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ABSTRACT

The present study deals with the Eulerian kinetic code as a high-
performance application, which solves the first-principle kinetic
equations known as the Boltzmann equation. A five-dimensional
Boltzmann code with two spatial and three velocity dimensions
is parallelized with the MPI-OpenMP hybrid parallelism. Strong
scaling of the code is measured on various scalar processors.
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1 INTRODUCTION

Manycore scalar processors are one of recent trends of CPUs in
high-performance computing, which run at low clock frequency to
reduce the power consumption but have a large number of compute
cores with processing units for operating multiple data, such as
Advanced Vector Extension (AVX) and Single Instruction Multi
Data (SIMD) units. It is not easy for users of scientific applications
to achieve a high performance (e.g., a computational efficiency
of more than 30% to the theoretical peak performance) on recent
manycore scalar processors with the multiple data units.

As a high-performance application to scientific computing, the
present study deals with a first-principle kinetic simulation based
on the Eulerian grid. The first-principle kinetic simulation usually
requires enormous computing resources since this solves time de-
velopment of distribution functions defined in “hyper” dimensions
(at most three spatial and three velocity dimensions). In Eulerian-
grid-based simulations, such as fluid simulations and the present
kinetic simulations, a bottleneck of the computational performance
generally exists at the memory bandwidth.
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Performance tuning of the Eulerian-grid-based codes on many-
core scalar processors is an issue in high-performance computing.
In the present study, performance evaluation of the Eulerian-grid-
based kinetic code is made on a single compute node with two Xeon
Broadwell processors, with a Xeon Phi Knights Landing processor,
and with a SPARC64 XIfx processor.

2 OVERVIEW OF NUMERICAL SCHEMES

The present kinetic code solves the first-principle equation, which
is known as the Vlasov (collisionless Boltzmann) equation,

Ofs s ds afs_
er +v i + e (E+vxB)+g v =0, (1)

where f represents the distribution function at a given position
r, velocity v and time ¢, and E, B, g, g, and m represent electric
field, magnetic field, gravity, charge, and mass, respectively. The
subscript s represents the species of singly charged particles (e.g.,
s = i and e for positively-charged ions and electrons, respectively).
Here, the collisional term in the right hand side of the equation is
set to be zero. The self-consistent electromagnetic and gravitational
fields are obtained by coupling field equations such as the Maxwell
equations and the gravitational field formula.

It is not easy to integrate the “hyper-"dimensional equation nu-
merically in time in terms of both computational accuracy and
computational resources. In order to simplify the numerical opera-
tion, the Boltzmann equation (1) is separated into two advection
and one rotation equations based on operator splitting [1, 2]. The
three equations are solved with conservative schemes [3-5].

We adopt the “domain decomposition” with the standard mes-
sage passing interface (MPI) library as the first-level process paral-
lelism as standard Eulerian-grid-based methods do. However, we
decompose the computational domain only in the position dimen-
sions [6]. The velocity dimensions are not decomposed because
there arise some additional communications overhead due to a
reduction operation in the computation of the density and the
momentum. It is well-known that the domain decomposition in-
volves the exchange of halo layers for the distribution function
and electromagnetic field data at boundaries of each computational
sub-domain. The present non-oscillatory and conservative scheme
[3, 4] uses six grid cells for numerical interpolation. Thus, three halo
grids are exchanged by using the “MPI_Sendrecv” subroutine in
MPI for simplicity, portability and stability. As a second-level thread
parallelism, we use the “OMP (PARALLEL) DO” directive together
with the “COLLAPSE” clause to parallelize most outer multiple loops
with less threading overhead [7].

A hyper-dimensional simulation requires a huge computer re-
source. For applications to practical scientific computing, however,
massively parallel computation with multiple compute nodes is
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necessary, since more than 1 TB memory is usually used. Hyper-
dimensional Boltzmann simulations are practically in use (but not
so widely) in plasma sciences, especially for laser plasma [1], toka-
mak plasma in thermonuclear fusion devices [8], and collisionless
space plasma [9, 10].

3 PERFORMANCE EVALUATION

We use three systems for the performance evaluation. System I
has 96 GB of DDR4 shared memory and a single Xeon Phi 7250
(Knights Landing, 1.4 GHz) processor on one compute node. The
processor has 16 GB of MCDRAM and 68 compute cores. A total of
272 processes are executable with Hyper Threading (HT) technol-
ogy enabled. The cluster mode is chosen to be “Quadrant,” and the
memory mode is chosen to “Cache.” System II has 512 GB of DDR4
shared memory and a dual Xeon E5-2697 v4 processor (Broadwell,
2.3 GHz) on one compute node. The processor has 18 compute cores
and a total of 36 processes are executable on a compute node. The
Intel Parallel Studio XE Cluster Edition Ver.17.0.1.132 is installed in
these two systems. The compiler option used in the present perfor-
mance measurement is “-~ipo -ip -03 -xMIC-AVX512 -qopenmp”
for System I and ““~ipo -ip -03 -xCORE-AVX -qopenmp” for Sys-
tem IL. System III has 32 GB of High Bandwidth Memory (HBM)
and a single SPARC64 XIfx processor (2.2 GHz) on one compute
node. A total of 32 processes are executable. The compiler option is
“-Kfast,ocl,simd,openmp,parallel”

The total number of grid cells is Nx X Ny X Nyx X Nyy X Nyz =
134 X 70 x 403 for ions and electrons, which corresponds to a job
size of ~28 GB including temporary work arrays. One process is
used for each of the two particle species. The number of processes
per compute node is fixed to two, but the number of threads per
process is changed in the present strong scaling measurement.

The top panel of Figure 1 shows the strong scaling of our origi-
nal five-dimensional Eulerian Vlasov code. The vertical axis shows
the elapsed time for five time steps. The horizontal axis shows the
number of threads per compute node. The diamonds, circles, and
"x"-marks correspond to the results on Systems I, I, and III, respec-
tively. The computational speed of the code on one compute core of
Systems II and III is almost the same by coincidence, while the scal-
ability on System III is excellent. Although the computational speed
of the code on one compute core of Systems I is much slower than
the other two systems, the computational speed on one compute
node is comparable to the other systems due to the large number
of compute cores and HT. We has made a performance tuning of
our code by the decomposition of most-inner loops and reduction
of temporary work arrays. The code becomes faster by 2 times on
System I, by 1.5 times in System II, and by 1.15 times in System IIL.
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Figure 1: Strong scaling of the five-dimensional Eulerian
Vlasov code on Xeon Phi KNL (System I), Xeon Broadwell
(System II), and SPARC64 XIfx (System III) processors. (top)
The original code and (bottom) tuned code.
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