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1 INTRODUCTION
For a given generalized eigenproblem Av = λBv whose matrices
A and B are real symmetric and B is positive definite, we solve all
those approximate pairs whose eigenvalues are in the specified
real interval [a,b] by using a filter. There are many references of
methods which can be classified as filter diagonalization methods
[1, 2, 4–7, 10].

The filter is usually composed of several resolvents R(ρi ) ≡
(A − ρiB)

−1B whose shift ρi are complex numbers.
For a given vector x, an application of the resolvent y← R(ρ)x

is to solve a system of linear equations C(ρ)y = Bx for y, here
C(ρ) ≡ A − ρB is the shifted matrix corresponds to both matrices
of the generalized eigenproblem. In this study, for the solution of
this kind of system, we assume to use some direct method which
uses matrix factorization.

When the shift ρ is a real number, the matrix C(ρ) is real sym-
metric. When the shift is a real number less than the minimum
eigenvalue λmin of the eigenproblem, the matrix is real symmetric
positive definite. When the shift is an imaginary number, the matrix
is complex symmetric and non-singular. For a symmetric matrix
either real or complex, the modified Cholesky method can be used
to solve the system of linear equations by a matrix decomposition
and forward and backward substitutions (The modified Cholesky
method for complex symmetric matrices is derived from the method
for real symmetric matrices by replacing numbers and arithmetic
expressions from real to complex).
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When computing resources are limited but the problem size is
large, the filtering calculation tends to be restricted by both amounts
of computation to factor shifted matrices and especially storage to
hold factors of matrices. Both are proportional to the number of
resolvents to construct the filter. So it is desirable to reduce the num-
ber of resolvents. There are two kinds of filters composed of only a
single resolvent: 1) The filter which is a real polynomial of a resol-
vent with a real shift, 2) The filter which is a real polynomial of the
imaginary part of a resolvent with an imaginary shift. In this study,
in order to make the filter design simple, a Chebyshev polynomial
is used to express the "real polynomial". When the interval is lo-
cated at the lower-end of the eigenvalue distribution, we use a filter
F = дsTn (2γ R(ρ) − I ) which is an n-th degree Chebyshev polyno-
mial of a single resolvent R(ρ) whose shift ρ is real and less than
the minimum eigenvalue. When the interval is in the middle of the
eigenvalue distribution, we use a filter F = дsTn (2γ ′ ImR(ρ ′) − I )
which is an n-th degree Chebyshev polynomial of the imaginary
part of a single resolvent R(ρ ′) whose shift ρ ′ is imaginary. Here,
дs is the tight upper-bound of the transfer function magnitude of
the filter in the stop-band, γ and γ ′ are real constants, and I is the
identity operator.

However, properties of these simple filters are not very well,
because they are composed of a single resolvent rather than many,
and also their real polynomials are expressed by just using Cheby-
shev polynomials. For example, their transfer functions cannot
have steep changes of values, thus µ − 1 the geometrical ratio of
the width of transition-bands to the width of the pass-band cannot
be made very small. Also, if the value of дs is set very small, which
is the upper-bound of the transfer-rates in stop-bands, the value
of 1/дp will be large, which is the max-min ratio of the transfer
function of the filter in the passband λ ∈ [a,b]. When thismax-min
ratio is very large, the contained rates of required eigenvectors in
the set of vectors after a filtration tend to have different orders of
magnitudes. Therefore, within a vector, suppressed by large val-
ues of those eigenvectors whose transfer-rates are larger, smaller
values of those eigenvectors whose transfer-rates are smaller lose
accuracy by rounding errors. By this reason, those eigenvectors
whose transfer-rates are smaller, which are extracted from a set
of filtered vectors, tend to have lower accuracy. Therefore, some
approximate pairs may not attain the level of required accuracy.

In the above explanation about the filtering method, we assumed
to apply the filter only once to a set of random initial vectors. The
following procedure shows how to calculate approximate pairs with
a single application of the filter.
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1) Let Y (0) be an initial set ofm random column vectors.
2) B-orthonormalize Y (0) to make X (1);

X (1) is filtered to make Y (1).
3) Considering properties of the filter, approximate pairs are

constructed from both sets of vectors X (1) and Y (1).

2 ITERATIVE REFINEMENT OF EIGENPAIRS
BY USING A FILTER

When properties of the filter are not good, approximate pairs are
also not good in accuracy which are obtained by an application
of the filter to a set of initial random vectors. Even in such case,
we can improve approximate pairs with a few applications of the
combination of B-orthonormalization and filtering.

The following procedure shows how to calculate approximate
pairs with applications of the filter IT times.

1) Let Y (0) be an initial set ofm random column vectors.
2) Iterate the followings for i = 1, . . ., IT

B-orthonormalize Y (i−1) to make X (i);
X (i) is filtered to make Y (i).

3) Considering properties of the filter, approximate pairs are
constructed from both sets of vectors X (IT) and Y (IT).

(During the iteration, in B-orthonormalization in the above step
2, if the effective rank of the set of vectors is found decreased, we
decrease the numberm of orthonormalized vectors in the set.)

The orthonormalization prevents eigenvectors of small transfer-
rates from losing their accuracy by numerical rounding errors. It
prevents the set of vectors from being occupied by those eigenvec-
tors whose transfer-rates are larger. The principle to use orthog-
onalization of vectors in each iteration step is called "orthogonal
iteration" and is well known [3, 8, 9].

3 CONCLUSION
We made some experiments to solve pairs of a real symmetric-
definite generalized eigenproblem whose eigenvalues are in the
specified interval by using a filter.

In this study we used filters composed of an action of a single
resolvent. We used a real shift for the resolvent to solve pairs whose
eigenvalues are lowest. When we used an imaginary shift, the
interval for eigenvalues may be placed anywhere. The filter we
used is a real polynomial of a single resolvent whose shift is real, or
a real polynomial of an imaginary part of a single resolvent whose
shift is imaginary. When the degree of the real polynomial is n,
in an application of the filter the resolvent is applied n times. A
Chebyshev polynomial is used to represent the real polynomial to
make the filter design simple, and an application of the filter can
be calculated by using the three-term recursion.

An application of a resolvent to a vector is to solve a system
of linear equations whose coefficient is the shifted matrix made
from both matrices of the generalized eigenproblem. In our study,
the system of linear equations is assumed to be solved by some
direct method using decomposition of the coefficient matrix. Since
we use a filter consists of a single resolvent, we need to factor the
coefficient matrix only once, and matrix factors are hold and used
sequentially n times to solve a system of linear equations inside the
filtering, here n is degree of the polynomial of the filter.

By the use of a single resolvent for the filter instead of many
resolvents, we reduced both costs to factor matrix and especially
to store matrix factors. However, properties of those filters which
are composed of a single resolvent are not good compared from
ones composed of many resolvents, especially when the precision
of numbers and arithmetics used in computation is low.

The set of initial vectors generated from random numbers is
B-orthonormalized and then filtered to give another set of vectors,
to which we analyze and try to extract approximate pairs. If filter’s
properties are not good, approximate pairs obtained are inaccu-
rate or some of them are lost, especially when the precision of
computation is low.

However, in the similar way as "orthogonal iteration" [3, 8, 9]
which is a well known method, we generate an initial set of vec-
tors from random numbers, and to the set the combination of or-
thonormalization and filtering are applied a few times. The or-
thonormalization prevents the tendency to linear dependence of
the set of vectors, and the filtering decrease content rates of those
eigenvectors to be removed. By this refinement, the set of vectors
spans better approximation of the invariant-subspace spanned by
required eigenvectors. From the set of refined vectors, the basis
of approximate invariant-subspace is constructed, and to the basis
the Rayleigh-Ritz procedure is applied to obtain approximate pairs
required.

We made some experiments for a banded real symmetric-definite
generalized eigenproblem whose size of matrices is 210000 with
lower-bandwidth 3051, which is a FEM discretization of the Lapla-
cian eigenproblem in a cube with zero-Dirichlet boundary condition
(Even bandedmatrices are sparse inside their bands, they are treated
as if their bands are dense). From experiments which used only
single precision for computations, even we used a filter whose
properties were not good since it was composed of only a single
resolvent to reduce requirements for computer resources, we found
this approach of iterative refinement of eigenpairs worked well.
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