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1 INTRODUCTION
GPU computing is becoming more and more important in the field
of general computing. Many scientific areas utilize the performance
of GPUs. Several classes of algorithms require device-wide synchro-
nization, through the use of barriers. However, thousands of threads
running on independent SMs (Streaming Multi-Processors) impede
this task. Previous research [3] proposed two kinds of device-wide
barriers: software barriers or implicit barriers. Recently, Nvidia
proposed new methods to do device-wide barriers, i.e. grid synchro-
nization andmulti-grid synchronization [1]. Based on the possibility
of achieving high performance from lower occupancy [2], we en-
vision using a single kernel with several barriers instead of using
multiple kernels as an implicit barrier. But we need to understand
the penalty of using different kinds of barriers, i.e. new explicit
barrier functions and implicit barrier.

Additionally, Nvidia has proposed new launch functions (e.g.
cooperative launch and multi-cooperative launch). These functions
are used to support grid synchronization and multi-grid synchro-
nizations [1], i.e. the new explicit barrier functions. In order to
utilize the new features, programmers need to turn to the new
launch functions. But there is no research try to study the penalty
of turning into these new launch functions.

In this research we will use micro-benchmark to understand the
overheads hidden in launch functions. And try to identify the cases
when it is not profitable to launch additional kernels. We will also
try to make a better understanding of differences in the different
launch functions in CUDA.

2 MICRO-BENCHMARKS USED IN OUR
STUDY

Throughout this abstract, we use the following terminologies:
• Kernel Latency: Total latency to run kernels, start from
CPU thread launching a thread, end at CPU thread noticing
that the kernel is finished.

• Kernel Overhead: Latency that is not related to kernel ex-
ecution.

• Additional Latency: Considering that CPU thread has just
called a kernel launch function, additional latency is the
additional latency to launch an additional kernel.

• CPU Launch Overhead: Latency of CPU calling a launch
function.

• Small Kernel: Kernel execution time is not the main reason
for additional latency.

• Larger Kernel: Kernel execution time is the main reason
for additional latency.

Currently, researchers tend to either use the execution time
of empty kernels or the execution time of a CPU kernel launch

Figure 1: Using kernel fusion to test the execution overhead

function as an overhead of launching a kernel. Although those
methods might work correctly when considering a single GPU
kernel, this is not enough in the case of multi-kernels. Under this
circumstance, we mainly focus on the overhead for launching an
additional Kernel.

We use the sleep instruction to control the kernel latency. Sleep
instruction is only available in Volta architecture. This instruction
is very light, and according to our experiments, no matter how
many times we repeat this instruction, the overhead of the kernel
remains unaffected.

We use several sleep instructions to compose a wait unit. Dif-
ferent wait unit inside a single kernel represent a valid kernel
execution latency.

This micro-benchmark consist of two different kinds of variable:
• The times to launch a kernel
• the numbers of wait units inside a single kernel. In a single
experiment, wait unit should be settled.

To test the overhead of small kernels, we propose to use a null
kernel (no code inside) as an example of a small kernel. In this
situation, the overhead can be computed with the formula 1

O =
Latencyi0 − Latencyj0

i − j
(1)

∗(O represents Overhead; i, j represents call launch function times;
∗0 represents 0 wait unit inside a kernel)

To test the overhead of a large kernel, we propose to use kernel
fusion to unveil the overhead hidden in kernel latency. The details
of this method is shown in Figure 1. In this situation, the overhead
can be computed with the formula 2

O =
Latencyi j − Latencyji

i − j
(2)

∗(O represents Overhead; In Latencyij (the left one),
i represents call launch function i times,
j represents launch kernels with j wait unit)
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Table 1: Environment Information

Platform Driver CUDA

DGX1 410.104 V10.0.130

Figure 2: Comparison of null kernel overhead for different
launch functions

3 OVERHEAD OF LAUNCHING KERNELS
3.1 Experimental Environment
Since we utilize the sleep instruction as a tool to analyze launch
overhead, which is only available in Volta Platform in CUDA, we
only conduct experiments in the V100 GPU. Table 1 shows the
environment information. Each result presented is the average
result of 100 experiments.

3.2 Launch Overhead in Small Kernels
We found that latency of CPU Launch Overhead to be nearly equal
to the latency of the additional kernel. We hereby additionally plot
the latency of the launch function in Figure 2.

Considering the system error, it is relatively safe to assume that
the time consumed when the CPU launches a kernel is the main
source of latency among all other steps in kernel launch.

3.3 Launch Overhead in Large Kernels
In a single node, we use 5 workload units (sleep 5000 ns). Figure
3 shows that the additional latency is larger than the CPU launch
overhead, which means CPU launch overhead do not influence
additional latency. And using the kernel fusion method, we found
that the execution overhead does exist.

We only prove that this kind of overhead exists in this work.
The relation between the execution overhead and how complex the
kernel is as well as the launch parameters might is future work.
In real-world workloads, the actual execution overhead might be
larger than what we are reporting now.

3.4 Other Launch Overheads
We observe that apart from the overhead of CPU launching kernel
and GPU execution overhead, there are remaining overheads.

We use formula 3 to compute that kind of overheads.

OOther = OTotal − (OCPU Launch Kernel +OExecution ) (3)

∗(O represents Overhead; )

Figure 3: Large kernel launch overhead of different launch
methods

Figure 4: Comparison of different overheads in different
launch functions

The result is shown in figure 4. Although the overheads seem
large, it does not play an important role when launching a large
number of kernels.

3.5 Conclusion
In this work, we use micro-benchmarks to analyze the launch over-
head behaviours of different launch functions, in the case of both
small kernels and large kernels. The result reveals two different
kinds of kernel overheads and some unknown overhead only dis-
tinctive in the situation of a single kernel. The overhead of CPU
launching kernel mainly has impacts in the situation of small ker-
nels, while the execution overhead mainly has impacts in the situa-
tion of large kernels. We conclude that launching a new kernel is
only profitable in the situation when the performance improvement
surpasses the overhead of a new kernel. Additionally, we observed
that Cooperative Multi-Device Launch is slightly slower than Co-
operative Launch, and Cooperative Launch is slightly slower than
Traditional Launch. This additional latency is trivial considering
the benefit of using grid lebel synchronization. This research is
mainly focused on the V100 GPUs in DGX1. But we also observe
similar behaviors in P100 platform.
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