
4. Experiment

A Case for Co-scheduling for Hybrid Memory
Based Systems

Eishi Arima1,2, and Carsten Trinitis2

1The University of Tokyo, 2Technical University of Munich

Eishi Arima, The University of Tokyo
Email: arima@cc.u-tokyo.ac.jp

Contact Info:
1. JEDEC Standard. “High Bandwidth Memory (HBM) DRAM,” JESD235 (2013).
2. J. Izraelevitz et al. “Basic Performance Measurements of the Intel Optane DC Persistent Memory Module,”

arXiv preprint arXiv:1903.05714 (2019).
3. Intel. “Intel® Memory Drive Technology, Set Up and Configuration Guide,” 2019.
4. T. Vijayaraghavan et al. “Design and Analysis of an APU for Exascale Computing,” In HPCA, pp. 85–96, 2017.
5. J. Jeffers et al. “Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition,” Morgan

Kaufmann Publishers Inc. 2016.
6. M. Bhadauria et al. “An Approach to Resource-aware Co-scheduling for CMPs,” In ICS, 189–199, 2010.
7. CORAL Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks/.

References:

Recent technology trends:
ü Manycore processors (e.g., A64FX, KNL, GPUs) for higher arithmetic throughput
ü 3D stacked DRAMs (e.g., wide-I/O, HMC, and HBM[1]) for higher memory bandwidth
ü Emerging NVRAMs (e.g., Optane DIMM/SSD [2,3]) for larger memory capacity

Promising node architecture (our target):
Manycore processor + hybrid memory system

1. Background

3. Summary

2. Motivation and Goal

1) Developing problem size aware co-scheduling
methodology/algorithm

2) Extending a conventional co-scheduling framework
to support our approach

3) Evaluating our strategy using various hybrid memory
systems(e.g.,DRAM DIMM + Optane DIMM/SSD[2,3])

5. Future Challenges

Our new insight: problem size awareness is quite
important when co-scheduling multiple applications on

the hybrid memory based node
ü The followings highly depend on the problem sizes:

1) Optimal selections of co-run application pairs
2) Optimal resource allocations to them

Future exa-scale machine[4] Knights Landing[5]

Problem: increasing resource wastes within a node
1. Waste of processor core resources when memory intensive
2. Waste of memory bandwidth resources when CPU intensive

ü The wastes become even worse when these resources are scaled

Promising approach: co-scheduling [6]
ü Co-running multiple jobs on one single node at the same time
ü Mixing CPU/memory intensive jobs is effective

Goal: to understand the impact of co-scheduling on the
recently emerging hybrid memory based systems

ü Note: the combination of co-scheduling and hybrid memory system is not
well studied in prior studies

ü To do so, we utilized the system summarized in the table below

Hybrid main memory

TABLE1: Evaluation settings
CPU Package XeonPhi 7210, 64cores, 1.3GHz, quadrant mode, x1 socket

Memory
System

MCDRAM(1st memory): 16GB 450GB/s, DDR4(2nd memory): 96GB
90GB/s, Data management: hardware cache mode

OS Cent OS 7

Compiler Intel C++/Fortran Compiler 19, Options: -O3, -qopenmp, -xMIC-AVX512

Workloads Streaming + CORAL benchmark[7] (AMG, LULESH, MCB, miniFE, SNAP)

Acknowledgement:
We thank Prof. Martin Schulz and the members of his research group at TU Munich for
valuable discussions. This work is partly supported by JSPS Grant-in-Aid for Early-Career
Scientists (JP18K18021), and Research on Processor Architecture, Power Management,
System Software and Numerical Libraries for the Post K Computer System of RIKEN.

ü The CPU resource requirement (= thread-level scalability) depends on the problem size
– The 2nd memory (large but slow) is more frequently accessed when the problem size is
scaled, which changes the bottleneck

Memory pool with IMDT[3]

Fig. 2: Thread-level scalability vs data size

Manycore processor

0
8

16
24
32
40
48
56
64

(4,4) (80,4)(4,80) (4,4) (80,4)(4,80) (4,4) (80,4)(4,80) (4,4) (80,4)(4,80) (4,4) (80,4)(4,80) (4,4) (80,4)(4,80)
Streaming-Streaming Streaming-Amg Streaming-Lulesh Streaming-MCB Streaming-miniFE Streaming-Snap

of

 C
or

es

Application Pair: Appi-Appj

of Cores (Appi) # of Cores (Appj)

Data Size of (Appi, Appj) [GiB]

ü The optimal settings also depend on the problem sizes due to the scalability changes

Fig. 4: Performance improvement over time sharing‡

Fig. 3: Core allocation breakdowns

-20%

0%

20%

40%

60%

80%

(4,4)(80,4)(4,80) (4,4)(80,4)(4,80) (4,4)(80,4)(4,80) (4,4)(80,4)(4,80) (4,4)(80,4)(4,80) (4,4)(80,4)(4,80)
Streaming-Streaming Streaming-Amg Streaming-Lulesh Streaming-MCB Streaming-miniFE Streaming-Snap

Sp
ee

d-
up

 o
ve

r
Ti

m
e

Sh
ar

in
g‡

ü Speed-up highly depends on the problem sizes
– We should revisit the pair selection policy in co-scheduling to consider this

†Optimal: total execution time is minimized ‡Time sharing: conventional exclusive solo-runs

0

10

20

30

40

0 8 16 24 32 40 48 56 64Re
la

ti
ve

 P
er

fo
rm

an
ce

of threads

4GiB 80GiB

*
*

48 is
enough

0

10

20

30

40

0 8 16 24 32 40 48 56 64Re
la

ti
ve

 P
er

fo
rm

an
ce

of threads

4GiB 80GiB

scale

constant

*

*
16 is enough

0

10

20

30

40

0 8 16 24 32 40 48 56 64Re
la

ti
ve

 P
er

fo
rm

an
ce

of threads

4GiB 80GiB
*

*
24 is enough

0

10

20

30

40

0 8 16 24 32 40 48 56 64Re
la

ti
ve

 P
er

fo
rm

an
ce

of threads

4GiB 80GiB
*

*
32 is enough

0

10

20

30

40

0 8 16 24 32 40 48 56 64Re
la

ti
ve

 P
er

fo
rm

an
ce

of threads

4GiB 80GiB

*

32 is enough0

10

20

30

40

0 8 16 24 32 40 48 56 64Re
la

ti
ve

 P
er

fo
rm

an
ce

of threads

4GiB 80GiB

*

*
48 is
enough

Streaming Amg Lulesh

Mcb MiniFE Snap

Application Pairs: Appi-Appj

Fig. 5: Performance comparison at (4,80) [GiB]

0.4

0.6

0.8

1

1.2

1.4

Streaming-Streaming Streaming-Amg Streaming-Lulesh Streaming-MCB Streaming-miniFE Streaming-Snap

Re
la

ti
ve

Pe

rf
or

m
an

ce

Time Sharing Co-run: optimized core settings for (80,4) Co-run: optimized core settings for (4,80) - correct

Large
Gap

ü A non-problem-size-aware resource allocation policy will not work well
– We should rethink the policy too

* Core settings are optimal†

This Poster &
Extended Abst.

Impact of problem size awareness on co-run performance

Performance improvement (co-run opportunities)

Optimal† core allocations when co-runningCPU resource requirement analysis (solo-run)

Fig. 1: Target systems (extracted figures)

Data Size of (Appi, Appj) [GiB]

‡

