
Niclas Jansson
PDC Center for High Performance Computing
KTH Royal Institute of Technology
njansson@kth.se

Improving Strong Scalability Limits
of Finite Element Based Solvers

NICLAS JANSSON
PDC Center for High Performance Computing

Introduction

To strongly scale finite element codes at exascale will require
unreasonable large problem sizes to balance communication
costs.

• Low order methods have too little work per element to
balance communication costs

• One of the key bottlenecks is sparse matrix assembly

• Using two-sided message passing, the cost of message
matching unavoidably increase latency and
synchronisation costs

We address the strong scalability limits of finite element based
solvers by changing to lightweight one-sided
communication in performance critical, latency sensitive
kernels.

PGAS Based Sparse Matrix Representation

A low latency one-sided PGAS based sparse matrix
representation.

• Compressed Row Storage (CRS) like format optimised for
random insertion during matrix assembly

• Row-wise data distribution

• Two phase assembly. Insertion of local entries + exchange
of non local entries using remote memget operations.

• Implemented using Unified Parallel C (UPC)

• Directory of object representation, allowing for arbitrary
sized global arrays, accessible by all threads

• Hybrid interface for combining with non PGAS languages.
Access data through opaque interfaces

Rows on thread 0

Rows on thread 1

Rows on thread 2

Rows on thread 3

Directory

extern "C" {
int jp_mat_init(char *A,

uint32_t m,
uint32_t n);

}

char A[200]; /* sizeof(jp_mat_t) */

jp_mat_init(A, M, N);

typedef struct {
shared[] row_stack *shared *a_dir;
row_stack *rs;
...

} jp_mat_t;

int jp_mat_init(jp_mat_t *restrict A,
uint32_t m,
uint32_t n);

C++ side UPC side

Implementation of Hybrid MPI/PGAS in FEniCS

New hybrid parallelisation of the automated problem solving
environment FEniCS.

• FEniCS is written in C++ and parallelised using MPI

• Used to build adaptive solvers for turbulent fluid flows.
Non-linear transient problems need to reassemble in each
time-step

• Complex unstructured meshes with irregular
communication pattern during matrix assembly

• High latency costs due to message matching, requires a
large amount of elements per core to strongly scale

• Too costly to rewrite an entire application in PGAS

• Replace MPI based linear algebra backend with the new
PGAS based backend

• New hybrid parallelisation of FEniCS combining MPI
(FEM) with UPC (linear algebra)

• Drop-in replacement, possible to switch at runtime

• Completely transparent, end users and solvers based on
FEniCS unaffected

Performance Evaluation

Performance evaluated on two Cray XC40, the 3944 node
Hornet at HLRS and the 1676 node Beskow at PDC, comparing

• Pure MPI, FEniCS using PETSc for linear algebra

• MPI + UPC, FEniCS using a PGAS based linear algebra
backend

Synthetic Matrix Assembly

Matrix reassembly time for Laplace’s equation in 3D on a
unstructured tetrahedral mesh with 317M elements.

Incompressible Flow Solver

Reassembly times for the momentum and continuity equations
in an implicit LES solver, on an unstructured tetrahedral mesh
with 60M elements.

Conclusions

• Low latency, one-sided communication can improve
scalability of sparse matrix assembly in finite element
based solvers

• Hybrid MPI/PGAS offers a scalable alternative to a
complete rewrite of legacy MPI codes when preparing for
exascale

𝑎 𝑢, 𝑣 = &
'
∇𝑣 ⋅ ∇𝑢 𝑑𝑥

𝐿 𝑣; 𝑓 = &
'
v𝑓 𝑑𝑥

FEniCS HPC

MPI

Computed Solution

Linear Algebra

UPCOpaque Interface

0,01

0,10

1,00

384 768 1536 3072 6144 12288 24576

R
un

tim
e

(s
ec

on
ds

)

Cores

MPI UPC

0,01

0,10

1,00

128 256 512 1024 2048 4096

R
un

tim
e

(s
ec

on
ds

)

Cores

MPI (Mom.) UPC (Mom.) MPI (Con.) UPC (Con.)

