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ABSTRACT
Manycore architectures and hybrid memory designs using emerg-
ingmemory technologies (e.g., 3D stackedDRAMandNon-Volatile
RAM) have been adopted in recent HPC systems, and the total sys-
tem throughput/bandwidth have been significantly improved by
them. However, at the same time, these technology trends incur
more significant resourcewastes within a node as CPU/memory in-
tensive applications do not effectively utilize memories/CPUs. To
mitigate the resource wastes, prior researches have shown that co-
scheduling, i.e., launching multiple applications on one node, is a
promising approach, but they mostly did not consider the combi-
nation of co-scheduling and hybrid memory systems. In this work,
we explicitly target the combination and make a case for it. Our
preliminary evaluation clarifies the following key insight: the prob-
lem size of each application plays an important role in optimizing
co-scheduling strategies for hybrid memory based systems.

1 INTRODUCTION
HPC systems will continue to face the severe memory bandwidth/-
capacity limitations, and hybrid memory systems, which are
composed of multiple different memory technologies, are promis-
ing to combat the problem. On the one hand, 3D stacking memo-
ries, such as HBM [4], are effective to increase the memory band-
width, but they suffer from serious capacity limitations [5]. On the
other hand, Non-Volatile RAMs, such as 3DXpoint memories [2, 3],
are promising to considerably scale memory capacity, however,
their performance ismuch lower than that of conventional DRAMs.
Due to the trade-off in bandwidth and capacity, hybrid memory ar-
chitectures are promising design choices [5, 8, 9].

Meanwhile, to improve the processor performance, the indus-
try has gradually increased the core count in the last decade. As
a consequence, many-core processors have appeared on the mar-
ket [5] and are used in various HPC systems. However, at the same
time, it has become more and more difficult to efficiently convert
high core counts into performance due to the thread-level scalabil-
ity limitations caused by sequential code portions, shared resource
contentions, and intensive memory accesses.

Co-scheduling, i.e., launchingmultiple applications on one sin-
gle node, is awell-known approach tomitigate such resourcewastes [1,
6]. On the one hand, memory intensive applications need less pro-
cessor cores as performance is restricted by the memory system
(e.g., bandwidth). On the other hand, CPU intensive applications
need more cores but consume less memory bandwidth. Therefore,
the resources can be more efficiently utilized by simultaneously
executing different kinds of applications on one single node.

Although prior studies have shown the effectiveness of co-scheduling,
the combination of co-scheduling andhybridmemory systems
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Figure 1: Thread-level scalability v.s. problem size

has not been well-studied yet. In this work, we explicitly target
the combination and make a case for it by deploying a prelimi-
nary evaluation. In particular, we demonstrate the following key
insight: the problem size of each application plays a key role in
optimizing co-scheduling for hybrid memory based systems.

2 EVALUATION ENVIRONMENT
We target systems with emerging hybrid memories, which are het-
erogeneous in terms of bandwidth and capacity (e.g., MCDRAM
+ DDR4 in Knights Landing [5] or systems using Optane DIM-
M/SSD [2, 3] as DRAM extensions). In this work, we use a Knights
Landing based system as an example whose settings are listed in
Table 1. Note that our observations shown later are caused by the
bandwidth/capacity heterogeneity in the memories and thus will
happen on any of our target systems. In the evaluation, we utilize
the hardware-based approach (cache mode) for the data manage-
ment on the different memories. As for the workloads, we chose
Streaming aswell as severalmini applications chosen fromCORAL
benchmark suite [7].

3 KEY OBSERVATION: THREAD-LEVEL
SCALABILITY V.S. PROBLEM SIZE

Figure 1 demonstrates how thread-level scalability depends on the
problem (or data) size. As shown in the figures, applications gen-
erally scale worse when the problem size is larger on our system.
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Figure 2: Optimal core resource allocations
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Figure 3: Performance improvement brought by co-scheduling
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Figure 4: Performance comparison at (4,80) (= data sizes of (Appi, Appj)[GiB])

Name Remarks
CPU XeonPhi 7210, 64cores, 1.3GHz

Memory MCDRAM (Fast Mem.): 16GiB, 450GiB/s
DDR4 (Large Mem.): 96GiB, 90GiB/s

OS CentOS 7
Compiler ICC 19.0.1.144

Table 1: System configuration

This is because when the data size is increased, the large but slow
memory is more frequently accessed, which shifts the perfor-
mance bottleneck from the CPU or the fast memory to it. As
for SNAP, the scalability is limited by the other reasons (e.g., in-
terference among threads).

4 IMPACT ON CO-SCHEDULING
Figure 2 shows the optimal1 core allocations to two applications
when we execute them at the same time. As shown in the figure,
this highly depends on the problem sizes of applications as the
core resource requirements are strongly related to their thread-
level scalability (see Figure 1).Then next, Figure 3 shows the speed-
up over Time Sharing2 when the core allocations are optimized.
This figure suggests that the optimal co-scheduling pair choices
highly depend on the problem sizes. Finally, Figure 4 describes
the performance comparison, which suggests that a non-problem-
size-aware core allocation approach can considerably degrade
performance that can be even worse than Time Sharing.
1Optimal: minimizing total execution time
2Time Sharing: conventional exclusive solo-runs

5 CONCLUSION AND FUTURE CHALLENGES
In this work, we made a case for co-scheduling on a hybrid mem-
ory based system and demonstrated that the optimal co-scheduling
pair selections and resource allocations highly depend on the prob-
lem sizes of applications. In our future work, we are going to de-
velop a problem size aware co-scheduling algorithm and extend a
conventional co-scheduling framework to support it.
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