
Results
• Loader Process and Core Affinity

Figure 2: Execution Model in CPU-only and
CPU+GPU

CPU+GPU: GPU computes asynchronously and CPU is dedicated
for data load.
CPU-only: CPU have to manage both of load and compute.
=> Separate loader process from compute process

Figure 4: Break down of Execution Time per Iteration
• Weak scaling problem, well scaling for the computation.
• The communication time by All-reduce is dominant in each

iteration.
=> Improvement for All-reduce is required.

• Optimization of Communication
ü Huge Overhead
ü Synchronization
ü Memory copy
ü Average calculation after reduction

2.91

1.70

1.38
1.58

1.89

1.44

2.04

0

0.5

1

1.5

2

2.5

3

RSAA RSAP RSAA RSAP RSAA RSAP

All-Reduce
Only

�2, 128� �16, 16� �64, 4�

[s
ec

/i
te

r]

Save Model Save Data Processing

Create Model Load Data

Copy Copy Return

Create Model Load Data ProcessingCPU

GPU

CPU

CPU-only

CPU+GPU

0

0.5

1

1.5

2

2.5

1HT 2HT

[s
ec
/i
te
r]

Figure 3: Affinity of Loader Process
1HT: Loader process on the same core
2HT: Loader process on the same physical core, but

different logical core (HyperThreading)

20% better

0

0.5

1

1.5

2

2.5

3

3.5

16 32 64 128 256 512

[s
ec

/i
te

r]

Number of Nodes

Forward+Backward+Update All-Reduce

• Performance Analysis of
ImageNet Training on OFP

64 thread / process,
excluding the busy core for OS services

Introduction of 2D-Torus All-Reduce [4]

Reduce-Scatter All-Reduce All-Gather

Place as 𝑀x𝑁
𝑁

𝑀

of process 𝑃

Performance Improvement of Deep Learning Training
on Large-scale Manycore Cluster

0 1 2 3

Rank:0

4 5 6 7

Rank:1

8 9 10

Rank:2 Rank:3

11 12 1413 15

1.Reduce-Scatter in the horizontal direction

Add

Add

4 6

Rank:0

4 5

Rank:1

20

Rank:2 Rank:3

22 12 13

2 3 8 10

10 11 24 26

2. All-Reduce in the vertical direction

24 228 3

Rank:0

4 5 32 36

Rank:1

24 28 10

Rank:2 Rank:3

11 12 3213 36

Copy

Copy

3.All-Gather in the horizontal direction

24 3228 36

Rank:0

24 28 32 36

Rank:1

24 28 32

Rank:2 Rank:3

36 24 3228 36

4.Completed

Reduce-
Scatter

Toshihiro Hanawa1,2, Kohei Tamura2*

1 Information Technology Center, 2 Department of Electrical Engineering and Information Systems
The University of Tokyo (* Now in NTT DATA Corp.)

All-reduce

Overview

Replace “All-gather”
communication to “Put”
operation to reduce the
cost by synchronization

and memory copy

To shorten a large-scale training for deep learning, the distributed deep learning are widely applied to the massive clusters using accelerators such as GPUs. In contrast, manycore
processor such as Intel Xeon Phi is also suitable for computing deep learning operation and it is easy to expand to large-scale cluster. In this study, to utilize deep learning training on
large-scale many core cluster, we conduct performance evaluation of large-scale deep learning framework ChainerMN on Oakforest-PACS system operated by JCAHPC, and optimize the
Allreduce communication latency. As a result, the improved communication of ChainerMN is 2.1x faster than the original one on Oakforest-PACS system.

ChainerMN
• About
ChainerMN is a scalable distributed deep learning framework developed by Preferred
Networks [1]. It is an add-on package to Chainer and written in Python. Recently,
ChainerMN have been merged into Chainer v5.
ü Scalable

It makes full use of the latest technologies such as cuPy for GPU, MKL-DNN for CPU, and
mpi4py for multi-node execution.
ü Flexibility

Even dynamic neural networks can be trained in parallel.
ü Easy

Minimal changes to existing code by Chainer are required.

• Data Parallel and Model Parallel
ü Data parallel
Ø Divide minibatches
Ø Copy a model
Ø Average gradients

ü Model parallel
Ø Divide a model
Ø Use a portion of the model
Ø Calculate for one minibatch

Forward Backward Optimize

Forward Backward Optimize

Forward Backward Optimize

All-
Reduce

Minibatch#2

Minibatch#1

Minibatch#3

Figure 1: Process of Synchronous Data-parallel Deep Learning
The four steps of synchronous data-parallel deep learning, which is the standard method of
parallelism, is illustrated. In All-Reduce step, workers communicate with each other to find the
average of gradients. Each worker optimizes the model by the average of gradients.

Oakforest-PACS
• Overview
Oakforest-PACS is a supercomputer
which is made up 8,208 nodes using
Intel® Xeon Phi ™ 7250 processors(Code
name: Knights Landing=KNL) [2, 3].

68 cores/node, 3 TFLOPS x 8,208= 25 PF
Item Spec

Number of Node 8208

Interconnect
Intel Omnipath Architecture

(100Gbps)
Full-bisection BW Fat-tree

Parallel
File

System

Type Lustre File System

Storage Capacity 26 PB

Data Transfer Rate 500 GB/sec

High-
Speed

File
Cache

Type DDN Infinite Memory Engine (IME)

Capacity 940 TB

Data Transfer Rate 1,560 GB/sec

Table 2 : Specification of Oakforest-PACS

Item Spec

Operation Frequency 1.40 GHz

Theoretical Computation Performance 3046.4 GFLOPS

Number of Core
Physical 68

Logical 272

Memory Capacity
MCDRAM 16 GB

DDR4 96 GB

Memory
Bandwidth

MCDRAM 490 GB/s

DDR4 84.5 GB/s

Table 1: Specification of KNL

Experiment
• Dataset
Imagenet is a large visual database which has over 1,400,000 pictures. Each picture is hand-
annotated to indicate what objects are pictured.

Model
Resnet-50

Dataset
ImageNet

Framework
ChainerMN

http://www.image-net.org https://arxiv.org/abs/1512.03385 https://chainer.org

• Implementation
From Chainer v4, iDeep(Intel Deep Learning Package) is added as a backend. iDeep enables us
to parallelize threads with OpenMP and generates AVX-512 instructions for KNL automatically
by JIT compiler technology.

References
[1] T. Akiba, K. Fukuda, and S. Suzuki, “ChainerMN: Scalable Distributed Deep Learning

Framework,” Proceedings of Workshop on ML Systems in The Thirty-first Annual
Conference on Neural Information Processing Systems (NIPS), 2017.

[2] Joint Center for Advanced HPC, “Oakforest-PACS”, http://jcahpc.jp/eng/ofp_intro.html .
[3] A. Sodani, “Knights Landing (KNL): 2nd Generation Intel® Xeon PhiTM Processor,” IEEE Hot

Chips 27 Symposium, 2015.
[4] H. Mikami, et al. “ImageNet/ResNet-50 Training in 224 Seconds,” arXiv preprint

arXiv:1811.05233, 2018.

TOP 500 #6, HPCG #3,
Green 500 #6 @Nov. 2016

IO 500 #1 @Jun. 2018

Software Version
Intel Python 3.6.3

Intel MPI 2018.1.163
MPI4py 3.0.0
Chainer 5.0.0

iDeep4py 2.0.0

All-
Gather

Figure 6: Elapsed Time of “All-Reduce” Process (Fig. 4) per Iteration
• All-Reduce Only：Original pure-allreduce

• RSAA：Reduce-Scatter, All-Reduce，All-Gather (original 2D Torus-AllReduce)
• RSAP：Reduce-Scatter, All-Reduce，Put (Proposed)

2.1x faster than
original !!

