Enabling Data Processing under Erasure Coding in the Fog

Jad Darrous
Inria, ENS de Lyon, LIP
Lyon, France
jad.darrous@inria.fr

ABSTRACT

In recent years, Fog computing has been widely adopted as an
extension to clouds by placing cloud services close to the users.
While Fog promises to provide low-latency by enabling computa-
tion close to the data sources, it imposes several challenges for Big
Data analytics including limited storage capacity, and computation
and network heterogeneity. In this work, we argue that erasure
coding (EC) can be applied as an alternative to replication to store
data in Fog environments. Moreover, by making map task sched-
uling network-aware, we might achieve similar performance as
replication but with half storage cost.

1 INTRODUCTION

The current explosion of devices connected to the Internet will gen-
erate a huge amount of data that becomes unsustainable to move
to the cloud for processing. As a response, Fog computing para-
digm has emerged by proposing to leverage computation resources
along the path between end users and centralized cloud data cen-
ters. These computation resources can be micro data centers [6],
Cloudlets [15], etc or in a more general way, can be called a Fog
site. A variety of applications benefit from these nearby resources,
for example, the accuracy of video processing and the latency of
smart city applications can be improved using Fog [8, 13]. However,
Fog poses many challenges: in contrary to the centralized clouds
where storage and computation resources can be seen as virtually
unlimited, Fog sites have limited storage and computation capac-
ities. Moreover, these sites are connected with a heterogeneous
network. These constraints raise the critical importance of efficient
resource management in Fog.

Big Data analytics in Fog environments. Nevertheless, these
sites generate an unprecedented amount of data that should be pro-
cessed collectively. For example, analyzing logs to monitor global
health of a system, or analyzing browsing habits to propose ade-
quate products to the customers. Fog computing has been success-
fully used to improve the performance of a wide range of data pro-
cessing applications including stream data applications [13], smart
city applications [10], etc. Moreover, most efforts have focused on
addressing network heterogeneity when transferring intermediate
data in-between successive operators [13], or by improving the
locality of tasks in MR applications as in Nebula framework [9].

Big Data analytics under EC. Erasure coding (EC) is a redun-
dancy technique to achieve fault tolerance guarantee but with
lower storage overhead compared to replication [14]. Recently,
EC has been explored in many storage systems as an alternative
of replication [11], also, it is integrated in the last major release
of Hadoop Distributed File System (i.e., HDFS 3.0.0) which is the
primary storage back-end for Big Data analytics frameworks (e.g.,

Shadi Ibrahim
Inria, IMT Atlantique, LS2N
Nantes, France
shadi.ibrahim@inria.fr

Hadoop [3], Spark [4], etc.). Many research efforts have been ded-
icated to adopt erasure coding in data-intensive clusters. HDFS-
RAID [2] and DiskReduce [7] extend HDFS to encode replicated
data offline. On the other hand, Zhang et al. [17] implement EC on
the top of HDFS on the critical path (online encoding). They show
that the execution times of MR applications can be reduced when
the data are encoded compared to 3-ways replication.

EC for Big Data analytics in the Fog. Given the limited stor-
age capacities of Fog nodes, the storage reduction brought by EC,
and the important progress which has been made in reducing the
CPU overhead of EC operations (and thus integrating EC operations
on the critical path of data accesses [11]), EC is an ideal candidate
for data processing in the Fog. However, EC brings important “high”
network overhead. In contrary to replication where the majority
of tasks can run locally, all the tasks under EC have to read most
of their input data remotely: HDFS implemented EC with striped
layout where an HDFS block is represented by "n" original chunks
and "k" parity chunks, distributed on "n+k" data nodes. Even worse,
the cost of data transfer when reading input data and its impact
on the performance of data analytic jobs will be amplified in Fog
environment due to network heterogeneity.

Contributions. Accordingly, as a first step towards realizing EC
for data processing in Fog , we empirically demonstrate the impact
of network heterogeneity on the execution time of MR applica-
tions when running in the Fog. We found that the map tasks under
EC suffer obvious performance degradation (the maximum map
task runtime is 3.3x longer compared to the mean) when reading
input data from remote nodes. Therefore, we argue that by mak-
ing map task scheduling network-aware we might achieve similar
performance as replication but with half the storage cost.

2 BACKGROUND

Erasure Codes. Erasure coding (EC) is an encoding technique
which can provide the same fault tolerance guarantee as replica-
tion [14] while reducing storage cost. Reed-Solomon codes (RS) [12]
are the most deployed codes in current storage systems [2, 16].
RS(n, k) splits the block of the data to be encoded into (n) smaller
blocks called data chunks and then computes (k) parity chunks
from these data chunks. Any (n) chunks out of the (n + k) chunks
are sufficient to rebuild the original data block. RS codes present a
trade-off between higher fault tolerance and lower storage overhead
depending on the parameters (n) and (k). RS(6, 3) and RS(10, 4) are
among the most widely used configurations. Compared to replica-
tion, RS(6, 3) has 50% storage overhead and can tolerate 3 simulta-
neous failures, while 3-way replication has 200% storage overhead
and can only tolerate 2 simultaneous failures.

EC Block layout in HDFS. EC is implemented with striped
block layout in HDFS, i.e., chunks of each block is physically dis-
tributed on multiple nodes. Compared to contiguous block layout,



ICPP ’19, August 05-08, 2019, Kyoto, Japan

striped layout is more efficient for handling small files and has less
memory overhead when encoding and decoding.

3 THE IMPORTANCE OF NETWORK-AWARE
MAP TASK SCHEDULING

In this section, we show through experiments how jobs under EC
behave compared to replication (REP) in a Fog environment.
Methodology. To demonstrate the feasibility of EC, we take a
Fog infrastructure of 10 sites, each site is represented by a single
physical machine. We suppose that these sites have the same stor-
age capacities, but heterogeneous compute and network resources.
The heterogeneity of computation is emulated by controlling the
number of active cores (between 2 to 10 active cores per site). The
network heterogeneity is emulated with the Linux Traffic-Control
tool [1] (from 500 Mbps to 5000 Mbps). We deploy Hadoop workers
on these 10 machines, with one extra machine to host the master
processes. We set HDFS block size to 256 MB and the replication fac-
tor to 3. For EC, we use the default EC policy in HDFS, i.e., RS(6, 3)
scheme with a cell size of 1 MB. Also, we disable the overlapping
shuffle to study the impact of each phase separately. We use the
Sort application as an example of a data-intensive job. The experi-
ments have been performed on top of Grid’5000 [5]. Each machine
is equipped with two Intel Xeon E5-2660 8-cores processors, 64 GB
of main memory, and a 1 TB HDD. The machines are connected
by 10 Gbps Ethernet network, and run 64-bit Debian stretch Linux
with Java 8 and Hadoop 3.0.0 installed. We store the data at the
workers in the main memory to eliminate the impact of the disks.
Experimental Results. Figure 1a depicts the job execution time
of Sort application while increasing the input size. We can notice
that REP outperforms EC by up to 35%. For example, for 30 GB input
size, job execution time under EC is 274s, thus 18% higher than that
under REP (232s). This difference can be explained by the time taken
by the map and reduce phases, knowing that these two phases are
not overlapping. Again, for 30 GB input size, reduce phase takes
almost the same time under both EC and REP. However, map phase
finishes in 21s under REP while it takes 61s under EC. The reason
behind this is that map tasks exhibit high variation under EC (60%)
compared to REP (19%). Figure 1b shows the minimum, the average,
and the maximum runtimes of map tasks. We can clearly see that
the runtimes of some map tasks are 2x to 3.3x longer compared to
the mean under EC. Hence, by reducing the variation of map tasks,
the performance of MR applications under EC can be improved.
Discussion. The previous results show that the performance of
EC during the map phase is greatly outperformed by replication.
While under REP, some tasks are non-local, under EC all the task
read most of their data non locally. As the network is heterogeneous,
tasks under EC should wait for the last chunk to be able to process
the current piece of data, thus they experience huge variation in
their runtimes. The late binding method used in other storage
systems [11] to mitigate stragglers might not be efficient due to
extra network traffic. Hence, a network-aware solution that takes
network heterogeneity into account could be more suitable. In
essence, an original data block could be recovered from any n
chunks out of n + k . As decoding operation has negligible CPU
overhead, leveraging parity chunks could reduce the retrieval time.
For example, instead of requesting just the data chunks (as currently

J. Darrous and S. Ibrahim

400 B EC (max) BE= EC (min) EEB REP (mean)
350 A EC EIN EC (mean) EEBA REP (max) EEEE REP (min)
80
S 300 XN REP %
& 250 260
o 200 ©50
£ 150 o 40
100 £30
50 =20
0 10
5 30 43 s 30 45

Input data size (GB) Input data size (GB)

(a) Job execution time (b) Min and Max map runtime
Figure 1: Sort application under EC and REP.

done by HDFS) where some of them reside on highly congested
nodes, other parity blocks could be requested instead from faster
nodes. However, to achieve the best job level performance, the
scheduler should consider all the map tasks at once. The problem
of minimizing the makespan of map tasks under EC is what we are
going to investigate in more details in our future work.

4 CONCLUSION

With the proliferation of Fog computing and the need to store
and process more data, erasure codes manifest as an alternative
to replication. In this work, we spot the inefficiency of EC when
reading input data and we argue that incorporating network-aware
chunks scheduler can potentially reduce the variation of map tasks,
and thus, achieving lower job execution time.

ACKNOWLEDGMENTS

This work is supported by the Stack/Apollo connect talent project, Inria Project Lab
program Discovery (see beyondtheclouds.github.io), and the ANR KerStream project
(ANR-16-CE25-0014-01). The experiments presented in this paper were carried out us-
ing the Grid’5000/ALADDIN-G5K experimental testbed, an initiative from the French
Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and RE-
NATER and other contributing partners (see www.grid5000.fr for details).

REFERENCES

] 2006. Linux Traffic Control. http://tldp.org/HOWTO/Traffic- Control- HOWTO.

] 2011. HDFS-RAID wiki. https://wiki.apache.org/hadoop/HDFS-RAID.

] 2019. Apache Hadoop. http://hadoop.apache.org.

[4] 2019. Apache Spark. https://spark.apache.org.

] 2019. Grid’5000. http://www.grid5000.fr.

] V.Bahl. 2015. Emergence of micro datacenter (cloudlets/edges) for mobile com-
puting. https://www.microsoft.com/en-us/research/publication/emergence- of-
micro-datacenter-cloudlets-edges-for-mobile-computing/.

[7] B.Fan, W. Tantisiriroj, L. Xiao, et al. 2009. DiskReduce: RAID for Data-intensive
Scalable Computing. In Proceedings of the 4th Workshop on Petascale Data Storage.

[8] C.-C.Hung, G. Ananthanarayanan, P. Bodik, et al. 2018. Videoedge: Processing
camera streams using hierarchical clusters. In SEC’18.

[9] A. Jonathan, M. Ryden, K. Oh, A. Chandra, et al. 2017. Nebula: Distributed
Edge Cloud for Data Intensive Computing. IEEE Transactions on Parallel and
Distributed Systems 28, 11 (Nov 2017).

[10] N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-Molnar, et al. 2017. SmartCi-
tyWare: A Service-Oriented Middleware for Cloud and Fog Enabled Smart City
Services. IEEE Access 5 (2017).

[11] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, et al. 2016. EC-Cache: Load-
Balanced, Low-Latency Cluster Caching with Online Erasure Coding. In OSDI'16.

[12] 1. Reed et al. 1960. Polynomial codes over certain finite fields. Journal of the
Society of Industrial and Applied Mathematics 8, 2 (06/1960 1960), 300-304.

[13] E. G. Renart, J. Diaz-Montes, et al. 2017. Data-Driven Stream Processing at the
Edge. In ICFEC’17.

[14] R.Rodrigues et al. 2005. High Availability in DHTs: Erasure Coding vs. Replication.
In Peer-to-Peer Systems IV.

[15] M. Satyanarayanan, P. Bahl, R. Caceres, et al. 2009. The Case for VM-Based
Cloudlets in Mobile Computing. IEEE Pervasive Computing 8, 4 (Oct 2009).

[16] K. Shvachko, H. Kuang, S. Radia, et al. 2010. The Hadoop Distributed File System.
In MSST’10.

[17] Z.Zhang, A. Deshpande, X. Ma, E. Thereska, et al. 2010. Does erasure coding have

a role to play in my data center? Technical Report. Microsoft research.


http://tldp.org/HOWTO/Traffic-Control-HOWTO
https://wiki.apache.org/hadoop/HDFS-RAID
http://hadoop.apache.org
https://spark.apache.org
http://www.grid5000.fr
https://www.microsoft.com/en-us/research/publication/emergence-of-micro-datacenter-cloudlets-edges-for-mobile-computing/
https://www.microsoft.com/en-us/research/publication/emergence-of-micro-datacenter-cloudlets-edges-for-mobile-computing/

	Abstract
	1 Introduction
	2 Background
	3 The Importance of network-aware map task scheduling
	4 Conclusion
	Acknowledgments
	References

