovering a Higgs particle,
depending on its unknown mass, will be of finding of events with certain special
characteristics with an order of several tens out of 1016 collisions.

Each event data consists of digitized numbers from sub-detectors such as
calorimeter, silicon micro-strip and tracking chambers. This initial recording of
the event is called “RAW” data. In ATLAS experiment, the size of RAW data
is approximately 1 to 3 Mbytes per event, corresponding to several Petabytes of
data storage per year. The digitized information in RAW data is reconstructed
into physically meaning full analog values such as energy, momentum, and the
geometrical position in the detector. In ATLAS, typical event reconstruction
will take about 300 to 600 SPECint95 per event, which will take place mainly at
Tier-0 regional center at CERN. To keep up the event reconstruction rate with
the data taking, at least 150 to 200K SPECint95 processing power is required
for ATLAS Tier-0.

Physics data analysis such as Higgs particle search, B-quark physics and top-
quark physics will be based on the reconstructed event summary data (ESD) at
Tier-1 centers distributed over the world.

Because each event is not related each other, we can analyze the data inde-
pendently on each CPU node in parallel. Only at the last stage of the analysis,
a small set of statistical information needs be collected from each node. The
data-parallel, distributed, and low-cost “CPU farm” approach has been very fa-
vorable and successful in high energy physics data analysis for the past decade.
However, building a large-scale CPU farm with an order of 1,000 CPUs brings
us a new technical challenge in the design and the maintenance. How to dis-
tribute the large quantity of data to each CPU effectively also remains to be a
problem. Gfarm is designed to solve the handling of the large quantity of data
localized into each CPU while the integrity of the data set is ensured by the
meta database.

In ATLAS data analysis software, object database technology will be used
to store and retrieve data at various stages of analysis. A commercial database
package Objectivity is one of the candidates to achieve this task. It has already
been employed in production by BaBar experiment at SLAC, and is already a
core part of the software development in CMS experiment of LHC. Gfarm has
been demonstrated to co-work with Objectivity.
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4 Example

Users can interact with the Gfarm system with web-based GUIs, the Gfarm
shell, GridRPC and GridRPC applications. This section describes an example
of user interface using the Gfarm shell.

At first, an user should log in to the Gfarm server.

% gfarm gfarm.apgrid.org
Trying gfarm.apgrid.org...
Connected to gfarm.apgrid.org
210 gfarm.apgrid.org Grid Data Farm server (Version 0.01 alpha) ready.
login (tatebe):
331 Password required for tatebe
Password:
230- *** Welcome to Grid Data Farm ***
230 User tatebe logged in
gfarm>

This example shows the login process to the Gfarm server gfarm.apgrid.org
with the plain-text authentication like FTP. In the current implementation, the
Gfarm shell supports plain text authentication and rsh or ssh authentication,
while the Generic Security Service will be supported soon. The user can execute
remote program with exec command.

gfarm> exec foo --gfarm_in gfarm:in --gfarm_out gfarm:out

This example executes the program foo with the input Gfarm file gfarm:in
and the output Gfarm file gfarm:out. In this case, the Gfarm server creates a
list of hosts that store fragments of the Gfarm file gfarm:in inquiring to the
Gfarm Meta Database, and executes the program foo in parallel. The output
Gfarm file gfarm:out will be created.

5 Gfarm Parallel I/O API

The Gfarm parallel I/O API provides the facility of Gfarm file access in coop-
eration with a Gfarm Meta Database. All Gfarm files are divided into several
indexed fragments and stored into several disks. The Gfarm parallel I/O API
accesses each fragment explicitly and in parallel. The API is assumed to be
called not only on the Gfarm pool nodes but also on the Gfarm server.

The APIs described in this section are current interfaces, and subject to
change. Almost all functions return a constant address of a status message so
that it is easy to check both the error code and the error message.

5.1 Definitions

Gfarm file and Gfarm fragment A Gfarm file is a logical file specified by
a Gfarm URL or a Gfarm file name. Physically, a Gfarm file is divided
into several indexed Gfarm fragments and stored into several disks. Each
Gfarm fragment can be specified by the Gfarm URL and the index.
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Gfarm URL or Gfarm file name A Gfarm URL or Gfarm file name is a
path name of the Gfarm filesystem. Every Gfarm URL has a prefix
“gfarm:” and the following Gfarm URLs are valid.

gfarm:~username/path/name
gfarm:/path/name
gfarm:relative/path/name

Gfarm file handle AGfarm file handle is an opaque object created by gfs pio open,
gfs pio create, gfs pio open local and gfs pio create local, and freed by gfs pio close.
All operations on an open file reference the file through the file handle.

local disk Local disks are usually assumed to be connected directly to a PC
with SCSI, IDE and so on, and can be accessed faster than remote disks.
However, this assumption is not a requirement.

5.2 Error code

Error code is not an integer but a constant pointer of characters that contains
an error message. Currently the following error codes are defined.

GFARM_SUCCESS (= NULL)
GFARM_ERR_NO_MEMORY
GFARM_ERR_NO_SUCH_OBJECT
GFARM_ERR_ALREADY_EXISTS
GFARM_ERR_PERMISSION_DENIED
GFARM_ERR_INVALID_ARGUMENT

5.3 Initialization and finalization

char* gfarm_init(void);
char* gfarm_finalize(void);

gfarm init initializes the execution environment of the Gfarm system and es-
tablishes a connection to a Gfarm Meta Database. gfarm finalize terminates
the execution environment and disconnect a connection to the Gfarm Meta
Database.

5.4 File Manipulation

5.4.1 Opening and creating a file

char* gfs_pio_open(char *url, int index, char *host,
int flags, GFS_FILE *gf);

char* gfs_pio_create(char *url, int index, char *host,
mode_t mode, GFS_FILE *gf);

gfs pio open opens the Gfarm fragment identified by the Gfarm URL url and the
index index on the Gfarm pool node host, and returns a new Gfarm file handle
gf. When the host is not specified, it is obtained by the Gfarm Meta Database.
flags is one of GFARM FILE RDONLY or GFARM FILE RDWR which request opening
the file read-only or read/write, respectively. gfs pio create creates a new Gfarm
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fragment specified by the Gfarm URL url and the index index with the access
mode mode on the Gfarm pool node host, and returns a new Gfarm file handle
gf. mode specifies the permissions to use. It is modified by the process’s umask.

The following functions are intended for a special but typical case such that
every node has at least one Gfarm fragment.

char* gfs_pio_set_local(int index, int size);
char* gfs_pio_open_local(char *url, int flags, GFS_FILE *gf);
char* gfs_pio_create_local(char *url, mode_t mode, GFS_FILE *gf);
char* gfs_pio_local_paths_get(char *url,

int *npaths, char ***paths);

gfs pio open local opens the local Gfarm fragment specified by the Gfarm URL
url, and returns a new Gfarm file handle gf. flags is one of GFARM FILE RDONLY
or GFARM FILE RDWR. gfs pio create local creates the local Gfarm fragment spec-
ified by the Gfarm URL url with the access mode mode, and returns a new
Gfarm file handle gf. gfs pio set local sets the index index of the local Gfarm
fragment and the total number of fragments size. gfs pio local paths get re-
turns a list of path names of local Gfarm fragments and the total number of the
local fragments of the Gfarm file specified by the Gfarm URL url.

5.4.2 Closing a file

char* gfs_pio_close(GFS_FILE gf)

gfs pio close closes the Gfarm file handle gf, and updates or checks the file size
and the checksum of the Gfarm Meta Database. The checksum is used to verify
the identity of a master file and the replica.

5.5 File access

The Gfarm parallel I/O API provides blocking, noncollective operations and
uses individual file pointers.

char* gfs_pio_read(GFS_FILE gf, void *buf, int size,
int *nread);

gfs pio read attempts to read up to size bytes from the Gfarm fragment ref-
erenced by the file handle gf into the buffer starting at buf, and returns the
number of bytes read nread.

char* gfs_pio_write(GFS_FILE gf, void *buf, int size,
int *nwrite);

gfs pio write writes up to size bytes to the Gfarm fragment referenced by the
file handle gf from the buffer starting at buf, and returns the number of bytes
written nwrite.

char* gfs_pio_seek(GFS_FILE gf, file_offset_t offset, int whence);

gfs pio seek repositions the offset of the Gfarm fragment referenced by the file
handle gf to the argument offset according to the directive whence as follow:

7



SEEK SET The offset is set to offset bytes.

SEEK CUR The offset is set to its current location plus offset bytes.

SEEK END The offset is set to the size of the file plus offset bytes.

char* gfs_pio_flush(GFS_FILE gf);

gfs pio flush forces a write of all buffered data for the Gfarm fragment referenced
by the file handle gf.

int gfs_pio_getc(GFS_FILE gf);
int gfs_pio_ungetc(GFS_FILE gf, int c);
char* gfs_pio_putc(GFS_FILE gf, int c);

gfs pio getc reads the next character from gf and returns it, or EOF on end of
the fragment or error. gfs pio ungetc pushed c back to gf, where it is available
for subsequent read operations. gfs pio putc writes the character c to gf.

char* gfs_pio_getline(GFS_FILE gf, char *s, size_t size,
int *eofp);

char* gfs_pio_puts(GFS_FILE gf, char *s);
char* gfs_pio_putline(GFS_FILE gf, char *s);

gfs pio getline reads in at most one less than size characters from gf and stores
them into the buffer pointed to by s. Readings stops after an EOF or a newline.
If a newline is read, a ’\0’ is stored. If an EOF is read though no character is
read, eofp is set. gfs pio puts writes the string s to gf. gfs pio putline writes
the string s and a trailing newline to gf.

6 Gfarm Commands

The Gfarm commands facilitate manipulation of the Gfarm system. The com-
mands can be executed on a Gfarm server and each Gfarm pool node. Table 1 is
a list of major Gfarm commands. This list includes UNIX file manipulation com-
mands and Gfarm administration commands. gfls, gfmkdir and gfrmdir ma-
nipulate file metadata of the Gfarm Meta Database. gfrm, gfchmod, gfchown,
gfchgrp and gfcp access and modify file metadata and Gfarm fragments on
Gfarm filesystem. gfcd, gfchdir and gfpwd can be used with a Gfarm shell.

gfdf reports number of free disk blocks and files on the entire Gfarm filesys-
tem. gfsck checks the consistency between metadata of the Gfarm Meta
Database and each Gfarm fragment and also between master data and the
replica. The consistency between metadata and the corresponding Gfarm frag-
ments can be broken by unexpected node or disk failure as well as unexpected
user program termination. Since metadata is registered only after every Gfarm
fragment is closed and every process is terminated, or at the checking point, the
inconsistency is settled by deleting or removing the lost Gfarm fragments.

gfimport imports and scatters large-scale data from other filesystems or
network. We plan to utilize GridFTP to retrieve data from network. gfexport
gathers and exports the data to other filesystems or network. gfdigest outputs
the message digest. gfredist redistribute Gfarm fragments for load balancing.
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Table 1: Gfarm commands
gfls List contents of directory
gfmkdir Make directories
gfrm, gfrmdir Remove directory entries
gfchmod Change the permission mode of a file
gfchown, gfchgrp Change file ownership
gfcp Copy files
gfcd, gfchdir Change working directory
gfpwd Return working directory name
gfdf Displays number of free disk blocks and files
gfsck Check and repair file systems
gfimport Import a file to Gfarm filesystem
gfexport Export a file on Gfarm filesystem
gfdigest Output message digest
gfredist Redistribute a Gfarm file on Gfarm filesystem
gfreg Register a file to Gfarm filesystem
gfsched Create a host file

gfreg registers a file to the Gfarm filesystem. This function is only for legacy
applications not to use Gfarm parallel I/O API. gfsched creates a list of hosts
that stores fragments of given Gfarm URLs.

7 Implementation Status

Current status and schedule of the Grid Data Farm project are as follows, which
will be closely synchronized with the CERN LHC “Data Challenge” practice to
ensure the functionality and the scalability of the product.

7.1 Development schedule

Initial prototype system (2000 – 2001): The initial prototype system has
such facilities as metadata management, data streaming, load balancing
and the GridRPC. It will be deployed on a small (approximately 100
nodes) cluster and tested using Monte-carlo simulation data.

Second prototype system (2002 – 2003): Scalability is enhanced and fault
tolerance facility is introduced in the second prototype system.

Full Production Development (2004 – 2005)

Deployment (2005 –): The Grid Data Farm system will be deployed on mas-
sive (several thousands nodes) PC clusters. It will be used to analyze
peta-scale online data.

7.2 Target system example

Target system requires Petabyte of online storage. We are planning to adopt
high-end PC technology to build the system. Each Gfarm pool node will have
a 6Tbyte Raid 5 drive with 25 300GByte low power HD drives, 4-way over
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10GFlops SMT 64bit CPUs, over 20GByte RAM, multi-channel, multi-gigabit
LAN. The node is 4U, 500W power/box and active cooling capability. Total
Gfarm system will be 20 chassis, 1.2 Petabytes, 8TFlops, 100KWatts, each
chassis will be 60TByte, 40CPUs/40U and 5KWatts, and also the system has a
3PByte tape storage and direct multi-gigabit link into the network fabric.

8 Summary

Petabyte-scale data intensive computing wave of computational science surges
over the high-performance computing. Grid and clustering technology offers vi-
able solutions. Existing Grid infrastructure can be utilized, but further research
and development required. The Grid Data Farm builds on the Grid technol-
ogy of Grid-based RPC such as Ninf[7, 5] and lower level Grid service such
as Globus[2] and provides Petascale global filesystem and parallel I/O to cope
with such challenge. The Grid Data Farm project attempts to build a Petascale
online storage system until 2005 synchronized with the CERN LHC project,
though the Grid Data Farm system provides an effective solution to other data
intensive applications such as bioinformatics, astronomy and earth science.
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