
Toward Training a Large 3D Cosmological CNN with Hybrid
Parallelization

Yosuke Oyama1,2, Naoya Maruyama2, Nikoli Dryden3,2, Peter Harrington4, Jan Balewski4, Satoshi
Matsuoka5,1, Marc Snir3, Peter Nugent4, and Brian Van Essen2

oyama.y.aa@m.titech.ac.jp
1 Tokyo Institute of Technology

2 Lawrence Livermore National Laboratory
3 University of Illinois at Urbana-Champaign
4 Lawrence Berkeley National Laboratory
5 Riken Center for Computational Science

1 INTRODUCTION
Training of Convolutional Neural Networks (CNNs) has been dras-
tically accelerated by exploiting mini-batch Stochastic Gradient
Descent (SGD) in the last decade. “Data-parallel” training in the
context ofmini-batch SGDmeans that each processor, such as a CPU
or a GPU, 1) holds the same copy of the network parameters and 2)
computes their gradients with respect to a specific disjoined subset
of amini-batch, and 3) performs collective aggregation to update the
parameters. Since it only requires coarse-grained inter-processor
communication and has near-perfect load balance, data-parallel
training has been exploited to train many types of CNNs.

However, in extreme-scale training, model-parallelism is also
required for various reasons. In model-parallel (or “hybrid-parallel”
where both strategies are used at the same time) training, a sin-
gle independent model is split into multiple processors, incurring
fine-grained communication to exchange activations and errors
in the middle of the network. One of the important advantages of
model-parallelism over data-parallelism is that it relives memory
requirements for each processor. Hence it enables to train a bigger
model than what can be trained under the data-parallel scheme.

In this paper, we demonstrate that the CosmoFlow network [4],
a 3D CNN to predict cosmological parameters from 3D mass distri-
bution, is scaled to 128 nodes and 64 larger example size utilizing
hybrid-parallelism.

1.1 CosmoFlow
CosmoFlow [4] is a project to estimate the values of important
cosmological parameters from 3-dimensional universe data by us-
ing deep learning. In the previous work, the authors first conduct
thousands of independent N-body simulations with varied initial
cosmological parameters, and then construct a dataset to predict
the parameters from simulated universes.

In this work, we use the “4perE” dataset, composed of 1,027 data
samples each of which is 4 × 512 × 512 × 512 voxels, where 4 is
the number of channels (C), and 4 cosmological parameters. We
synthesize two datasets of 4× 1283 and 4× 2563 voxels, by splitting
each 4 × 5123 voxels from the original dataset with the same size.

2 IMPLEMENTATION DETAILS
2.1 Distconv
Distconv [1] is a hybrid-parallel kernel library for CNNs, primar-
ily designed for Livermore Big Artificial Neural Network Toolkit

(LBANN) [5]. Distconv applies one of the model-parallel strategies,
spatial partitioning, to convolutional and pooling layers. The basic
concept of this partitioning follows parallelized stencil computa-
tions. First, convolution is performed to the center part of an input
tensor, and at the same time a halo exchange is started in a differ-
ent asynchronous CUDA stream among GPUs in the same sample
group. We repeat the one-dimensional halo exchange three times to
perform the three-dimensional halo exchange. Once halo exchange
is completed, convolution is performed on the halo region in the
stream. Distconv exploits the Aluminum [2] GPU-aware asynchro-
nous communication library to perform efficient halo exchanges.

2.2 I/O performance optimization
We study the performance of two different data sample readers: The
“Direct” data reader loads data samples from the file system directly,
or from a node-local SSD where the entire dataset is preloaded in
advance of training. On the other hand, the “Conduit” data reader
uses Conduit [3] as an I/O backend. Conduit is an open source data
exchange library that provides efficient ways of exchanging scien-
tific data between applications, exchanging data between different
processes within a single MPI based application, and managing
in-memory data movement within a single process. Our Conduit
data reader preloads the entire dataset from the file system into
CPU memory before training starts. The process that performs
the read thereafter “owns” the data. Subsequently, prior to each
minibatch, we employ an MPI-based data exchange to shuffle the
data to the process that requires it. After a mini-batch is loaded,
the MPI processes perform data shuffle operation to exchange the
desired spatial parts of the mini-batch.

2.3 Network
We use a CNN composed of seven 3D convolutional layers and
three fully-connected layers derived from the original work. The
per-sample memory requirements for the input width ofW = 128
andW = 256 are under memory size of the latest GPUs (0.82 GiB
and 6.59 GiB respectively). For instance, an NVIDIA Tesla V100 GPU
has 16 GBmemory which is capable of holding one or more samples
of the datasets. Thus, data-parallel training is the most efficient
way to train the networks as it only requires a global collective
communication in an iteration. ForW = 512, however, the memory
requirement exceeds the memory size (52.7 GiB). Hence it is not
feasible to perform data-parallel training.



Yosuke Oyama, et al.

Number of nodes

Sp
ee
d
[s
am

pl
es
/s
]

NGPU = 8,W = 128

1 2 4 8 16 32 64 128

119x

103

104

{1, 1} (Synthetic)
{1, 1} (Conduit)
{1, 1} (Direct I/O)

Number of nodes

Sp
ee
d
[s
am

pl
es
/s
]

NGPU = 1,W = 256

1 2 4 8 16 32 64 128

120x

101

102

103

104
{1, 1} (Synthetic)
{1, 1} (Conduit)
{1, 1} (Direct I/O)

Number of nodes

Sp
ee
d
[s
am

pl
es
/s
]

NGPU = 1/DpHp ,W = 512

1 2 4 8 16 32 64 128

111x

100

101

102

{2, 2} (Synthetic)
{4, 1} (Synthetic)
{8, 1} (Synthetic)
{2, 2} (Conduit)
{4, 1} (Conduit)
{8, 1} (Conduit)
{2, 2} (Direct I/O)
{4, 1} (Direct I/O)
{8, 1} (Direct I/O)

Figure 1: Weak scaling of the CosmoFlow network. NGPU represents the number of data samples per GPU, and
{
Dp ,Hp

}
represents the depth and the height dimensions are distributed among Dp and Hp process groups respectively.

3 EVALUATION
Figure 1 shows the mini-batch weak scaling of our implementation
with three different input widths.We use per-GPU batch sizes of 8, 1,
1/4 (1 for each node) and 1/8 (1 for each node) forW = 128, 256, 512
(with

{
Dp ,Hp

}
= {4, 1} and

{
Dp ,Hp

}
= {2, 2} configurations,

where Dp ,Hp denote the number of partitions for the depth and
the height dimensions respectively) andW = 512 (the

{
Dp ,Hp

}
=

{8, 1} configuration) datasets respectively. We run the framework
for few epochs, and show the minimum iteration time of the last
epoch. In this experiment, we also measure the performance with a
“Synthetic” dataset configuration, where the I/O process is skipped
so that the pure computation and communication performance is
measured. We use Lassen, a GPU cluster of Lawrence Livermore
National Laboratory, each node of which equips four NVIDIA Tesla
V100 GPUs. Each node has two IBM Power9 CPU chips with 256 GB
memory and four NVIDIA Tesla V100 GPUs with 16 GB memory
and NVLink links. Lassen adopts 6 NVLink links between GPU-
GPU and GPU-CPU with 300 GB/s total bandwidth, and 100 Gb/s
EDR InfiniBand among computing nodes.

In all of the cases, our implementation achieves nearly linear
speedup up to 128 compute nodes. We achieve a speedup of 119x
and 120x on 128 nodes over 1 node with theW = 128 andW = 256
datasets respectively. When W = 512, however, it is infeasible
to perform data-parallel training since the model is too huge to
fit into GPU memory as mentioned. With our implementation,
however, we achieve 111x of speedup over 1 node by exploiting
hybrid-parallelism even if layer-wise communication is introduced.
In the experiment withW = 512, we use the minimum number
of nodes for the batch size of one, and then increase the number
of nodes in weak scaling fashion. Thus, on 128 nodes, we use a
mini-batch size of 128 for {4, 1} and {2, 2}, but 64 for {8, 1}. Even
though this configuration degrades per-sample computation effi-
ciency for {8, 1}, it also introduces the possibility of parallelizing
the computation on each data sample among more GPUs. Indeed,
when the mini-batch size is 64, the computation speed with {4, 1}
(on 64 nodes) is 218.3 samples/s, while it is 260.0 samples/s with
{8, 1} (1.19x of {4, 1}), even if inter-node layer-wise communication
is required. It achieves 1.42 PFlop/s on 128 nodes with the {2, 2}

configuration and the synthetic data reader withW = 512, and 289
TFlop/s without the synthetic data reader.

4 CONCLUSIONS
In this work, we demonstrated that our framework successfully
accelerates training of the CosmoFlow network by introducing
hybrid-parallelism, achieving 1.42 PFlop/s on 128 nodes (512 Tesla
V100 GPUs). To best of our knowledge, our work is the first at-
tempt to train a 3D CNN with the CosmoFlow dataset whose input
size is 4 × 5123 voxels without partitioning the data samples. Our
experimental results showed that the performance possibility of
hybrid-parallelism for 3D convolutional neural networks.

ACKNOWLEDGMENT
This research was supported by JSPS KAKENHI Grant Number
JP18J22858, Japan. This research was supported by the Exascale
Computing Project (17-SC-20-SC), This research used resources of
theNational Energy Research Scientific Computing Center (NERSC),
a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231. LLNL-ABS-776502.

REFERENCES
[1] Nikoli Dryden, Naoya Maruyama, Tom Benson, Tim Moon, Marc Snir, and Brian

Van Essen. 2019. Improving Strong-Scaling of CNN Training by Exploiting Finer-
Grained Parallelism. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS ’19).

[2] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Andy Yoo, Marc Snir,
and Brian Van Essen. 2018. Aluminum: An Asynchronous, GPU-Aware Commu-
nication Library Optimized for Large-Scale Training of Deep Neural Networks on
HPC Systems. In 2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC).
1–13. https://doi.org/10.1109/MLHPC.2018.8638639

[3] Lawrence Livermore National Laboratory. 2019. Conduit. https://github.com/
LLNL/conduit

[4] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James
Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise, Simon J. Pennycook,
Kristyn Maschhoff, Jason Sewall, Nalini Kumar, Shirley Ho, Michael F. Ringenburg,
Prabhat, and Victor Lee. 2018. CosmoFlow: Using Deep Learning to Learn the Uni-
verse at Scale. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’18). IEEE Press, Piscataway, NJ,
USA, Article 65, 11 pages. http://dl.acm.org/citation.cfm?id=3291656.3291743

[5] Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, and Barry Chen. 2015.
LBANN: Livermore Big Artificial Neural Network HPC Toolkit. In Proceedings of
the Workshop on Machine Learning in High-Performance Computing Environments
(MLHPC ’15). ACM, New York, NY, USA, Article 5, 6 pages. https://doi.org/10.
1145/2834892.2834897

https://doi.org/10.1109/MLHPC.2018.8638639
https://github.com/LLNL/conduit
https://github.com/LLNL/conduit
http://dl.acm.org/citation.cfm?id=3291656.3291743
https://doi.org/10.1145/2834892.2834897
https://doi.org/10.1145/2834892.2834897

	1 Introduction
	1.1 CosmoFlow

	2 Implementation details
	2.1 Distconv
	2.2 I/O performance optimization
	2.3 Network

	3 Evaluation
	4 Conclusions
	References

