
Results
• Loader Process and Core Affinity

Figure 2:  Execution Model in CPU-only and 
CPU+GPU

CPU+GPU: GPU computes asynchronously and CPU is dedicated
for data load.
CPU-only: CPU have to manage both of load and compute.
=> Separate loader process from compute process

Figure 4:  Break down of Execution Time per Iteration
• Weak scaling problem, well scaling for the computation.
• The communication time by All-reduce is dominant in each 

iteration.
=> Improvement for All-reduce is required.

• Optimization of Communication
ü Huge Overhead 
ü Synchronization
ü Memory copy
ü Average calculation after reduction
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Figure 3: Affinity of Loader Process
1HT: Loader process on the same core
2HT: Loader process on the same physical core, but 

different logical core (HyperThreading)
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• Performance Analysis of 
ImageNet Training on OFP

64 thread / process,
excluding the busy core for OS services

Introduction of 2D-Torus All-Reduce [4]
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All-reduce 

Overview

Replace “All-gather” 
communication to “Put” 
operation to reduce the 
cost by synchronization 

and memory copy

To shorten a large-scale training for deep learning, the distributed deep learning are widely applied to the massive clusters using accelerators such as GPUs. In contrast, manycore 
processor such as Intel Xeon Phi is also suitable for computing deep learning operation and it is easy to expand to large-scale cluster. In this study, to utilize deep learning training on 
large-scale many core cluster, we conduct performance evaluation of large-scale deep learning framework ChainerMN on Oakforest-PACS system operated by JCAHPC, and optimize the 
Allreduce communication latency. As a result, the improved communication of ChainerMN is 2.1x faster than the original one on Oakforest-PACS system.

ChainerMN
• About
ChainerMN is a scalable distributed deep learning framework developed by Preferred 
Networks [1].  It is an add-on package to Chainer and written in Python. Recently, 
ChainerMN have been merged into Chainer v5.
ü Scalable

It makes full use of the latest technologies such as cuPy for GPU, MKL-DNN for CPU, and 
mpi4py for multi-node execution.
ü Flexibility

Even dynamic neural networks can be trained in parallel.
ü Easy

Minimal changes to existing code by Chainer are required.

• Data Parallel and Model Parallel
ü Data parallel
Ø Divide minibatches
Ø Copy a model
Ø Average gradients

ü Model parallel
Ø Divide a model
Ø Use a portion of the model
Ø Calculate for one minibatch

Forward Backward Optimize

Forward Backward Optimize

Forward Backward Optimize

All-
Reduce

Minibatch#2

Minibatch#1

Minibatch#3

Figure 1: Process of Synchronous Data-parallel Deep Learning
The four steps of synchronous data-parallel deep learning, which is the standard method of 
parallelism, is illustrated. In All-Reduce step, workers communicate with each other to find  the 
average of gradients. Each worker optimizes the model by the average of gradients. 

Oakforest-PACS
• Overview
Oakforest-PACS is a supercomputer 
which is made up 8,208 nodes using 
Intel® Xeon Phi ™ 7250 processors(Code 
name: Knights Landing=KNL) [2, 3]. 

68 cores/node, 3 TFLOPS x 8,208= 25 PF
Item Spec

Number of Node 8208

Interconnect
Intel Omnipath Architecture

(100Gbps)
Full-bisection BW Fat-tree

Parallel 
File 

System

Type Lustre File System

Storage Capacity 26 PB

Data Transfer Rate 500 GB/sec

High-
Speed 

File 
Cache

Type DDN Infinite Memory Engine (IME)

Capacity 940 TB

Data Transfer Rate 1,560 GB/sec

Table 2 : Specification of Oakforest-PACS

Item Spec

Operation Frequency 1.40 GHz

Theoretical Computation Performance 3046.4 GFLOPS

Number of Core
Physical 68

Logical 272

Memory Capacity
MCDRAM 16 GB

DDR4 96 GB

Memory 
Bandwidth

MCDRAM 490 GB/s

DDR4 84.5 GB/s

Table 1: Specification of KNL

Experiment
• Dataset
Imagenet is a large visual database which has over 1,400,000 pictures. Each picture is hand-
annotated to indicate what objects are pictured.

Model
Resnet-50

Dataset
ImageNet

Framework
ChainerMN

http://www.image-net.org https://arxiv.org/abs/1512.03385 https://chainer.org

• Implementation
From Chainer v4, iDeep(Intel Deep Learning Package) is added as a backend. iDeep enables us 
to  parallelize threads with OpenMP and generates AVX-512 instructions for KNL automatically 
by JIT compiler technology.

References
[1] T. Akiba, K. Fukuda, and S. Suzuki, “ChainerMN: Scalable Distributed Deep Learning   

Framework,” Proceedings of Workshop on ML Systems in The Thirty-first Annual 
Conference on Neural Information Processing Systems (NIPS), 2017.

[2] Joint Center for Advanced HPC, “Oakforest-PACS”, http://jcahpc.jp/eng/ofp_intro.html .
[3] A. Sodani, “Knights Landing (KNL): 2nd Generation Intel® Xeon PhiTM Processor,” IEEE Hot 

Chips 27 Symposium, 2015.
[4] H. Mikami, et al. “ImageNet/ResNet-50 Training in 224 Seconds,” arXiv preprint 

arXiv:1811.05233, 2018.

TOP 500 #6, HPCG #3, 
Green 500 #6 @Nov. 2016 

IO 500 #1 @Jun. 2018

Software Version
Intel Python 3.6.3

Intel MPI 2018.1.163
MPI4py 3.0.0
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Figure 6:  Elapsed Time of “All-Reduce” Process (Fig. 4) per Iteration
• All-Reduce Only：Original pure-allreduce

• RSAA：Reduce-Scatter, All-Reduce，All-Gather (original 2D Torus-AllReduce)
• RSAP：Reduce-Scatter, All-Reduce，Put (Proposed)

2.1x faster than 
original !!


