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1 BACKGROUND
Local Binary Convolution (LBC) [4] is a kind of spatial convo-
lution which get inspiration from the Local Binary Pattern. CNN
modules with LBC layers are called local binary convolution
neural networks (LBCNN).

Local Binary Convolution consists of one weight anchored con-
volution layer (whose filters are filled with stochastic value in range
of 1, -1 and 0) and a layer of 1×1 convolution. As is shown in Figure
1.

In normal convolution, p channels of input will go through q
filters and then ReLU function. At last there will be q output chan-
nels.

While in LBC, p input channels will go through m anchored-
weight filters first then go through ReLU/Sigmoid function to getm
intermediate output, these output will then go through q channels
1 × 1 convolution. At last you can also get q channels output.

The advantage of LBCNN is saving large quantity of learned
parameters without losing a lot of accuracy. As is shown in Equation
1:

Param. o f CNN

Param. o f LBCNN
=
p × h ×w × q

m × q
=
p × h ×w

m

∗Param . means number of parameters

(1)

With the assumption thatm equals to p, this could save h ×w
times of the learned parameter in the model. In this poster we
propose to extend the method to larger models to see if it can work
well.

2 PROBLEM OF LBCNN
LBCNN models could save h ×w times of the learned parameter
in the models, however, this is just based on the assumption
thatm equals to q in Equation 1.

At some certain convolution layer, let X ∈ R(p×H×W )×1 be a p
channels input of the layer. And let w ∈ R(p×h×w )×1 be a single
filter in this layer. The output of this filter could be represented as
Equation 2:

d = σr elu (w ∗ X ) ∈ R(H×W )×1 (2)

Let B ∈ R(m×h′×w ′)×p be the anchored weight filters in corre-
sponding LBC layer. The output of the Bit Map can be expressed as
Equation 3

σsiдmoid (B ∗ X ) ∈ R(H×W )×m (3)

Figure 1: LBC construction.

Then let v ∈ R(1×1)×m be a 1 × 1 filter in the latter part of the
LBC layer. Since v is 1 × 1 filter, Equation 3 could be changed to:

d ′ = CSiдmoidv ∈ R(H×W )×1 (4)

Juefei-Xu et al. [4] discussed that there always exist such v that
CSiдmoidv = d ′ = d , however you can not always find such v

since only whenm > rank(X (H×W )×m ) such v may exist. Ifm
is too small, this method will damage the accuracy of the model a
lot.

Usually, we can not use such bigm, especially on condition that
inputs are large pictures, since this will lead to huge amount
of parameters. So there may exist some problems when simply
replace all normal convolution layers in DenseNet models by LBC.

3 LBDENSENET
3.1 Building Block
ResNet [2] are built by building block method, there are two convo-
lution layers in each basic block, and there is a shortcut connection
between the input and out put of the basic block:

output = ReLU (F (x) + x)

Which adds up the input and output followed by ReLU as a new
output.

Building block method is also applied to Densely connected
convolutional Network (DenseNet) [3] design. We propose to
make new models based on DenseNet models.

3.2 LBDenseNet Family
First of all, we directly replace all normal convolution layers by
LBC layers. As is shown in Figure 2 (all LBC layers are under the
condition thatm = p):
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Figure 2: Basic block of DenseNet full (left) and fused (right).

LBDenseNet-Full, since the Denseblock have "bottle neck" ar-
chitecture, all 3× 3 convolution layers will be followed by Relu-BN-
1 × 1 convolution, we can easily apply our Full model by replacing
the 3 × 3 convolution layers with LBC layer.

LBDenseNet-Fuse, we call the model with half normal convolu-
tion layer half LBC layer fused model. We apply LBDenseNet-Fuse
by replacing half of the 3× 3 layers in each basic block. (as is shown
in Figure2).

4 EXPERIMENTS
We train models on ImageNet[5], and we use the same parameters
as Yu et al. at [6] for training. We use Top-1 and Top-5 accuracy as
our acurracy measurements.

We apply our methods to DenseNets-121 and train it on Ima-
geNet classification task. Also we add an hyper parameter m which
described the amount of filters in LBC layers. Noted that the parame-
ter m will affect the numbers of input channels for 1×1 convolution
layers. Hence higher m will leads to more learned parameter.

After we addm to test full and fused models. We can test the
results under differentm. Figure 3 shows the relationship of param-
eters and accuracy.

Figure 3: Results of models under differentm.

As is shown in this figure, we can adjust m to make full and
fused models have the same numbers of learned parameter, and
the results are very closed to each other. More learned parameter
leads to higher accuracy. This means LBC together with 1 × 1
convolution can somehow replace 3×3 convolution but do not help
saving parameters.

Furthermore, we tested the time of each models on ImageNet, we
define the reciprocal of total training time as x-axis named speed.
And let the accuracy be the y-axis, we can get Figure 4.

It can be seen that, full version have a very low efficiency since
higher m obviously increase the computational amount of the

model, which makes the model become much slower. The figure
indicates that although it may be possible for using LBCNN to get
a accuracy close to the original version of model, it will be far too
slow to train.

Figure 4: Accuracy and Performance of different models.

5 CONCLUSION
We extend the method of LBCNN to larger model: DenseNet on
ImageNet to see if it helps. In addition, during our extension we
also proposed a trade off way that fuse normal convolution and
LBCNN. It is hard for the method of LBCNN get better results in
more complex models and this method seems to effect the training
speed a lot. After analyzing the results of out tests, we find that,
with LBCNN method, it is possible for 1 convolution after LBC
filters to get the similar results with 3 × 3 convolution, but this
method have a very low time efficiency.

6 FUTUREWORK
We are going to Test LBCNN on more datasets and more models
(Resnet[2] for example). And extend LBCNN on more tasks such
as semetic segmentation on Dataset like Cityscapes[1]. Since we
finally find out that LBC is not such a good method to approximate
normal convolution we need to find a better choice.
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