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Abstract

The combination of network function virtualization (NFV) and software defined networking (SDN) contributes

to making the network more efficient, and it promises to guarantee high flexibility and low cost in network oper-

ations. Meanwhile, the continuous development of mobile edge computing (MEC) makes it possible for the edge

of mobile network to run cloud computing tasks. However, edge computing environments are dynamic, and VNF

demands for computing resources usually fluctuate over time. Thus, when the demand of a VNF cannot be satisfied,

we need to migrate the VNF so as to meet its demand and retain the network performance. Our paper focuses on

efficiently migrating VNFs (MV) and recovering connections (RC) after migration, such that the migration and

connection paths can meet the bandwidth requirement for data transmission. We prove that both of MV and RC

are NP-complete. We present efficient algorithms to tackle them. Extensive simulations show that the proposed

algorithms are efficient and effective.

Motivation

Mobile edge computing (MEC) enables the cloud computing capabilities at the edge of the mobile

network, which greatly lowers the delay in data transmission. Virtual network functions (VNFs) can

be dynamically deployed, migrated, and removed.

Due to the dynamic nature of edges, the network changes from time to time. For instance, the topol-

ogy of the network may change, the resource capacity of a specific machine may vary at some point,

and the bandwidth between two machines may increase or decrease due to different traffic situations.

In the daytime, some VNFs may require more computing resources due to heavy traffic situations,

and they need to be migrated to the machines with massive resources in central network nodes; in the

night, due to the decreasing demand for computing resources, some VNFs need to be migrated back

to edge network nodes with fewer resources, such that the machines with massive resources can be

vacated for sudden large tasks. Therefore, we need to efficiently complete the migration of the VNF

chains, as well as the task of VNF connection recovery after migration.

In this paper, we use ‘to-be-migrated VNFs’ to represent the VNFs which we need to migrate. We

consider the problem of migrating multiple VNFs to new physical machines, as the to-be-migrated

VNFs’ demands for computing resources fluctuate due to different traffic situations. As a first step,

to initiate a meaningful study, this paper narrows the scope of this problem to a manageable extent:

we assume the network node to which each VNF is migrated is known in advance; thus, we focus on

selecting the migration paths that meet the bandwidth requirements for all to-be-migrated VNFs, such

that the task of migrating VNFs can be completed within the specified time. After migration, we need

to recover the connection between the migrated VNFs which are adjacent along a VNF chain. To

prevent the traffic congestion in the network, we need to find out the connection paths that minimize

bandwidth usage.

Our contributions in the paper are three-fold: (1) We introduce MVRC using graph theory and

present a formal formulation. We provide the NP-completeness results of both MV and RC; (2) We

propose efficient algorithms for the MVRC problem; (3) Simulations are conducted to confirm the

efficiency and effectiveness of the proposed algorithms.

Formulation

Migrating VNFs (MV). We assume that there are c VNF chains to be migrated, and the jth

(j = 1, 2, .., c) VNF chain has Cj to-be-migrated VNFs. Thus, the total number of to-be-migrated

VNFs is denoted as n =
∑c

j=1Cj. Besides, the ith (i = 1, 2, ..., n) to-be-migrated VNF is denoted as

fi, and we migrate it from the current node SM,i to the destination node DM,i, which is specified in

advance. In the cloud-based edge network, there are rM,i paths between SM,i and DM,i, and they are

R1
M,i, R

2
M,i, ..., R

rM,i

M,i. We need to select one of them, e.g., Rk
M,i (k = 1, 2, ..., rM,i) as the migration

path PM,i for fi. We define BW (Rk
M,i) as the bandwidth of Rk

M,i, which equals the minimum band-

width of the links along Rk
M,i. We allocate BM,i units of bandwidth for PM,i, and BM,i is no more

than BW (Rk
M,i). If multiple migration paths traverse the same link e, the total bandwidth allocated

for them should not exceed Be.

We start to migrate the n to-be-migrated VNFs at the same time, and all the migration tasks need

to be finished within the specific time T . We assume the amount of the to-be-migrated data of fi is

di. Remember that the bandwidth we allocate for fi along PM,i is BM,i, so the time required for fi’s
migration is di/BM,i. All to-be-migrated VNFs need to be migrated to the destinations within time

T , so we should select an appropriate migration path for each VNF. There is no motivation for each

VNF to finish migration in the time less than T , because it will occupy extra bandwidth that might be

utilized by other VNFs. Thus, the bandwidth requirement of PM,i is equal to di/T , i.e., BM,i = di/T .

Recovering Connections (RC). After migration, we need to recover the connection path between

each migrated VNF and its neighbor VNFs along the VNF chain. We assume that there are m connec-

tion paths to be recovered in total, and they are each selected between node SC,1 and DC,1, node SC,2
and DC,2, ..., node SC,m and DC,m. In the cloud-based edge network, there are rC,i (i = 1, 2, ...,m)

paths between SC,i and DC,i, and they are R1
C,i, R

2
C,i, ..., R

rC,i
C,i . Similar to MV, we should select one

of them, e.g., Rk
C,i (k = 1, 2, ..., rC,i) as the recovered connection path PC,i between node SC,i and

DC,i. The bandwidth requirement of the connection path between node SC,i and DC,i is BC,i. Thus,

we need to allocate BC,i units of bandwdith for PC,i, and BC,i is no more than BW (Rk
C,i). If multiple

recovered connection paths traverse the same link e, the total bandwidth allocated for them should

not exceed Be.

The total bandwidth allocated for the connection paths traversing the link ei is denoted as tei, and we

define the bandwidth occupancy rate after recovering VNF connection as α = max
|E|
i=1

tei
Bei

. It is easy

to see α can reflect the traffic condition of the network after migration. Our objective is to minimize

α and prevent the traffic congestion.

NP-completeness result. By reducing the Widest Pair of Paths Problem to RC and reducing the

Widest Pair of Disjoint Paths Decoupled Problem to MV, we can both of MV and RC are NP-

complete.

Preliminary Solutions

Heuristics for MV. We need to select n migration paths satisfying bandwidth requirements for all to-

be-migrated VNFs in MV. To ensure that as many VNFs as possible can be migrated successfully, we

migrate VNFs in the non-decreasing order of the bandwidth requirements and first select the shortest

or the minimum wide-edge migration path, such that each migration path will use fewer links and the

bandwidth of each link can be made the most use of on the whole.

Smallest path Heuristic (SH) algorithm. SH starts from the migration path PM,i with the smallest

bandwidth requirement. SH utilizes the Dijkstra’s Algorithm to calculate the shortest path sp between

SM,i and DM,i.

Minimum Wide-edge Heuristic (MWH) algorithm. MWH differs from SH only in that instead of

using Dijkstra we use a similar algorithm that finds the minmum wide-edge path between two given

vertices.

Heuristics for RC. To minimize the bandwidth occupancy rate and uniformly use all links’ band-

widths, we select the migration paths that have large bandwidth capacity and traverse few links.

Widest Heuristic (WH) algorithm. WH starts from the path with the smallest bandwidth requirement,

and checks whether there is any path that satisfies its demand.

Modified Shortest Heuristic (MSH) algorithm. Different from WH, MSH uses the Dijkstra’s algo-

rithm to find a suitable for a given vertices pair.

Figure1 Simulation results

Preliminary Results

We simulate the network using the Python package NetworkX. In general, the simulation results

demonstrate the efficiency and effectiveness of the proposed algorithms, which are nearly as good

as the optimal solution. For example, in Fig. 1(a)(b), we can see that the performance of SH and

MWH is close to the optimal solution when the number of links is more than twice that of network

nodes, i.e., 128. Besides, when the ratio of LBC to VBR in the network is larger than 8, SH and

MWH also perform nearly as well as OPT. From Fig. 1(c)(d), we learn that the running time cost of

SH and MWH is much less than that of OPT. Thus, when there are a number of links in the network

and the ratio of LBC to VBR is not very low, our algorithms for MV can achieve good results.


