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ABSTRACT

Signal map is of great importance, especially in the dawn of 5G
network, location-based services (LBS) and cellular planning. But
due to participants and budget issues, the signal map constructed
by crowdsourcing is often sparse and incomplete. In this work,
we study how to effectively reconstruct and update the signal
map in the case of partially measured signal maps and propose
an auto-encoder-based active signal map reconstruction method
(AER). Our method is mainly innovative in three parts. Firstly, AER
can effectively update the signal map with only a small number
of observations online. Secondly, AER consists of an active query
mechanism which further reduces the measurement cost to a large
extent. Thirdly, we give a new signal map model describing not
only the signal strength but also the signal dynamics, based on
which an advanced AER algorithm with parallel acceleration is
proposed. The simulation results demonstrate the advantages and
effectiveness of our approach in both accuracy and cost.
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1 INTRODUCTION

Signal maps, which consist of signal strengths at different locations,
play an important role in site spectrum monitoring [1], LBS [2], and
network construction [3]. But constructing the signal maps through
on-site surveys, is time-consuming and laborious. And the signal
may change with time and surroundings, which leads to a dilemma
that the acquisition and updating of the signal map could hardly
meet the requirements of the applications, no matter in quality or
timing. Crowdsourcing schemes are proposed to address this issue,
but collecting signals through crowdsourcing suffers from random
and insufficient participants, which leads to incomplete or low-
quality measurements. To cope with this, existing works mainly try
to complete the signal map in condition of partial observations with
signal propagation model[4], matrix completion[5] or compressive
sensing[6]. These algorithms either have higher computational
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Figure 1: The workflow of the AER
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costs which are not conducive to updating the signal map in time,
or lower reconstruction accuracy which does not meet the actual
requirements. In order to solve these problems in a comprehensive
way, we propose a novel signal map reconstruction algorithm based
on auto-encoder based active matrix completion.

2 METHODOLOGY

In this section, we will propose an auto-encoder-based signal map
reconstruction method (AER in Fig.1). The algorithm is divided into
the offline training phase and the online update phase.

Offline training phase: faced with a large amount of incom-
plete historical data, we extend the training of auto-encoder with
parallel training method.

e We divide the massive crowdsourced historical signals and
then use each compute node to train part of the fragmenta-
tion data.

e We combine the gradient parameters and update them through
the parameter server.

Online update phase: we use the uploaded signal to recon-
struct the signal map in time.

e The AER takes the partial signal collected at time ¢ as input
and reconstructs the signal map using the previously learned
features.

o A fluctuation inference method infers the fluctuation range
of the reconstructed signal map.

e An active crowdsourcing method finds the signal with the
highest informativeness.
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Figure 2: Experiment Result(The upper part is the result of no noise and the lower part is the result of noise.)

3 RESULTS

In this section, we will verify the effectiveness of our algorithm.
The experimental data is the simulated WiFi indoor positioning
data set. And we compare the performance of our algorithm to two
state-of-the-art missing value inference algorithms, compressive
sensing[6] and matrix-completion[5].

Relative Error: from Fig.2(a) and Fig.2(d), we can clearly see
that our algorithm is far superior to the other two algorithms. And
we find that the Relative Error of our algorithm is 1% lower or even
2% lower than the error of BCS, and AER is much better than MC.
Then we compare the cumulative distribution of errors in Fig.2(c)
and we can see that the performance of our algorithm far exceeds
the other two algorithms. AER’s RSSI error is about 90% less than
3.5dB, MC’s RSSI error is about 90% less than 5dB, and BCS’s RSSI
error is about 90% less than 5.5dB.

Active Crowdsouring Scheme: for the active crowdsourcing
problem, we use the active AER algorithm to compare with the
random sampling AER algorithm. And we found that the signal
obtained by the active method is much better than the random sam-
pling method, and under the same errors, the active AER only needs
less than half of the number of random sampling in Fig.2(b) and
Fig.2(e). So active AER algorithm can greatly reduce the collection
cost required to reconstruct signals.

Fluctuation Estimation: we use the fluctuation estimation al-
gorithm to estimate the signal fluctuation range, making the re-
constructed signal map more practical. From Fig.2(f), we can see
that even at the lowest sampling rate, we can still guarantee that
more than 90% of the signal range contains the ground-truth of the
signal.

4 CONCLUSIONS

In this work, we propose a comprehensive solution for signal map
acquisition, where auto-encoder is used to learn the nonlinear fea-
tures of and compose an algorithm called auto-encoder(AER) firstly.
The AER can effectively utilize historical incomplete signal maps
collected and learn the nonlinear temporal features therein and
effectively reconstruct the signal map; Secondly, we propose an
active crowdsourcing scheme for better performance of AER. This
method can reveal the more valuable measurement sites for recon-
struction algorithm and effectively reduce the reconstruction error
with lower crowdsourcing budget. Finally, we also propose a more
realistic signal map model with the description of the signal dynam-
ics in the same location over time, and correspondingly, an extended
AER algorithm is proposed to solve the reconstruction problem on
this model. The simulation experiments results demonstrate the
effectiveness of our solution.
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