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ABSTRACT
To shorten a large-scale training for deep learning, the distributed
deep learning are widely applied to the massive clusters using ac-
celerators such as GPUs. In contrast, manycore processor such as
Intel Xeon Phi is also suitable for computing deep learning oper-
ation and it is easy to expand to large-scale cluster. In this study,
to utilize deep learning training on large-scale many core cluster,
we conduct performance evaluation of large-scale deep learning
framework ChainerMN on Oakforest-PACS system operated by
JCAHPC, and optimize the Allreduce communication latency. As a
result, the improved communication of ChainerMN is 2.1x faster
than the original one on Oakforest-PACS system.
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1 INTRODUCTION
Today, Deep Learning (hereafter, DL) has been utilized in many
fields. DL requires more complex and deeper network model and a
large amount of dataset for supervised training to achieve high ac-
curacy. GPU is widely used for such trainings, however the memory
capacity is limited up to 16 GB or 32 GB at most, and the commu-
nication among GPUs has larger latency due to the bottleneck by
PCIe I/F.

Manycore CPU can address these problems thanks to the self
bootable feature and larger memory capacity. We are developing
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Figure 1: Breakdown of Execution Time per Iteration

large-scale deep learning environment using Oakforest-PACS su-
percomputer system (OFP) with 8,208 nodes of Intel Xeon Phi pro-
cessors (KNL)[4]. The performance of KNL processer is similar to
NVIDIA P100 in terms of the peak FLOPS and memory bandwidth
of MCDRAM, in addition, KNL has DDR4 memory as well [5]. OFP
also employs high performance interconnect and storage system,
and as the result, these features of OFP are helpful for large-scale
DL training. In this study, we target ChainerMN, which is the multi-
node version of Chainer [1, 2].

2 PERFORMANCE ANALYSIS
First, we investigate the performance on OFP using ImageNet. We
used ResNet-50 as the neural network model, and iDeep developed
by Intel is adopted as the backend of the chainer for KNL’s AVX-512
instructions. The parallelization can be specified as the combination
between multithreading by OpenMP and multiprocessing by MPI.

Fig. 1 shows the breakdown of the execution time per iteration
with various number of nodes. The learning process is performed us-
ing the fixed number of mini-batch size, therefore, it is weak-scaling
problem. As the result, the elapsed time of Allreduce procedure
exceeds half of the entire execution time, and Allreduce becomes
bottleneck as the number of nodes increases.

3 OPTIMIZATION
To reduce the communication time of Allreduce part, we propose the
new communication algorithm instead of Allreduce. This method
is based on the 2-D Torus allreduce proposed by Mikami for the
GPU cluster[6]. As shown in Fig. 2, the number of processes is
decomposed by M × N . In this algorithm, first, Reduce-scatter is
performed in column-direction, then, Allreduce is done in row-
direction, and finally, Allgather collects from and shares with M
members in column-direction.
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Table 1: Specification of Oakforest-PACS

Oakforest-PACS (OFP)
CPU Xeon Phi 7250

Freq., # of cores, Peak Perf. 1.4 GHz, 68c, 3.04 TF
Memory 16 GB (MCDRAM)+ 96 GB (DDR4)
Mem. BW 490.0 GB/s (effective), 115.2 GB/s

Interconnect OmniPath 100 Gbps
Parallel File System Lustre File System

Capacity 26 PB
Fast File Cache DDN Infinite Memory Engine (IME)

Capacity 940 TB
Data Transfer Rate 1.56 TB/s

Table 2: Software Environment

Software version
Python 3.6.3
Intel MPI 2018.1.163
MPI4py 3.0.0
Chainer 5.0.0
iDeep4py 2.0.0

In this approach, the advantage is the average calculation of
each element can be performed in parallel manner withM after the
Allreduce on the second step.
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Figure 2: Communication Algorithm of 2-D Torus Allreduce

0 1 2 3

Rank:0

4 5 6 7

Rank:1

8 9 10

Rank:2 Rank:3

11 12 1413 15

1.Reduce-Scatter in the horizontal direction

Add

Add

4 6

Rank:0

4 5

Rank:1

20

Rank:2 Rank:3

22 12 13

2 3 8 10

10 11 24 26

2. All-Reduce in the vertical direction

24 228 3

Rank:0

4 5 32 36

Rank:1

24 28 10

Rank:2 Rank:3

11 12 3213 36

Copy

Copy

3.All-Gather in the horizontal direction

24 3228 36

Rank:0

24 28 32 36

Rank:1

24 28 32

Rank:2 Rank:3

36 24 3228 36

4.Completed

Replace “All-gather” 
communication to “Put” 
operation to reduce the 
cost by synchronization 

and memory copy

Figure 3: Proposed CommunicationAlgorithmBased on 2-D
Torus Allreduce

Moreover, we propose the new method using one-sided commu-
nication mechanism instead of collective communications. Fig. 3

indicates the example of the communication using Put as one-sided
communication instead of Allgather. In this case, Put is naturally
suitable for the data placement rather than Allgather operation.

Fig. 4 shows the elapsed time of each Allreduce process. As the
result, in the case of 256 processes, we achieved over 2.1 times
speedup by the communication algorithm using Reduce-scatter,
Allreduce, and Put.
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Figure 4: Comparison of Elapsed Time of Allreduce Process
with 256 processes (Allreduce only: original MPI Allreduce,
RSAA: Reduce-scatter, Allreduce, Allgather, RSAP: Reduce-
scatter, Allreduce, Put)
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