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1 INTRODUCTION

In the boundary element method (BEM) and N-body simulations, a

coefficient matrix that represents the interaction between physical

elements to solve the simultaneous linear equations is commonly

used. However, as the quantity of all interactions between N el-

ements is N 2, such a matrix is dense, and when N is extremely

large, the execution time and memory usage will be unacceptable

or even unavailable. Therefore, various approximation techniques

have been proposed to reduce execution time and memory usage.

Hierarchical matrices (H -matrices) [1–3] are used as one such

approximation technique. AnH -matrix is constructed directly from

the interactions between element sets, not from its dense coun-

terpart, to reduce the memory usage from O(N 2) to O(N logN )

by hierarchically dividing the matrix into many submatrices and

replace them (if possible) with their small-size low-rank approxi-

mated forms. Though this technique can significantly reduce com-

putation cost and memory usage with reasonable accuracy, the

computation cost is still large. Thus, accelerating the computation

forH -matrices, including not only calculations such asH -matrix-

vector and H -matrix-H -matrix multiplication but also H -matrix

construction, using parallel computing is critical.

H -matrix construction is achieved by dividing a matrix into

submatrices (partitioning), followed by calculating the element val-

ues of these submatrices (filling). We can find many proposals [5–

8, 11, 12] to parallelize the filling operation and they are applied

to H -matrix libraries such as Hlib [1] and HACApK [7], but the

partitioning operation still remains sequential. This is partly be-

cause the cost of the partitioning operation is much lower com-

pared to the filling operation. However, as hundreds of speedups

have been achieved for the filling operation using MPI, GPU, and

SIMD vectorization [5, 6, 12]. We can expect more speedups using

more computing resources in the near future. Then the partition-

ing operation will be a bottleneck if it remains sequential and it

will be significant for larger datasets. Thus,we should also consider
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parallelizing the partitioning operation. Therefore, in this presen-

tation, we present parallel implementations for matrix partitioning

in the construction ofH -matrices, based on the sequential version

proposed in [3].

The matrix partitioning operation is divided into the following

two steps: construction of a cluster tree (CT) to split clusters recur-

sively and construction of a block cluster tree (BCT) 1 to examine

the admissibility of the cluster pair and to determine the matrix

structure recursively. As trees constructed and traversed in these

steps are unpredictably unbalanced, we employed task parallel lan-

guages, Cilk Plus [9] and Tascell [4], to parallelize these operations

solving the load imbalance problemwith reasonable programming

cost.

2 MATRIX PARTITIONING ALGORITHM

2.1 Cluster Tree Construction

First, we show the algorithm to construct a CT. The cluster E1
(0)
=

{e0, ..., eN−1} containing all input elements is treated as the root

node of CT. The children of a CT node are created by dividing the

cluster into two sub-clusters. We can create the children of each

child node by dividing the corresponding cluster in the same man-

ner. Such division operations are repeated recursively until the size

of the cluster becomes less than the threshold Nmin. In each recur-

sive step, there aremanyways to divide a cluster. In BEM, elements

are often divided by pivoting based on their coordinate.

2.2 Block Cluster Tree Construction

In BCT construction, we use the CT constructed in the previous

step. A node of BCT in an arbitrary level corresponds to a pair of

two nodes of CT (corresponding to two clusters) in the same level.

If a pair of clusters satisfies an admissibility condition, the corre-

sponding BCT node does not have its child nodes as it means that

the interaction between the clusters can be approximated by a low-

rank submatrix. If the admissibility condition cannot be satisfied

and one of both CT nodes are leaves, we determine the correspond-

ing submatrix cannot be approximated and make the BCT node

leaf for a full submatrix. Otherwise, i.e., if the non-leaf cluster pair

1Though our implementations presented do not create the whole tree structure but
only the list of the leaf nodes of the BCT, we still call this operation BCT construction

according to convention in this research area.
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is not admissible, the BCT node has four children corresponding

to all pairs of two children of the CT nodes.

3 PARALLEL IMPLEMENTATION

3.1 Cluster Tree Construction

It is obvious that the recursive calls in the CT constrction can be

executed in parallel. However, after preliminary evaluations, we

found that the parallel performance is far below our expectations.

This is because the computation cost of each recursion step is pro-

portional to the number of elements and the critical path thus can-

not be shortened when only recursive calls are executed in parallel.

To obtain better performance, we also parallelized inside the recur-

sion step using work stealing based parallel loops provided by Cilk

Plus and Tascell.

The costly operations in the recursion step are two-fold: 1) find-

ing the maximum and minimum coordinate values to decide the

pivot value and axis and 2) the pivoting operation, i.e., reordering

elements based on the coordinate values of them. Parallelizing 1)

is relatively easy, but parallelizing 2) is more difficult. In sequen-

tial implementations, we can easily reorder the elements in-place

using the commonly used algorithm for Quicksort. However, this

in-place algorithm is difficult to be parallelized.

Therefore, we employed two arrays L1 and L2. Initially, the ele-

ment data are stored in L1, the result of reordering at the first level

of CT is stored in L2. Similarly, at the second level, elements in L2

are reordered and the result is stored in L1.

3.2 Block Cluster Tree Construction

Compared to CT construction, our parallel implementation of BCT

construction is relatively simple. As the computation cost for each

recursion step is small, we can obtain sufficient speedups only by

parallelizing recursive calls.

The only concern is about the space to which leaf nodes of BCT

are stored. In the sequential implementation, they are stored to

the global array. However, sharing such a single array controlled

by a lock among workers brings large overheads. Therefore, we

allocated space for each worker.

4 PERFORMANCE EVALUATION

We evaluate our parallel implementations with four datasets from

which coefficient matrices of the surface element method are gen-

erated [10]. We measured the performance using one computing

node having two 18-core Xeon processors.

We tuned the following three parameters: 1) TN denotes the

threshold of the number of elements that decides whether recur-

sive function calls are executed in parallel in CT and BCT con-

struction. 2) TS denotes the threshold of the number of elements

for deciding whether computations inside a recursive step are par-

allelized in CT construction. 3)C is the chunk size used in parallel

executions of the pivoting operation in CT construction.

As a result, compared to a sequential implementation in C, we

achieved 10.5–11.5 times speedups byCilk Plus and 10.6–12.6 times

speedup by Tascell for the CT construction. For the BCT construc-

tion, speedups using Cilk Plus are 18.9–37.7 times and those us-

ing Tascell are 22.7–38.8 times. In regard to the whole process of

matrix partitioning, we achieved 10.7–12.2 times speedups by Cilk
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Figure 1: Total performance of the Cilk Plus and Tascell im-

plementations of matrix partitioning (for Humans).

Plus and 11.5–14.5 times speedups by Tascell. Figure 1 shows the

total performance of matrix partioning, i.e., both CT and BCT con-

struction, for the Humans data set, which has 98,320,000 elements.
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