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Abstract： In high energy physics, astronomy, space exploration, genomics and other 

disciplines, applications that both access and generate large data sets, called data intensive 

jobs, increasingly draw our attention. The Data Grids, like Gfarm, seek to harness 

geographically distributed resources for such large-scale data-intensive problems. However, 

scheduling is a challenging task in this context. In this paper, we discuss the design and 

implementation of data aware scheduling and data management system in Gfarm. The 

system is able to find data-affinity hosts for Gfarm jobs and to adjust the distribution of the 

data replicas dynamically according to the job load. Using the LSF scheduler plugin 

mechanism, we do not need to write a new scheduler from scratch or make a lot of changes 

to an existing scheduler. Moreover, the new policy provided can cooperate with other 

scheduling policies in the system.  
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1. Introduction 

 

Grid is considered as the infrastructure for the next generation of Internet. 

Computing grid and data grid play key roles in grid technologies. Computing grid is 

designated to facilitate CPU-intensive jobs, whose core functionalities are job 

scheduling, resource management and job execution. The well known batch systems, 

such as Condor
[1],LSF[2]

, SGE
[3]
,
 
and PBS

[4]
,
 
etc, focus on local job scheduling and 

resource management, while Condor-G
[5] and CSF[6]

 work at the grid level.  

With the fast developing computer commodity technology, CPU is no longer 

expensive. Emerging classes of data-intensive applications that both access and 

generate large data sets are drawing much more attention. High-performance data-

intensive computing and networking technology has become a vital part of large-scale 

scientific research projects in areas such as high energy physics, astronomy, space 

exploration, and human genome projects. One example is the Large Hadron Collider 

(LHC)
 [7]

 project at CERN. The so-called Data Grids provide essential infrastructure 

for such applications. Grid Datafarm (Gfarm)
[8]
, for example, is one of them. 

Gfarm architecture is designed for global petascale data-intensive computing. It 

provides a global parallel file system with online petascale storage, scalable I/O 

bandwidth, and scalable parallel processing, and it can exploit local I/O in a grid of 



 

clusters with tens of thousands of nodes. Gfarm parallel I/O APIs and commands 

provide a single file system image and manipulate file system metadata consistently. 

If a huge amount of data I/O is involved, a network system’s performance will be 

degraded by network congestions without proper data management and job 

scheduling. In Gfarm, gfrun and gfmpirun commands are able to allocate the file-

affinity hosts for optimum execution of applications based on available metadata. 

However, the manual method is not scalable in a production environment with a large 

number of users running jobs concurrently. It is imperative to have an automated job 

scheduling and data management mechanism. 

In this paper, we describe the design and implementation of data aware 

scheduling in Gfarm by using a LSF scheduler plugin mechanism. It is able to reserve 

the best hosts for job execution, and performs data stage-in and stage-out. Moreover, 

it can adjust the distributions of the data replicas based on the actual requirements of 

jobs, and balance the load for each data replica dynamically. With the plugin 

approach, the new scheduling policy is provided as a module to be dynamically 

loaded, and it can cooperate with other scheduling polices in the system as well. 

In the following sections, the LSF’s scheduler plugin mechanism is introduced 

briefly, then we discuss the architecture of the data aware schedule module. In section 

4, the design principles of the scheduling algorithm and its implementation are 

explained. In section 5, some related works are discussed. Finally we present our plan 

for the near future. 

 

2. LSF Scheduler Plugin Mechanism 

In the real world, each user has a different requirement. No matter how many 

scheduling polices are provided, no resource management system can meet all users’ 

needs. Hence, in version 5.0, LSF designed the scheduler plugin feature to allow users 

to write their own scheduling policies.  
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Figure 1 LSF Scheduler Plugin Mechanism 
 

The LSF plugin mechanism consists of the scheduler framework and a number of 

scheduler plugin modules. See figure 1. The scheduler framework works as a 

motherboard with slots to hold scheduler plugin modules. The framework maintains 



 

the elementary information, like pending jobs, available hosts etc, for all plugin 

modules. Plugin modules are able to access those data inside scheduler framework via 

a LSF scheduler API. The particular scheduling policies are implemented inside 

plugin modules. FCFS module, for example, provides the first come first serve policy, 

which is the default policy of LSF.  

The plugin modules are loaded dynamically by the framework at run time. The 

user can indicate which modules to be loaded via configuration. Using this 

mechanism, the users do not need to write a customized scheduler from scratch, but to 

provide just a plugin module with the desired policy. In this paper, we describe a 

plugin module to perform data aware scheduling and data management in Gfarm. 

 

3. Architecture of Data aware Scheduling Module 

 

 

Plan 

Maker 
Job dispatch instructions 

Replica management 

instructions 

Gfarm APIs/Commands 

Scheduler Framework API 

Job list 

Available Host List 

Available Host 

List for regular 

jobs 

Regular Job 

list 

Workflows 

Instruction Generator 

Non-Gfarm Job  

Gfarm Job  

Information 

Schedule Instructions 

Host Preferred by Gfarm job 

Hosts Reservation 

Data transfer 

Figure 2. The data aware plugin module 

 

The data aware scheduling module is implemented as a LSF plugin. It 

communicates with LSF via the LSF scheduler framework API. The module takes the 

pending jobs and the available hosts in the system as input from LSF and gets the data 

replica information from Gfarm. To Gfarm, the module is simply a normal Gfarm 

application. Any Gfarm API and command can be used. The output of the module is a 

series of schedule decisions, such as host reservation, replica creation, job execution 

and so on. These decisions are executed by LSF and Gfarm respectively. 

The data aware module consists of three components, the Plan Maker, the 

Workflow Container and the Instruction Generator. See figure 2. The Plan Maker is 



 

responsible for making job scheduling and data management decisions. The decisions 

are described as workflows and maintained by the Workflow Container. At the end of 

a scheduling session, the Instruction Generator issues the corresponding LSF or 

Gfarm commands to execute the workflows.  

The data aware module handles Gfarm applications only, and the other jobs are 

scheduled by other modules. Hence, the Plan Maker has to be able to recognize Gfarm 

jobs. In our work, a special tag is attached to each Gfarm job at submission time. A 

tag is a string with the format of “Gfarm Files=f1,..fn”, which indicates the files to be 

accessed by the job. This is done via LSF bsub –ext command.  

The Plan Maker is the brain. It decides when and where to start a Gfarm job, and 

whether to create a new replica for a data set. The Plan Maker follows the data aware 

scheduling policy and writes its decisions into the workflows maintained by the 

Workflow Container. A workflow is a job execution plan for a data replica. Besides 

the jobs to be launched, a typical workflow consists of host reservation, file transfer 

(stage-in), and file elimination (stage-out) operations as well. New jobs can be 

dynamically added into an existing workflow.  

The Instruction Generator is the decision executor, generating concrete jobs or 

data operations based on the workflows. Those instructions are issued to LSF/ Gfarm 

via appropriate APIs/commands at the end of each scheduling session. More details 

are provided in the following section.  

 

4．．．．The Data-aware Scheduling Algorithm 

In a production cluster, there could be up to thousands of hosts, and tens of 

thousands of jobs running on it. Our goal is to improve the throughput of the whole 

system instead of a single job’s execution. For data-intensive jobs, the following 

scenarios will cause a degradation of system performance. First, there are many jobs 

accessing data files through network. This leads to network congestion and slow 

down of the execution of every job. Second, the loads of data replicas are imbalanced. 

Some data files with few replicas are being accessed heavily, while some other data 

files with more replicas are not frequently accessed. 

To alleviate the first problem, jobs should be dispatched to hosts with the 

required data locally or to those close to the data. This type of scheduling is called 

data aware or data affinity scheduling. For the same reason, Gfarm insists on users 

making good use of local disks, although network parallel I/O is also supported. To 

resolve the second problem, replica management should be able to dynamically 

balance the load of each data replica based on a job’s actual requirement.  

Our algorithm resolves these two problems above in the following ways: 1. 

Besides satisfying a job’s resource requirements, like host/OS type, it always selects 

the data affinity hosts for job execution, 2. It supports data stage-in and stage-out, 3. It 

adjusts dynamically the number of data replicas and their locations according to the 

real load of the jobs in the system, 4. It avoids creating multiple data replicas 

concurrently to reduce the possibilities of the network access conflicts.  



 

Both job scheduling and data replica management strategies are embodied in the 

algorithm. The algorithm is executed by the Plan Maker periodically. Each execution 

is called a scheduling session. In each session, more jobs will be inserted into existing 

workflows, and some new workflows could be created. All the jobs belong to the 

same workflow have to be started in sequence, and normally they do not start within 

one schedule session. The jobs from different workflows can run concurrently. See 

Figure 3.  
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Figure 3、Data aware algorithm 

 

1. Select a Gfarm job from the pending job list. Other jobs are ignored by the 

algorithm. The pending job list includes all the jobs waiting to run, and it is 

maintained by LSF scheduler framework. 

2. If the job state is scheduled, it must belong to an existing workflow. Check the 

workflow, if a reserved host is available, and there is no job in the workflow to be 

executed before it, change the job’s state to launching. The job will be started in 

this schedule session. 



 

3. If the job state is not scheduled, then try to insert it to an existing workflow. If 

successful, change the job state to scheduled. Otherwise, log the data files (also 

called data set) used by the job and do statistic using the following formula, 
 

 

Sum(ds) = ∑∑∑∑  Pi * Ti  
i=1..n 

(Pi is the job’s priority, ds is the data sets used by the job, Ti is the job’s running time） 

 
Note: There is a limit for the number of jobs that a workflow can have. If a 

workflow is full, no more jobs can be inserted into it unless some jobs are 

launched. Such a limit can avoid load imbalance among data replicas. 

4. If there are more pending jobs, go to 1. 

5. After going through all the pending jobs, the algorithm will decide whether to 

create new replicas in this session according to the statistic results in 3. If there is 

a data set whose Sum(ds) is larger than a pre-defined value, then the data set needs 

a new replica. However, in order to decrease the chance of network congestion, 

only one new replica will be created in a schedule session. The following actions 

will be taken to perform the replica creation for the data set with the largest 

Sum(ds) value, 

a. Select the best location (hosts) for the new replica according to job’s resource 

requirement. If there is no host with spare disk space, the obsolete data 

replicas will be overwritten based on the LRU algorithm. 

b. Create a null workflow 

c. Insert host reservation operation to the workflow to reserve the selected hosts 

d. Insert the data transfer operation to the workflow to create the replica on the 

selected hosts 

 

At the end of a scheduler session, the Instruction Generator goes through all the 

workflows: notify LSF to start all the jobs with launching state; notify LSF to execute 

the host reservations for the new replicas; notify Gfarm to start copying data to 

reserved hosts. Subsequently, the new workflow is used by the Plan Maker to 

schedule jobs during the next session.  

 

5．．．．Related Works 

In [9], job scheduling and data management modules are separate components. 

In [10], a data aware scheduling mechanism is implemented in a peer-to-peer 

computing model: job scheduling and data management are implemented as two 

loose-coupled components. In our work, job scheduling and data management are 

integrated together. In our case, the scheduler knows both jobs and data well, 

therefore, is able to make a better plan to improve the system’s performance overall.  

Plan based scheduling is introduced in some recent works. The focus of [11] is 

on the scheduling for a single complex task with multiple components in the 

computing grid. AI plan is used to generate workflows to execute components of a 

task. Our work is an extension of [11]. Instead of focusing on a single job, workflows 



 

are used to plan the execution of a number of data-intensive jobs. Many works, like 

[12], introduced methods to balance the load for a parallel job to overcome the 

performance heterogeneity betweens the nodes in a cluster. In this paper, we achieve 

dynamic load balancing for data replicas based on the needs of jobs in the system. 

Moreover, our use of a LSF scheduler plugin mechanism has the following 

advantages: no need to write a scheduler from scratch, because the data aware 

scheduling policy is implemented as a plugin module; the new policy can co-operate 

with other policies, like FCFS, fair share, and preemption etc. 

6. Conclusion and Future Work 

This paper describes the integration of LSF6.1 and Gfarm1.0.3 on Linux 

RedHat9.0 using a LSF scheduler plugin mechanism, and the implementation of data 

aware scheduling and data replica management functionalities. The following features 

are implemented: 1. A queuing mechanism for Gfarm jobs is provided and to the 

ability to allocate data-affinity hosts for job execution. 2. The stage-in and stage-out 

functionality. 3. Dynamic adjustment of the distribution of data replicas according to 

actual job requirement. 4. Cooperation with other scheduling policies and ease of 

extension with new scheduling features.  

Currently, our team is also working on porting CSF
[6]
 to GT4. CSF is a grid level 

scheduling framework. In the near future, we are going to introduce data aware 

scheduling policy into CSF. Our research will identify the different focuses between 

the grid level data aware scheduling and cluster level data aware scheduling, and how 

to make the two kind of policies work together efficiently. 
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