

Performance improvement of MODYLAS using Remote Direct Memory Access on the K computer

Masahiro Nakao,¹ Hitoshi Murai,¹ Mitsuhisa Sato,¹ Yoshimichi Andoh,² Susumu Okazaki² (1. RIKEN Center for Computational Science, 2. Nagoya University)

What is MODYLAS ? https://www.modylas.org

- MOlecular DYnamics software for LArge System
- MODYLAS utilizes the fast multipole method (FMM) for the calculation of the electrostatic interactions
- MODYLAS is executed on large-scale supercomputers such as the K computer (right figure)

• Our preliminary evaluation indicates the time required for MPI communication is limited by its latency

DDR3 SDRAM 16GB, Tofu interconnect 5GB/s

Approach

Replacement MPI with RDMA

- The K computer provides users with the extended RDMA interface so that they can issue RDMA operations (Put/Get) with low latency
- This graph shows a comparison of latency between MPI and RDMA (Put) on the K computer using ping-pong benchmark

Evaluation

Communication time using MPI and RDMA

- RDMA communication time is 29-42% less than MPI communication time on the data set with three FMM levels
- Most transfer data sizes are less than 32K bytes, which is a sufficient size to demonstrate the superiority of RDMA

Summary

- In order to improve the performance of MODYLAS, this research replaces MPI communication with Remote Direct Memory Access (RDMA) on the K computer
- Since the K computer provides the extended RDMA interface for RDMA operations, we implement a library to use the interface from MODYLAS easily
- As a result of measuring the performance of MODYLAS, the RDMA communication time is 29-42% less than the MPI communication time

Modified code of MODYLAS

We implement a library to use the extended RDMA interface from MODYLAS easily

Calculation time using MPI and RDMA

- This table shows the total calculation time including communication time per step
- Although the efficiency has increased by a factor of 2.91~
 4.68% overall, this will further increase for calculations with strong scaling with tuned code for hotspot calculations

Num. of Proc.	8	16	32	64	128	256
MPI RDMA (Put)	16,129 15,551	9,973 9,684	6,941 6,706	5,636 5,384	4,624 4,467	4,151 4,033
Improvement	3.72%	2.99%	3.50%	4.68%	3.51%	2.91%

Future Work

- To make MODYLAS available for reducing communication times in various computing environments, we will utilize coarray features of the Fortran standard
- Since the coarray features provide users with one-sided communication, and its implementation may use RDMA that each machine has