
MaintainingConnectivity inParallelGraphPartitioning
Christopher I. Jones
jonesc10@rpi.edu

Ian Bogle
boglei@rpi.edu

George M. Slota
slotag@rpi.edu

Motivation

Partitioning graphs is an important task in
parallel scientific computing and graph analysis
applications to balance work per-task and minimize
communication. For large graphs and meshes, par-
allelizing the partitioning process is heavily desired.
If parts within a partition remain connected,
they can allow simpler computations and reduce
the number of very small components that are
disconnected from the rest of their part.

Applications for partitioning:

• Parallel graph analysis using clusters

• Scientific computing of fine meshes, which
desires connectivity and multi-weight vertices

• Problem solving in biology, power grids, image
processing, and many more [3]

• Redistricting, which requires connectivity,
and can reduce gerrymandering issues [2]

Background
Graph partitioning typically is the process of cre-

ating vertex-disjoint sets on a graph that minimize
edge cut and constrain weight per-part. This project
focuses on adding an additional constraint: connec-
tivity. It is common for partitioning algorithms to
not guarantee connected partitions, but it can be a
highly desired feature.

Several categories of graph partitioning algo-
rithms exist. Global algorithms work with the
entire graph and compute a direct solution, and
they’re mainly used for smaller graphs. Iterative
improvement heuristics gradually improve parti-
tions from an initial starting position. These take a
small set of vertices at a time and move them to the
best suited part. Multilevel algorithms condense
the graph small enough to do an initial partitioning,
then work back and uncondense the graph [3].

The work done in this project is built on an exist-
ing algorithm: Partitioning using Label Propa-
gation (PuLP) [1]. PuLP has achieved good vertex
balancing and edge cut, while obtaining greatly im-
proved runtime and memory usage over other parti-
tioning algorithms. The results of this will be inte-
grated into PuLP to address connectivity issues.

Methods for Maintaining Connectivity

We are building upon an existing PuLP [1] al-

gorithm, adding features and functionality to
aid connectivity. The original algorithm has 2

inner iterations:

• Balance focuses on balancing the
vertices between parts. Each ver-
tex considers the gain to being in
part P :

gain(P ) = nP · wP

nP is the number of neighbors in P .
wP is how underweight P is.

• Refine works on minimizing the
edge cut relative to each vertex.

Merge Small Components

Ideally, each part has one component.
Every some number of iterations, merge
all components that are not the largest
in their part into a neighboring compo-
nent.

Restrict Vertex Movement

Calculate BFS trees on each component,
and only allow the leaves to move. Or,
every so many vertex movements, calcu-
late bi-connectivity, and prevent artic-
ulation points from moving.

Additional Metrics

Add a new metric to the gain equation
by 2 methods:

(1) gain(P ) = (nP + aPaPaP ) · wP

(2) gain(P ) = nP · wP /aPaPaP

aP =
∑

u∈N(v)
u∈P

children(u)

d(u)

Where N(v) is the neighborhood of v,

children(u) is the number of children u has in

the component’s BFS tree, and d(u) is the de-
gree of u.

Results

Merge Small Components
Social Network Metrics During Merge Iterations

Merging works decently for some graphs, such as a road net-
work, while sacrificing some of the vertex balancing and edge

cut. But for other complex graphs, like a social network, ver-

tices are thrown way off balance.

Restrict Vertex Movement

Vertex Edge Small Comp.

C Overweight Cut Count

0 1.5-2.5 >1,000K 0

1 1.1-1.2 800K 4,000

2 ≤ 1.1 650K 5,000
∞ <1.1 150K 5,500

Leaves Only Method: Results are from a web-crawl graph

where only vertices with C or less children are allowed to move.

R 10K 2.5K 1,250 320 80

Comp. Count 2,000 1,500 1,400 1,275 1,200

Articulation Point Method: Running on a road network

graph, biconnectivity is recalculated every R vertex updates.

The original algorithm outputs only around 130 components.

Additional Metrics

Vertex Edge Small Components

Overweight Cut Count Size

Normal alg. 1.039 125.4K 6,100 22.17

Method (1) 1.040 125.5K 5,800 22.53
Method (2) 1.057 434.4K 14,400 13.94

Add Merging as a Final Step:

Normal alg. 1.182 94.5K 0 N/A

Method (1) 1.174 95.3K 0 N/A
Method (2) 1.081 356K 0 N/A

Using an Additional Metric: These numbers are from a
web-crawl graph when adding the Average Number of Children

metric, aP . Method (2) produces many components that are

relatively small, allowing those components to be easily merged.

Application: Political Redistricting

Gerrymandering is the issue of
politicians manipulating districts
based on where voters live. Trans-
lating the redistricting problem to
graph partitioning, census blocks
are vertices, districts are parts,
and edges represent shared bor-
ders. Previous work includes
PEAR [2], which is an evolutionary
algorithm. We’ve applied PuLP to
counties in North Carolina, using
population demographics as vertex
weights and border lengths as edge
weights.

Gerrymandering: North Carolina
districts from 2013-2016.

PuLP: A redistricting using PuLP with
small component merging.

Redistricting introduces new met-
rics that can be taken into consid-
eration, such as compactness and
competitiveness, as defined in [2].
Compactness is related to how
well connected a district is and
is defined as the area divided by
perimeter squared. Competitive-
ness takes the numbers of voters
in opposing parties to measure how
evenly they’re distributed in the
districts. Other demographic data
can also be considered.

Acknowledgements
This work was supported in part by the U.S. Department of En-
ergy, Office of Science, Office of Advanced Scientific Computing Re-
search, Scientific Discovery through Advanced Computing (SciDAC)
program through the FASTMath Institute under Contract No. DE-
AC02-05CH11231 at Rensselaer Polytechnic Institute and Sandia Na-
tional Laboratories. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidiary of Honey-
well International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.

References
[1] G. Slota, K. Madduri, S. Rajamanickam PULP: Scalable Multi-

Objective Multi-Constraint Partitioning for Small-World Networks
In Proc. IEEE BigData Conf., 2014.

[2] Y. Y. Liu, W. K. T. Cho, S. Wang PEAR: a massively parallel
evolutionary computation approach for political redistricting op-
timization and analysis. In Swarm and Evolutionary Computation,
30, 78-92, 2016.

[3] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, C. Schulz Recent
Advances in Graph Partitioning In Algorithm Engineering, 2016.


