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Overview

We present a case study of large-scale training of a 3D convolutional neural network
model for cosmological analyses of dark matter distributions. This work extends
existing work [1] for predicting cosmological parameters using CNNs for better
prediction accuracy and performance by exploiting finer-grained parallelism in distributed
convolutions. We show significant improvements using the latest complex cosmological
dataset in both strong scaling and weak scaling, achieving 1.42 PFlop/s (111x of speedup
over one computing node) on a single training task with a mini-batch size of 128 by
using 512 Tesla V100 GPUs. Our framework enables to train a huge CNN whose input
size is 4× 5123 that was previously unfeasible due to its memory pressure.

Background: Hybrid-parallel training

Hybrid-parallelism has advantages over data/model-parallelism
More amount of parallelism: The mini-batch size (N) × layer size (W n, where n is the number of
layer dimensions)
Less influence on resulting inference accuracy by keeping the mini-batch size small

Table 1. Comparison of parallel strategies for training a CNN.

Data Model Hybrid
What to parallelize Samples Layers Samples & Layers

Available parallelism O(N) O(W n) O(NW n)
GPU memory pressure 7 3 3

Influence on accuracy 7 3+ 3

Weak-scaling 3 N/A 3

Strong-scaling 3+ 3 3+

CosmoFlow

The CosmoFlow dataset [1, 2] is composed of a set of 3D dark matter distributions
along with their cosmological parameters

We use a CNN composed of seven 3D convolutional layers and three fully-connected layers
A single network cannot be trained with the original input size due to its memory pressure

Table 2. Summary of the CosmoFlow dataset and the network architecture.

Input width (W ) 128 256 512
# of input channels (C) 4 4 4

# of samples 65,728 8,216 1,027
Dataset size [TiB] 1.00 1.00 1.00

# of conv. ops. [GFlops/sample] 55.55 443.8 3550
(Forward) 18.52 147.9 1183

Memory [GiB/sample] 0.824 6.59 52.7
# of parameters [106] 9.44 9.44 9.44

Proposal: LBANN + Distconv for 3D CNNs

Distconv [3]: A hybrid-parallel CNN training implementation
Distconv distributes the computation of convolutional layers to a set of GPUs
1. Perform convolution to the center part of an input tensor
2. Start a halo exchange among GPUs in the same sample group in an asynchronous stream

Repeat the one-dimensional halo exchange three times to perform the three-dimensional halo exchange

3. Convolution is performed to the halo region in the halo stream

Two different I/O and communication-avoiding data readers
Use the Conduit [4] data exchange library as an I/O backend (“Conduit”)

preload the entire dataset into CPU memory before training starts
employ an MPI-based data exchange to shuffle the data to the process that requires it

Read the dataset from the global file system or node-local SSDs (“Direct I/O”)
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Figure 1. Overview of hybrid-parallel LBANN training.

Strong scaling

2.28x of speedup on 4 nodes (16 GPUs) over one node with a mini-batch size of 1
The main bottleneck is I/O of excessive data size (1 GiB/sample) via PCIe and inter-node data
shuffle
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(a) Strong scaling with two different mini-batch sizes
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Figure 2. Strong scaling of the CosmoFlow network. {Dp,Hp} represents the depth and the height
dimensions are distributed among Dp and Hp process groups respectively.

Weak scaling

119x and 120x of speedup on 128 nodes from 1 node with the W = 128 cubes and
W = 256 cubes datasets respectively
111x of speedup over 1 node with W = 512 by exploiting hybrid-parallelism even if
layer-wise communication is introduced

1.19x of speedup by increasing the number of nodes from 64 to 128 with N = 64
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Figure 3. Weak scaling of the CosmoFlow network. NGPU represents the number of data samples per
GPU.

Detailed analysis of the training timeline

By distributing N = 64 from 64 nodes to 128 nodes,
the computation efficiency per sample is degraded as the batch size per GPU is halved
due to this computational inefficiency, part of all-reduce cannot be hidden in the main stream

The overhead introduced by Distconv (“DC”, blue) is nearly negligible than the
computational kernels (“Main”, red)
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Figure 4. The GPU timeline of a single training iteration.
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