
Maintaining Connectivity in Parallel Graph Partitioning
Christopher I. Jones

jonesc10@rpi.edu
Rensselaer Polytechnic Institute

Troy, NY

Ian Bogle
boglei@rpi.edu

Rensselaer Polytechnic Institute
Troy, NY

George M. Slota
slotag@rpi.edu

Rensselaer Polytechnic Institute
Troy, NY

1 INTRODUCTION
Graph partitioning is the process of creating vertex-disjoint sets on
a graph that fit some optimization objective and set of balance con-
straints. Generally, the sum of vertex weights are balanced across all
parts and the size of the edge cut is minimized. Running the graph
partitioning process in parallel is highly desired so that we can
quickly process larger graphs, on the scale of billions of vertices or
higher. Our partitioner PuLP [1] uses a label-propagation approach
with vertex-centric computations in parallel to scalable solve the
multi-weight partitioning problem. In this work, we introduce an
additional constraint to the partitioning problem, which is main-
taining connectivity of the parts in a partition. In other words, we
aim to reduce the number of connected components in the final
solution, where in the ideal case each part is fully connected. This
effort investigates various methods for retaining part connectivity
during partitioning with PuLP. Results will eventually be integrated
into the PuLP and XtraPuLP libraries [2].

2 METHODS
The work in this project is implemented into the existing PuLP [1]
algorithm. PuLP has two main iterations that it repeatedly performs
on every vertex in the graph. A balance iteration focuses on bal-
ancing the weights of each part and a refine iteration improves the
cut without hurting the current balance. For a given balance vertex,
PuLP considers the gain associated with this vertex joining a part
P :

gain(P ) = nP ·wP (1)

Where nP is the number of neighbors of this vertex that are in part
P , and wP is how underweight P is (i.e. how much more vertex
weight is needed for P to achieve its target constraint). A vertex
will join the neighboring part that has the highest gain value. We
investigated various different methods throughout the PuLP algo-
rithm for maintaining connectivity to the original algorithm. In the
following discussion, assume for simplicity that the input graphs
are fully connected and components are defined by their current
part boundaries.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2.1 Merging Small Components
A basic method we employed was simply merging all smaller com-
ponents until the number of components equals the number of
parts. This operation can be carried out between processing itera-
tions of the algorithm or as a final step. To perform this method,
we consider the largest component as defining a given part and
merge neighboring small parts into it. We use a breadth-first search
variant to find the available neighbors of small parts, and perform
a weighted merge based on collected metrics such as how many
neighboring edges, vertices, and components each part currently
has.

2.2 Preventing Dis-connectivity
Instead of re-assigning large numbers of vertices at once, which
can upset part balance, we also consider restricting which vertices
are allowed to move during the PuLP algorithm. This is to prevent
dis-connectivity of parts from occurring in the first places. We con-
sider three variants: 1.) We only consider allowing leaves defined
by a BFS in a given part to move their assignments; 2.) We allow
only vertices with C or fewer successors in a BFS to move; and
3.) We explicitly compute part biconnectivity and prevent articula-
tion vertices from moving. The intuition behind these methods is
that by only re-assigning the leaves of a tree or non-articulation
points, we don’t disconnect more than a single vertex from a part
in a single re-assignment. By preventing a vertex in a rooted tree
with C lower-level successors, we prevent at most C + 1 vertices
from being disconnected in a single assignment. However, these
methods tended to be rather heavyweight computationally or far
too restrictive to allow our weighted constraints to be satisfied.

2.3 Additional Metrics
The goal of this method is to see if we can introduce another metric
into the objective equations, such as дain (Equation 1), that will
improve connectivity. Previous methods involve doing operations
outside of these equations; we want to modify such equations with
new metrics in order to keep the algorithm vertex-centric. One
potential metric that we introduce is average number of children
(ANC), which is again based on the same BFS trees generated in the
Leaves Only method (but is easier to track). We denote ANC as aP :

aP =
∑

u ∈N (v )
u ∈P

children(u)
d (u)

(2)

Where N (v ) is the neighborhood of v , children(u) is the number of
children u has in the component’s BFS tree, and d (u) is the degree
of u. For a given vertex v , and for each neighbor u of v , the ANC
metric finds the ratio of the number of children of u to the degree
of u. Then these ratios are summed up per part, P , to give aP . The
intuition is that a vertexv would be better off joining a part that has

https://doi.org/10.1145/nnnnnnn.nnnnnnn


a higher ANC value, as that means the portion of the part that is
neighboring v is relatively well connected. We introduce the ANC
metric in two main ways into the дain equation:

дain(P ) = (nP + aP ) ·wP (3)

дain(P ) = nP ·wP /aP (4)
Note that Equation (4) goes against intuition, by producing a

higher gain value when the ANC value is small.

3 RESULTS
Gathering experimental results was done with five test graphs with
up to about 5 million edges each: a scientific mesh, a road network,
an ASIC circuitry network, a web-crawl, and a social network. To
simplify the solutions of our testing, we only compute on the giant
component of each of these graphs.

3.1 Merging Small Components
We considered our two approaches. First, we merged all small com-
ponents at the end of each iteration; however, this generally upset
our balance constraints. Second, we simply ran the merging as a
final step of the original algorithmwith results shown in Table I. We
note that a single merge step generally retained balance constraints
for most networks and could therefore be used as a final refinement
step with other methods.

Table 1: Merging as a Final Step
Vertex Overweight Edge Cut

Scientific Mesh 1.22 2,350
Social Network 1.31 241K
Web-Crawl 1.18 94.5K
Road Network 1.06 3,710
ASIC Circuit 1.04 16.6K

3.2 Preventing Dis-connectivity
Generally, restricting only leaves or articulation vertices to change

parts prevented us from achieving part balance. We show in Table 2
a test with multiple values ofC , which is the threshold at which any
vertex with more than C successors is not allowed to move parts.
Note that the normal PuLP algorithm is equivalent to (C = ∞).
In many tests, when only allowing the leaves to move (C = 0),
the algorithm would stall or oscillate between moving just a few
vertices back and forth.

3.3 Additional Metrics
We tested the addition of the ANCmetric, aP , into the gain equation,
as defined by Equations (3) and (4). To update the aP metric, BFS
trees are recalculated at the start of each outer iteration. For all test
graphs, the use of Equation (3) gave a small improvement in the
number of components, without disrupting vertex balancing or the

Table 2: Leaves Only Method on the Web-Crawl Graph
C Vertex Overweight Edge Cut Small Comp. Count
0 1.5-2.5 >1,000K 0
1 1.1-1.2 800K 4,000
2 ≤ 1.1 650K 5,000
∞ <1.1 150K 5,500

Table 3: Introduction of ANCMetric on a Web-Crawl Graph
Vertex Edge Small Components

Overweight Cut Count Size
Normal 1.039 125.4K 6,100 22.17
Equation (3) 1.040 125.5K 5,800 22.53
Equation (4) 1.057 434.4K 14,400 13.94

Add Merging as a Final Step:
Normal 1.182 94.5K 0 N/A
Equation (3) 1.174 95.3K 0 N/A
Equation (4) 1.081 356K 0 N/A

edge cut. Using Equation (4), we saw in most cases the number of
components increased significantly.

In some cases, as displayed in Table IV, Equation (4) produces
many components that have a small average size. When we add
in the small component merging method as a final step, we saw
relatively good results in the web-crawl graph. For the other test
graphs, adding the merging step did not produce similar or more
definitive results.

4 APPLICATION: REDISTRICTING
We demonstrate our methods by translating the political redis-
tricting problem to graph partitioning. We define census blocks as
vertices, districts as parts, and shared borders between blocks as
edges. Previous work on this problem includes PEAR [3], a par-
allel evolutionary algorithm. Our goal is to optimize compactness
(boundary over perimeter) while ensuring competitiveness (equal-
izing demographics) and connectedness. We apply PuLP to North
Carolina, using population demographics as vertex weights and
border lengths as edge weights. We show our results in Figure 3. We
achieve our balance constraints with low error and low time cost
while producing connected, compact, and competitive districts.

Figure 1: The state of North Carolina’s congressional dis-
tricts from 2013-2016 (left) and a redistricting of North Car-
olina using PuLP with population vertex weights, border
length edge weights, and merging as a final step (right).

ACKNOWLEDGEMENTS
This work was supported in part by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Scientific Discovery through Ad-
vanced Computing (SciDAC) program through the FASTMath Institute under Contract
No. DE-AC02-05CH11231 at Rensselaer Polytechnic Institute and Sandia National
Laboratories. Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-0003525.

REFERENCES
[1] George M. Slota, Kamesh Madduri, and Sivasankaran Rajamanickam, PuLP: Scal-

able Multi-Objective Multi-Constraint Partitioning for Small-World Networks, in
the Proceedings of the 2nd IEEE Conference on Big Data (BigData 2014).

[2] https://github.com/HPCGraphAnalysis/PuLP/
[3] Y. Y. Liu, W. K. T. Cho, S. Wang, PEAR: a massively parallel evolutionary compu-

tation approach for political redistricting optimization and analysis, in Swarm
and Evolutionary Computation, 30, 78-92, 2016.

https://github.com/HPCGraphAnalysis/PuLP/

	1 Introduction
	2 Methods
	2.1 Merging Small Components
	2.2 Preventing Dis-connectivity
	2.3 Additional Metrics

	3 Results
	3.1 Merging Small Components
	3.2 Preventing Dis-connectivity
	3.3 Additional Metrics

	4 Application: Redistricting
	References

