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ABSTRACT
Current finite element codes scale reasonably well as long as each
core has sufficient amount of local work that can balance communi-
cation costs. However, achieving efficient performance at exascale
will require unreasonable large problem sizes, in particular for
low-order methods, where the small amount of work per element
already is a limiting factor on current post petascale machines. One
of the key bottlenecks for these methods is sparse matrix assem-
bly, where communication latency starts to limit performance as
the number of cores increases. We present our work on improving
strong scalability limits of message passing based general low-order
finite element based solvers. Using lightweight one-sided communi-
cation, we demonstrate that the scalability of performance critical,
latency sensitive kernels can achieve almost an order of magnitude
better scalability. We introduce a new hybrid MPI/PGAS implemen-
tation of the open source general finite element framework FEniCS,
replacing the linear algebra backend with a new library written in
UPC. A detailed description of the implementation and the hybrid
interface to FEniCS is given, and we present a detailed performance
study of the hybrid implementation on Cray XC40 machines.
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1 INTRODUCTION
To strongly scale finite element codes on future exascale systems
will require either unreasonable large problem sizes to balance com-
munication costs, or algorithmic developments need to be achieved
which retain strong scalability even for very few elements per
core. In particular for low-order methods, where the small amount
of work per element already is a limiting factor on current post-
petascale machines. One of the key bottlenecks for these methods
is sparse matrix assembly, where communication costs starts to
limit performance as the number of cores increases.

The communication costs in matrix assembly come from the
underlying discretisation. Unstructured meshes are excellent for
accurate approximation of complex geometries. However, the lack
of underlying structure implies an unstructured communication
pattern. This together with the low amount of work per element
of low-order methods can have a negative effect on the overall
performance, as can be seen in [1]. Matrix assembly is quickly
losing strong scalability, but can often be amortised by much more

costly linear solvers. However, at higher core counts the cost of
assembling the system starts to become the dominating factor.

The reason for this negative behaviour is partly due to the pro-
gramming model used (message passing) and its two-sided com-
munication abstraction. For a large number of cores, the need to
match send and receive messages will unavoidably increase la-
tency and synchronisation costs. Non-blocking communication is
often employed to lower this cost, albeit it requires the receiver
to occasionally check for messages which introduces latency and
additional overhead costs.

To address these issues we use the lightweight, low latency one-
sided communication offered by Partitioned Global Address Space
(PGAS) languages to build a new sparse matrix representation. This
new representation is used to increase sparse matrix assembly in a
hybrid MPI/PGAS finite element solver based on the open source
framework FEniCS [3], where we focus on replacing key latency
dominating parts of the linear algebra backend with the new PGAS
based implementation. The main contribution of our work is to
demonstrate the applicability of PGAS in terms of performance
and present a path forward for legacy MPI codes with the hybrid
MPI/PGAS model.

2 SPARSE MATRIX REPRESENTATION
For the new sparse matrix representation we use a Compressed Row
Storage (CRS) like format, optimised for random insertion during
matrix assembly. The parallelisation is based on a row wise data
distribution, where each rank is assigned a contiguous set of rows.
We adhere to the two phase assembly process, where entries are
inserted into a matrix in two steps, first local entries are inserted
and all other entries are placed in a local staging area. In the second
step each rank fetches parts of other ranks’ staging areas using
remote memory copy. The implementation is written in Unified
Parallel C (UPC) [5], and uses a directory of objects representation
to overcome the fixed block size global memory allocation in UPC.
Furthermore, the implementation provides a hybrid interface, with
data accessed through an opaque interface allowing for interfacing
with non-PGAS based languages.

3 HYBRID PARALLELISATION OF FENICS
FEniCS is a high-level problem-solving environment for automated
solution of partial differential equations (PDEs) by the finite el-
ement method. The core part of FEniCS is the Object-Oriented
finite element library DOLFIN [4], from which we have developed a
high performance branch [2] for distributed memory architectures.
DOLFIN handles mesh representation and finite element assembly
but relies on external libraries for solving the linear systems.
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Figure 1: The hybrid MPI/PGAS parallelisation of FEniCS.

DOLFIN is written in C++, parallelised using MPI, and uses
ParMETIS for mesh partitioning and PETSc for linear algebra. In
this work we simply change the linear algebra backend to our new
UPC based implementation, and access matrices and vectors from
DOLFIN through the opaque interface, as illustrated in Figure 1.

4 PERFORMANCE EVALUATION
To evaluate the feasibility of using hybrid MPI/PGAS methods
to improve the scalability limits of matrix assembly in low-order
finite element codes we tested our new PGAS based sparse matrix
implementation on a set of different matrices from various finite
element discretisation of partial differential equations, all with
different kinds of communication and computational costs. For
all cases, we measure the time to recompute the stiffness matrix,
assuming that the sparsity pattern is known a priori.

Experiments with the new hybrid parallelisation were run on
two different Cray XC40 machines, first the 3944 node Hornet
located at HLRS, and secondly the 1676 node Beskow at PDC. The
flat MPI version of FEniCS using PETSc was compared against our
new hybrid version with a UPC based linear algebra backend.

In one of these benchmarks we compute the stiffness matrix
corresponding to the continuous linear Lagrange finite element
discretisation of Laplace’s equation. This benchmark corresponds
to a worst case scenario, since the stiffness matrix can be computed
with minimal work. Hence, this benchmark tests the communica-
tion cost more than the insertion rate. For this experiment we use
an unstructured tetrahedral mesh of the unit cube consisting of
317M elements.

The results from this benchmark is shown in Figure 2, which
clearly shows the advantage of the PGAS approach. Since the matrix
can be computedwithminimal work the performance of the flatMPI
FEniCS flattens out when the number of elements per rank becomes
too small, while the less latency affected UPC code continues to
perform well.

5 CONCLUSIONS
In this work we investigated the strong scalability limits of finite
element based solvers, in particular low-order methods which are
mostly communication bound due to the low amount of work per
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Figure 2: Assembly time (in seconds).

element. Using the partitioned global address space abstraction we
have investigated the feasibility of hybrid methods to address these
scalability limits, combining traditional message passing with low
latency one-sided communication within the same applications,
reducing the threshold for adopting new programming models
in legacy applications. We demonstrated the applicability of this
approach with a hybrid MPI/PGAS implementation of the finite ele-
ment framework FEniCS, where the sparse matrix representation is
replaced with one based on PGAS. The performance was evaluated
on two different Cray XC40s, where the hybrid model demonstrates
great potential with significant performance improvements of the
sparse matrix assembly kernels. Furthermore, the hybrid approach
offers an alternative to a complete rewrite of legacy MPI codes
when preparing them for future platforms.
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