

IT=1 ----- : IT=2 ---+---IT=1 ----- : IT=2 ---+---IT=1 -----

 When the interval [a, b] for eigenvalue is lower-exterior, and a ≤ λ_{min}. From the specified parameter set (n, μ, g_s), the shift ρ, the coefficient of resolvent γ and also g_p are calculated by (3). 	 For lower-exterior pairs, the filter is a deg n Chebyshev polynomial of a single resolvent whose shift is real. For interior pairs, the filter is a deg n Chebyshev-poly of an imag-part of a single resolvent whose shift is imag. Properties of the filter is specified by a set of parameters 	H H H H H H H H H H H H H H H H H H H
• From the specified parameter set (n, μ, g_s) , the shift ρ , the coefficient of resolvent γ and also g_p are calculated by (3).	 For interior pairs, the filter is a deg n Chebyshev-poly of an imag-part of a single resolvent whose shift is imag. Properties of the filter is specified by a set of parameters 	$ \begin{bmatrix} -4 & -4 & -4 & -4 & -4 & -4 & -4 & -4$
the shift ρ , the coefficient of resolvent γ and also g_p are calculated by (3).	• Properties of the filter is specified by a set of parameters	
• The filter \mathcal{F} is given by (4). $\mathcal{F} \equiv g_{\rm s} T_n (2\gamma \mathcal{R}(\rho) - I) .$ (3) (3) (3) (3) (3) (3) (3) (3) (4)	 (n, μ, g_s) and we set μ = 1.5 fixed. For both types of filters for lower-exterior pairs and interior pairs, we prepared six filter designs. Degree n is 4, and values of g_s are 10⁻³, 10⁻⁴ and 10⁻⁵. Value of g_s is 10⁻⁵, and degrees n are 6, 8 and 10. For both types of filters, the values g_p and g_s/g_p are shown (Tab. 1) for six filter designs. 	$\operatorname{deg} n = 4, g_{\mathrm{s}} = 10^{-3} \qquad \operatorname{deg} n = 4, g_{\mathrm{s}} = 10^{-4} \qquad \operatorname{deg} n = 4, g_{\mathrm{s}} = 10^{-5}$ $\int_{0}^{4} \int_{0}^{4} \int_{0}^{4}$
3.2. Filter with an imaginary shift		7.3. (EX-2): Solution of interior eigenpairs
• When the shift is imaginary, the interval $[a, b]$ for eigenvalue can be placed anywhere.	Table 1: Properties of designed six filters for lower-exterior pairs and interior pairs ($\mu = 1.5$) (g_s/g_p is the reduction rate per iteration.)	• We try to solve those 801 pairs whose eigenvalues are in the interior interval [a, b] = [100, 200].
• From the specified parameter set (n, μ, g_s) , the shift ρ' , the coefficient of the resolvent γ' and also	$\begin{array}{ c c c c c }\hline & & for lower-ext pairs & for interior pairs \\\hline \hline n & q_{\rm S} & q_{\rm D} & q_{\rm S} / q_{\rm D} & q_{\rm D} & q_{\rm S} / q_{\rm D} \\\hline \end{array}$	• There are 1,192 eigenvalues in $[a', b'] = [75, 225]$ which is
$g_{\rm p}$ are calculated by (5). $\int \sigma \leftarrow \mu / \sinh\left(\frac{1}{2n}\cosh^{-1}\frac{1}{g_{\rm s}}\right),$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	the union of the pass-band and transition-bands.
$\begin{cases} \rho' \leftarrow \frac{a+b}{2} + \left(\frac{b-a}{2}\right)\sigma\sqrt{-1}, \\ \gamma' \leftarrow \left(\frac{b-a}{2}\right)\frac{\mu^2 + \sigma^2}{2}. \end{cases} $ (5)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• We use $1,300$ for m the number of vectors for filtering, which is more than $1,192$ and to be sufficient.
• The filter \mathcal{F} is given by (6).	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	• Results of experiments are shown (Tab. 3, Fig. 9).
$\mathcal{F} \equiv g_{\rm s} T_n (2\gamma' \operatorname{Im} \mathcal{R}(\rho') - I). $ (6)	$-\frac{10 \ 10 \ 3.34 \times 10 \ 2.99 \times 10 \ 2.74 \times 10 \ -3.05 \times 10 \ 1}{-3.05 \times 10 \ -3.05 \times 10 \ -3.$	
12	20	28
4. Refinements of Vectors by Using a Filter	0 g _s =1e-3 g _s =1e-4	Table 3: EX-2: number of iterations vs. number of approx pairs and
	$\begin{cases} \gamma \leftarrow (b-a)(\sigma + \mu), \\ g_p \leftarrow g_s \cosh \{2n \sinh^{-1} \sqrt{(\mu - 1)/(1 + \sigma)}\}. \end{cases}$ • The filter \mathcal{F} is given by (4). $\mathcal{F} \equiv g_s T_n (2\gamma \mathcal{R}(\rho) - I) . \qquad (4)$ \mathbf{I} 3.2. Filter with an imaginary shift • When the shift is imaginary, the interval $[a, b]$ for eigenvalue can be placed anywhere. • From the specified parameter set (n, μ, g_s) , the shift ρ' , the coefficient of the resolvent γ' and also g_p are calculated by (5). $\begin{cases} \sigma \leftarrow \mu/\sinh(\frac{1}{2n}\cosh^{-1}\frac{1}{g_s}), \\ \rho' \leftarrow \frac{a+b}{2} + (\frac{b-a}{2})\sigma\sqrt{-1}, \\ \gamma' \leftarrow (\frac{b-a}{2})\frac{\mu^2+\sigma^2}{\sigma}, \\ g_p \leftarrow g_s \cosh\{2n \sinh^{-1}\sqrt{(\mu^2 - 1)/(1 + \sigma^2)}\}. \end{cases}$ • The filter \mathcal{F} is given by (6). $\mathcal{F} \equiv g_s T_n(2\gamma' \operatorname{Im} \mathcal{R}(\rho') - I). \qquad (6)$ I^2	$\begin{cases} \gamma \leftarrow (b-a)(\sigma+\mu), \\ g_{p} = g_{s} \cosh\{2n \sinh^{-1}\sqrt{(\mu-1)/(1+\sigma)}\}. \end{cases}$ e The filter \mathcal{F} is given by (4). $\mathcal{F} \equiv g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I)$. (4) π $= \frac{1}{2}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $= \frac{1}{2}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $= \frac{1}{2}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (4)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$ $\frac{\mathcal{F} = g_{s} T_{n}(2\gamma \mathcal{R}(\rho) - I) . (5)}{\pi}$

 their factors are proportional to the number of resolvents. Even properties of the filter is not very good, approximations could be improved by iteration. (If the same filter is used, matrix factors can be reused.) But, when the filtering is just repeated, magnitudes of eigenvectors are enhanced or depressed by powers of their transfer-rate magnitudes. ⇒ Eigenvectors whose transfer-rate magnitudes are relatively small lose relative accuracy or may vanish. 	 approximate invariant subspace. In each iteration the same filter is used, and the set of vectors is improved by the combination of <i>B</i>-orthonormalization and filtering. For <i>B</i>-orthonormalization, <i>B</i>-SVD with threshold is used. We use 100 times the machine epsilon as the absolute value of the threshold. Those singular vectors whose singular values are be- low the threshold are cut (removed). 	Figure 4: (for lower-exterior pairs) Transfer-func mag $ g(t) $ $(n = 4)$	$\begin{array}{c} \operatorname{deg} n = 4, \ g_{s} = 10^{-5} \\ \hline \mathrm{IT} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	4.1. Iterative refinement by using a filter 1. Factor shift matrix $C(a) = A - aB$ to prepare the filter \mathcal{F}		

• To prevent loss of accuracy, in every step of iteration we orthonormalize the set of vectors before it is filtered. This method is similar to simultaneous inverse iteration which has been used in the structure analysis. The principle is (simultaneous) orthogonal iterations [1][2][3].

tation to factor matrices and especially storage to hold

- Therefore, we make experiments to improve accuracy of approximate pairs by repeating the combination of orthonormalization and filtering several times.
- To B-orthonormalize a set vectors, we use B-SVD, the singular value decomposition with metric B.
- 1. Factor shift matrix $C(\rho) = A \rho B$ to prepare the filter \mathcal{F} .

we iteratively improve the set of vectors spanning the

- **2.** $Y^{(0)} \Leftarrow$ a set of *m* random vectors.
- **3.** for i = 1, 2, ..., IT do $X^{(i)} \Leftarrow B$ -orthonormalization of $Y^{(i-1)}$; $Y^{(i)} \Leftarrow \mathcal{F} X^{(i)}$; enddo
- Note, if the effective rank is found reduced in orthonormalization, the number of vectors m in $X^{(i)}$ and $Y^{(i)}$ is updated.
- 4. We construct Z the basis of approximate invariant-subspace required from linear combinations of columns of $Y^{(IT)}$.
- 5. Approximate pairs of the original GEVP are the Ritz pairs obtained from Rayleigh-Ritz procedure applied to the basis Z.

2. Simple Type Filters for Present Experiments

- with a side length π with zero-Dirichlet boundary.
- $-\Delta \Psi(x, y, z) = \lambda \Psi(x, y, z) \,.$ (7)

