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Recent technology trends:
ü Manycore processors (e.g., A64FX, KNL, GPUs) for higher arithmetic throughput
ü 3D stacked DRAMs (e.g., wide-I/O, HMC, and HBM[1]) for higher memory bandwidth
ü Emerging NVRAMs (e.g., Optane DIMM/SSD [2,3]) for larger memory capacity

Promising node architecture (our target):
Manycore processor + hybrid memory system

1. Background

3. Summary

2. Motivation and Goal

1) Developing problem size aware co-scheduling 
methodology/algorithm

2) Extending a conventional co-scheduling framework 
to support our approach

3) Evaluating our strategy using various hybrid memory 
systems(e.g.,DRAM DIMM + Optane DIMM/SSD[2,3])

5. Future Challenges

Our new insight: problem size awareness is quite 
important when co-scheduling multiple applications on 

the hybrid memory based node
ü The followings highly depend on the problem sizes:

1) Optimal selections of co-run application pairs
2) Optimal resource allocations to them

Future exa-scale machine[4] Knights Landing[5]

Problem: increasing resource wastes within a node
1. Waste of processor core resources when memory intensive
2. Waste of memory bandwidth resources when CPU intensive

ü The wastes become even worse when these resources are scaled

Promising approach: co-scheduling [6]
ü Co-running multiple jobs on one single node at the same time
ü Mixing CPU/memory intensive jobs is effective

Goal: to understand the impact of co-scheduling on the 
recently emerging hybrid memory based systems

ü Note: the combination of co-scheduling and hybrid memory system is not 
well studied in prior studies

ü To do so, we utilized the system summarized in the table below

Hybrid main memory

TABLE1: Evaluation settings  
CPU Package XeonPhi 7210, 64cores, 1.3GHz, quadrant mode, x1 socket

Memory
System

MCDRAM(1st memory): 16GB 450GB/s, DDR4(2nd memory): 96GB 
90GB/s, Data management: hardware cache mode

OS Cent OS 7

Compiler Intel C++/Fortran Compiler 19, Options: -O3, -qopenmp, -xMIC-AVX512

Workloads Streaming  + CORAL benchmark[7] (AMG, LULESH, MCB, miniFE, SNAP)
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ü The CPU resource requirement (= thread-level scalability) depends on the problem size
– The 2nd memory (large but slow) is more frequently accessed when the problem size is 
scaled,  which changes the bottleneck 

Memory pool with IMDT[3]

Fig. 2: Thread-level scalability vs data size

Manycore processor
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ü The optimal settings also depend on the problem sizes due to the scalability changes

Fig. 4: Performance improvement over time sharing‡

Fig. 3: Core allocation breakdowns
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ü Speed-up highly depends on the problem sizes 
– We should revisit the pair selection policy in co-scheduling to consider this

†Optimal: total execution time is minimized ‡Time sharing: conventional exclusive solo-runs
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Application Pairs: Appi-Appj

Fig. 5: Performance comparison at (4,80) [GiB] 
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ü A non-problem-size-aware resource allocation policy will not work well
– We should rethink the policy too

* Core settings are optimal†

This Poster & 
Extended Abst.

Impact of problem size awareness on co-run performance

Performance improvement (co-run opportunities) 

Optimal† core allocations when co-runningCPU resource requirement analysis (solo-run)

Fig. 1: Target systems (extracted figures)
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