Performance improvement of MODYLAS using
Remote Direct Memory Access on the K computer

Masahiro Nakao, Hitoshi Murai, Mitsuhisa Sato

RIKEN R-CCS
Kobe, Hyogo, Japan

ABSTRACT

We have developed the general-purpose molecular dynamics soft-
ware MODYLAS, which is executed on large-scale supercomput-
ers. In order to improve its strong scalability, this research replaces
MPI communication with Remote Direct Memory Access (RDMA)
on the K computer. Since the K computer provides the extended
RDMA interface for RDMA operations, we implement a library to
use the interface easily from MODYLAS. When measuring perfor-
mance of MODYLAS, the RDMA communication time is 29~42%
less than the MPI communication time.

CCS CONCEPTS

« General and reference — Evaluation.

KEYWORDS
molecular dynamics, fast multipole method, RDMA

ACM Reference Format:

Masahiro Nakao, Hitoshi Murai, Mitsuhisa Sato and Yoshimichi Andoh,
Susumu Okazaki. 2019. Performance improvement of MODYLAS using Re-
mote Direct Memory Access on the K computer. In ICPP 2019: ACM Sym-
posium on Neural Gaze Detection, August 05-08, 2019, Kyoto, Japan. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Molecular dynamics (MD) calculations are widely used as an anal-
ysis tool in various fields such as chemistry, physics, biology, vi-
rology, and engineering. However, the time that can be simulated
by MD calculation in practical research is limited to around 1076 ~
107> seconds for a 107 atomic system even when using a state-of-
the-art supercomputer. Breakthroughs in the above fields can be
expected if it becomes possible to perform long-term and larger-
scale MD calculations.

We have developed the general-purpose molecular dynamics
software MODYLAS[1], which utilizes the fast multipole method
(FMM) for the calculation of electrostatic interactions. Our pre-
liminary evaluation indicates the time required for MPI commu-
nication is limited by the communication latency. This tendency
is particularly noticeable under strong scaling. Therefore, in order
to reduce the communication latency, this research replaces MPI

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPP 2019, August 05-08, 2019, Kyoto, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06....$15.00
https://doi.org/10.1145/1122445.1122456

Yoshimichi Andoh, Susumu Okazaki
Nagoya University
Nagoya, Aichi, Japan

-= MPI
-e- RDMA (Put)

Latency (microsecond)

8 64 512 4K 32K 256K 2M
Transfer Size (Byte)

Figure 1: Communication latency on the K computer

communication for the atomic coordinates and multipole coeffi-
cients in MODYLAS with Remote Direct Memory Access (RDMA)
communication on the K computer and evaluates the performance
of our proposed changes.

2 IMPLEMENTATION
2.1 MODYLAS

MODYLAS can perform large-scale molecular dynamics simula-
tions on large-scale supercomputers such as the K computer (CPU:
SPARC64 VIIIfx 2GHz, Memory: DDR3 SDRAM 16GB, Network:
Torus fusion interconnect 5GB/s)[2]. MODYLAS is written in For-
tran and its source code can be obtained from the official website
(https://www.modylas.org). Since communications in MODYLAS
are designed so that partners are limited to adjacent processes, the
MPI functions mpi_isend(), mpi_irecv(), and mpi_wait() are used.

2.2 RDMA on the K computer

The K computer provides users with the extended RDMA interface[3]
so that they can issue RDMA operations (Put/Get) with low latency
in addition to MPI communication. To measure its performance,
we implement a pingpong benchmark using the interface. Fig. 1
shows a comparison of the latency between MPI and RDMA (Put)
on the K computer. This result indicates that the performance of
RDMA (Put) is always better than that of MPI.

2.3 Replacement of MPI with RDMA

We implement a library to use the extended RDMA interface from
MODYLAS easily because the current interface is very primitive
and written in C language. Fig. 2 shows a part of the code using the
library. This code uses macros to switch between MPI and RDMA.
The prefix for the subroutines provided by the library is “rdma_."
In line 4, the subroutine “rdma_register_addr” targets the speci-

fied array “ircbufp” for RDMA and obtains the remote addresses of

ICPP 2019, August 05-08, 2019, Kyoto, Japan

integer(4),allocatable, dimension(:) :: icbufp
allocate(ircbufp(max_cellsnbd))

#ifdef RDMA

call rdma_register_addr(ircbufp, (max_cellsnbd)«4)
#endif

#ifdef RDMA

integer(8),pointer : ircbufp_raddr(:)

type(c_ptr) :: ircbufp_cptr

ircbufp_cptr = rdma_get_raddr(ircbufp)

call c_f_pointer(ircbufp_cptr, fptr=ircbufp_raddr, shape=[nprocs])
call rdma_put_post(ipz_pdest, ircbufp_raddr(ipz_pdest+1), ...)
call rdma_wait(ipz_psrc)

#else

call mpi_irecv(ircbufp, ..., ipz_psrc, ...)

call mpi_isend(icbufp, ..., ipz_pdest, ...)

call mpi_waitall(2, ...)

#endif

O 00 NN U WD

e e e
0 N NG W= O

Figure 2: Modified code of MODYLAS

800
700
600

500
400
30
20
100
0
8 16 32 64 128 256

Number of Processes

= MPI
B RDMA (Put)

o

Time (microsecond)
o

Figure 3: Communication time per step

the array for remote processes. The local address of “ircbufp” and
the remote addresses are stored in the library. Note that since the
library is written in C, it is necessary to convert the stored data to a
Fortran format array. In line 10, the function “rdma_get_raddr” re-
turns the remote addresses in the C language format. And, in line
11, the intrinsic subroutine “c_f_pointer” converts the C format
pointer (ircbufp_cptr) to the Fortran format array (ircbufp_raddr).
In line 12, the subroutine “rdma_put_post” transfers data to a spec-
ified process and also transfers post information to convey that the
communication has ended. In line 13, the subroutine “rdma_wait”
waits until the post information is received from a specified pro-
cess. The communication performed in lines 12~13 is basically the
same as the MPI functions in lines 15~17.

In this implementation, 36 MPI function pairs in MODYLAS are
replaced with our subroutines and function.

3 EVALUATION

Fig. 3 shows a comparison of the MPI and RDMA communication
times in MODYLAS per step using the “water_nve” small data set
with three FMM levels on the K computer. The reason for using the
“water_nve” is that the effect of communication latency in large-
scale execution is examined using a small number of CPUs since
the calculation part of MODYLAS is almost scaled to the number

Masahiro Nakao et al.

Table 1: Calculation time per step (microsecond)

Num. of Proc. | 8 16 32 64 128 256

MPI 16,129 9,973 6,941 5,636 4,624 4,151
RDMA (Put) 15,551 9,684 6,706 5,384 4,467 4,033

Improvement‘ 3.72% 2.99% 3.50% 4.68% 3.51% 2.91%

of CPUs. In this experiment, one process is assigned to one calcu-
lation node, each process has eight threads, and the measurements
are performed under strong scaling. From these results, it can be
seen that the RDMA communication time is 29~42% less than the
MPI communication time. Most communication data sizes are less
than 32K bytes, which is a sufficient size to demonstrate the supe-
riority of RDMA in Fig. 1.

Next, Table 1 shows the total calculation time including the com-
munication time per step. From these results, it can be seen that
the RDMA implementation has a higher efficiency than the MPI
implementation. Although the efficiency has increased by a fac-
tor of 2.91~4.68% overall, this will further increase for calculations
with strong scaling with tuned code for hotspot calculations in the
future.

4 SUMMARY AND FUTURE WORK

To improve the performance of MODYLAS with strong scaling, we
replace MPI communication with RDMA communication provided
by the K computer. As a result, we show that the strong scalability
for parallel computations with MODYLAS is improved.

The current implementation assumes the use of the extended
RDMA interface, so the benefits are obtained only with Fujitsu
machines, which use the interface. In order to make MODYLAS
available for reducing communication times in various comput-
ing environments, we will utilize coarray features of the Fortran
standard since the coarray features provide users with one-sided
communication, and its implementation may use RDMA that each
machine has.

ACKNOWLEDGMENTS

This research was supported by MEXT as “Priority Issue on Post-
K computer” (Development of new fundamental technologies for
high-efficiency energy creation, conversion/storage and use) us-
ing computational resources of the K computer provided by the
RIKEN R-CCS through the HPCI System Research project (Project
ID: hp180209, hp190174). And, this research was also supported
by “Joint Usage/Research Center for Interdisciplinary Large-scale
Information Infrastructures” in Japan (Project ID: jh180050-NA]J).

REFERENCES

[1] Andoh Yoshimichi et al. 2013. MODYLAS: A Highly Parallelized General-
Purpose Molecular Dynamics Simulation Program for Large-Scale Systems with
Long-Range Forces Calculated by Fast Multipole Method (FMM) and Highly
Scalable Fine-Grained New Parallel Processing Algorithms. j.Chem. Theory
Compt. 9,7 (2013), 3201-3209. https://doi.org/10.1021/ct400203a

[2] Mitsuo Yokokawa et al. 2011. The K Computer: Japanese Next-generation Su-
percomputer Development Project. In Proceedings of the 17th IEEE/ACM Interna-
tional Symposium on Low-power Electronics and Design (ISLPED ’11). 371-372.

[3] Naoyuki Shida et al. 2012. MPI Library and Low-Level Communication on the
K computer. FUJITSU Scientific & Technical Journal 48, 3 (July 2012), 324-330.

