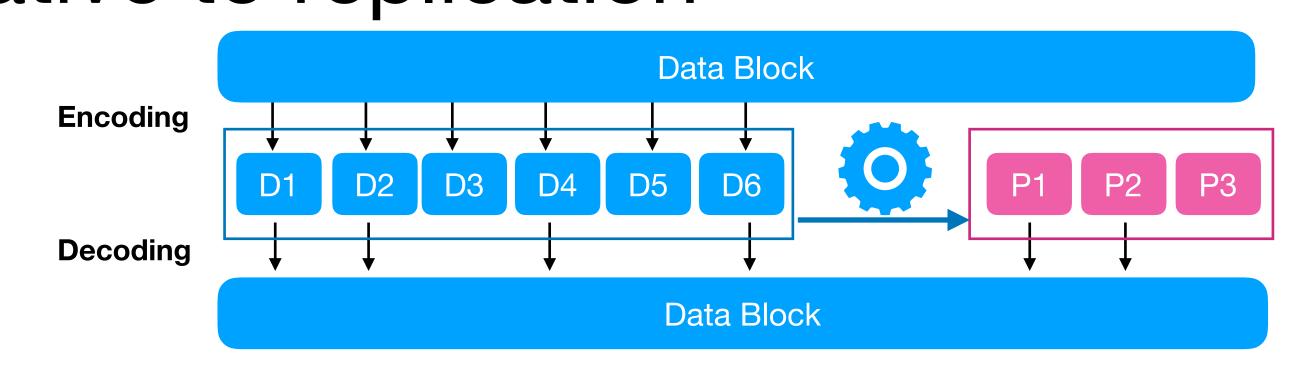
Enabling Data Processing under Erasure Coding in Fog

Jad Darrous¹ and Shadi Ibrahim²

¹Inria, ENS de Lyon, LIP ²Inria, IMT Atlantique, LS2N

Big Data Processing in Fog

Fog Computing: Opportunities


- Fog is widely adopted to extend the capacity of clouds
- It allows to deploy and run applications close to the users, e.g., Smart City applications^[1]
- Data processing applications, among others, can also benefit of Fog, e.g., Video Stream processing^[2], Query processing^[3] and Batch processing^[4]

Fog: Limitations and Challenges

- Limited storage capacity
 - Using replication to ensure data availability is expensive
- Heterogeneous and limited computation capacity
 - Difficult to exploit data locality efficiently
- Heterogeneous network
 - The cost of data transfer between nodes is high

Erasure Coding as alternative to replication

- Half the storage overhead of replication, for RS(6, 3)
- Low CPU overhead for encoding/decoding (5.3 GB/s)^[5]
 - EC have been deployed in storage and caching systems^[7]
 - HDFS is now equipped with EC since the 3.0.0 release^[6]
 - When performing MapReduce applications in data-intensive clusters
 - Unlink replication, most of the (map) task input data is transferred
 - A reduction by half of the network traffic and disk accesses when writing the output data

How to effectively realize EC for big data processing in Fog?

Quantitively analyze the impact of heterogeneity A Fog infrastructure is emulated on 10 machines each representing a Fog site Bandwidth: 500Mbps → 5Gbps **←**35% Computation: 2 → 10 cores 3.3x (max to mean) Storage: main memory 67,5 Input data size (GB) Input data size (GB) Map tasks runtimes Sort execution time

- Sort application performs 35% faster under Replication compared to EC
- The main reason behind the low performance of EC is the heterogeneity of the network
- Map tasks wait for the last chunk to process the current piece of data
- This leads to **high variation** in map runtimes under EC (60%)

Towards Network-Aware map task scheduling

- A network-aware solution should be considered to lower the impact of network heterogeneity
- A potential solution is to choose to which node the data chunks (original and parity) should be transferred in order to minimize the maximum retrieving time
- To achieve the best job level performance, the scheduler should consider all the map tasks at once

[1] N. Mohamed, J. Al-Jaroodi, I. Jawhar, et al. 2017. SmartCityWare: A Service-Oriented Middleware for Cloud and Fog Enabled Smart City Services. IEEE Access 5 (2017)

[2] C.-C. Hung, G. Ananthanarayanan, P. Bodik, et al. 2018. VideoEdge: Processing camera streams using hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge Computing

[3] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, et al. 2018. Wide-area Analytics with

- Multiple Resources. In EuroSys'18 [4] A. Jonathan, M. Ryden, K. Oh, et al. 2017. Nebula: Distributed Edge Cloud for Data Intensive Computing.
- IEEE Transactions on Parallel and Distributed Systems 28, 11 (Nov 2017)
- [5] Intel Intelligent Storage Acceleration Library (ISA-L) https://software.intel.com/en-us/storage/ISA-L

[6] Apache Hadoop, 2019, Available online http://hadoop.apache.org

Caching with Online Erasure Coding. In OSDI'16

[7] K. V. Rashmi, M. Chowdhury, J. Kosaian, et al. 2016. EC-Cache: Load-Balanced, Low-Latency Cluster

This work is supported by the Stack/Apollo connect talent project, Inria Project Lab program Discovery (see beyondtheclouds.github.io), and the ANR KerStream project (ANR-16-CE25-0014-01). The experiments presented in this paper were carried out using the Grid'5000/ALADDIN-G5K experimental testbed (see www.grid5000.fr).

ACKNOWLEDGMENTS

