
Toward Training a Large 3D Cosmological CNN
with Hybrid Parallelization

Yosuke Oyama1,2,?, Naoya Maruyama2, Nikoli Dryden3,2, Peter Harrington4, Jan Balewski4,
Satoshi Matsuoka5,1, Marc Snir3, Peter Nugent4, and Brian Van Essen2

1Tokyo Institute of Technology, 2Lawrence Livermore National Laboratory, 3University of Illinois at Urbana-Champaign,
4Lawrence Berkeley National Laboratory, 5Riken Center for Computational Science

?oyama.y.aa@m.titech.ac.jp

Overview

We present a case study of large-scale training of a 3D convolutional neural network
model for cosmological analyses of dark matter distributions. This work extends
existing work [1] for predicting cosmological parameters using CNNs for better
prediction accuracy and performance by exploiting finer-grained parallelism in distributed
convolutions. We show significant improvements using the latest complex cosmological
dataset in both strong scaling and weak scaling, achieving 1.42 PFlop/s (111x of speedup
over one computing node) on a single training task with a mini-batch size of 128 by
using 512 Tesla V100 GPUs. Our framework enables to train a huge CNN whose input
size is 4× 5123 that was previously unfeasible due to its memory pressure.

Background: Hybrid-parallel training

Hybrid-parallelism has advantages over data/model-parallelism
More amount of parallelism: The mini-batch size (N) × layer size (W n, where n is the number of
layer dimensions)
Less influence on resulting inference accuracy by keeping the mini-batch size small

Table 1. Comparison of parallel strategies for training a CNN.

Data Model Hybrid
What to parallelize Samples Layers Samples & Layers

Available parallelism O(N) O(W n) O(NW n)
GPU memory pressure 7 3 3

Influence on accuracy 7 3+ 3

Weak-scaling 3 N/A 3

Strong-scaling 3+ 3 3+

CosmoFlow

The CosmoFlow dataset [1, 2] is composed of a set of 3D dark matter distributions
along with their cosmological parameters

We use a CNN composed of seven 3D convolutional layers and three fully-connected layers
A single network cannot be trained with the original input size due to its memory pressure

Table 2. Summary of the CosmoFlow dataset and the network architecture.

Input width (W) 128 256 512
of input channels (C) 4 4 4

of samples 65,728 8,216 1,027
Dataset size [TiB] 1.00 1.00 1.00

of conv. ops. [GFlops/sample] 55.55 443.8 3550
(Forward) 18.52 147.9 1183

Memory [GiB/sample] 0.824 6.59 52.7
of parameters [106] 9.44 9.44 9.44

Proposal: LBANN + Distconv for 3D CNNs

Distconv [3]: A hybrid-parallel CNN training implementation
Distconv distributes the computation of convolutional layers to a set of GPUs
1. Perform convolution to the center part of an input tensor
2. Start a halo exchange among GPUs in the same sample group in an asynchronous stream

Repeat the one-dimensional halo exchange three times to perform the three-dimensional halo exchange

3. Convolution is performed to the halo region in the halo stream

Two different I/O and communication-avoiding data readers
Use the Conduit [4] data exchange library as an I/O backend (“Conduit”)

preload the entire dataset into CPU memory before training starts
employ an MPI-based data exchange to shuffle the data to the process that requires it

Read the dataset from the global file system or node-local SSDs (“Direct I/O”)

Rank

M
em

or
y

Read

CPU GPU

Shuffle
0

1

2

3

Conv.

Halo
ex.
+

conv.

· · ·

Shuffle Conv. FC
Back-prop.

M
em

or
y

Read

CPU GPU

Shuffle
4

5

6

7

Conv.

Halo
ex.
+

conv.

· · ·

Shuffle Conv. FC
Back-prop.

Sample
exchange

Parameter gradients aggregation
(all-reduce)

Input conv1 · · · conv7 fc1,. . . ,3

Figure 1. Overview of hybrid-parallel LBANN training.

Strong scaling

2.28x of speedup on 4 nodes (16 GPUs) over one node with a mini-batch size of 1
The main bottleneck is I/O of excessive data size (1 GiB/sample) via PCIe and inter-node data
shuffle

0.0

0.1

0.2

0.3

0.4

Number of nodes (Dp/4)

[s
]

N = 1,W = 512

1 2 4 8 16 32

2.28x

{Dp, 1}

0.0

0.1

0.2

0.3

0.4

Number of nodes (8DpHp/4)

[s
]

N = 8,W = 512

8 16 32 64 128

{Dp, 1}
{Dp,Hp}

(a) Strong scaling with two different mini-batch sizes

16

8

4

2

1

Seq. data load
Forward
Backward
Update

Time [s]

N
um

b
er

of
no

de
s

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

(b) Time breakdown with N = 1, W = 512

Figure 2. Strong scaling of the CosmoFlow network. {Dp,Hp} represents the depth and the height
dimensions are distributed among Dp and Hp process groups respectively.

Weak scaling

119x and 120x of speedup on 128 nodes from 1 node with the W = 128 cubes and
W = 256 cubes datasets respectively
111x of speedup over 1 node with W = 512 by exploiting hybrid-parallelism even if
layer-wise communication is introduced

1.19x of speedup by increasing the number of nodes from 64 to 128 with N = 64

Number of nodes

S
p

ee
d

[s
am

pl
es

/s
]

NGPU = 8,W = 128

1 2 4 8 16 32 64 128

119x

103

104

{1, 1} (Synthetic)
{1, 1} (Conduit)
{1, 1} (Direct I/O)

Number of nodes

S
p

ee
d

[s
am

pl
es

/s
]

NGPU = 1,W = 256

1 2 4 8 16 32 64 128

120x

101

102

103

104

{1, 1} (Synthetic)
{1, 1} (Conduit)
{1, 1} (Direct I/O)

Number of nodes

S
p

ee
d

[s
am

pl
es

/s
]

NGPU = 1/DpHp,W = 512

1 2 4 8 16 32 64 128

111x

100

101

102

{2, 2} (Synthetic)
{4, 1} (Synthetic)
{8, 1} (Synthetic)
{2, 2} (Conduit)
{4, 1} (Conduit)
{8, 1} (Conduit)
{2, 2} (Direct I/O)
{4, 1} (Direct I/O)
{8, 1} (Direct I/O)

Figure 3. Weak scaling of the CosmoFlow network. NGPU represents the number of data samples per
GPU.

Detailed analysis of the training timeline

By distributing N = 64 from 64 nodes to 128 nodes,
the computation efficiency per sample is degraded as the batch size per GPU is halved
due to this computational inefficiency, part of all-reduce cannot be hidden in the main stream

The overhead introduced by Distconv (“DC”, blue) is nearly negligible than the
computational kernels (“Main”, red)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Time [s]

N = 64,W = 512, {Dp,Hp} = {4, 1}, 64 nodes

S
tr

ea
m

Forward Backward Update

Main

DC

NCCL

0.00 0.05 0.10 0.15 0.20

Time [s]

N = 128,W = 512, {Dp,Hp} = {8, 1}, 128 nodes

S
tr

ea
m

Forward Backward Update

Main

DC

NCCL

Figure 4. The GPU timeline of a single training iteration.

Acknowledgement

This research was supported by JSPS KAKENHI Grant Number JP18J22858, Japan.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint

project of the U.S. Department of Energy’s Office of Science and National Nuclear

Security Administration, responsible for delivering a capable exascale ecosystem,

including software, applications, and hardware technology, to support the nation’s

exascale computing imperative. This research used resources of the National Energy

Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office

of Science User Facility operated under Contract No. DE-AC02-05CH11231. LLNL-

POST-776501.

References

[1] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann, L. Shao,
S. He, T. Kärnä, D. Moise, S. J. Pennycook, K. Maschhoff, J. Sewall,
N. Kumar, S. Ho, M. F. Ringenburg, Prabhat, and V. Lee, “Cosmoflow: Using
deep learning to learn the universe at scale,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, ser. SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 65:1–65:11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3291656.3291743

[2] National Energy Research Scientific Computing Center, “Cosmoflow datasets,”
2019. [Online]. Available: https://portal.nersc.gov/project/m3363

[3] N. Dryden, N. Maruyama, T. Benson, T. Moon, M. Snir, and B. Van Essen,
“Improving strong-scaling of cnn training by exploiting finer-grained
parallelism,” in Proceedings of the International Parallel and Distributed
Processing Symposium, ser. IPDPS ’19, 2019.

[4] Lawrence Livermore National Laboratory, “Conduit,” 2019. [Online]. Available:
https://github.com/LLNL/conduit

http://dl.acm.org/citation.cfm?id=3291656.3291743
https://portal.nersc.gov/project/m3363
https://github.com/LLNL/conduit

