
Poster template by ResearchPosters.co.za

A Relaxed Balanced Non-Blocking Binary Search Tree

Manish Singh*, Lindsay Groves, Alex Potanin

manish.singh@weltec.ac.nz, lindsay.groves@ecs.vuw.ac.nz, alex.potanin@ecs.vuw.ac.nz

Abstract

We present a new relaxed balanced concurrent binary

search tree in which all operations are non-blocking.

We utilise the notion of separating balancing operation and

update operations in a concurrent environment and design a

non- blocking balancing operation in addition to the regular

insert, search and relaxed delete operations. Our design

uses a single-word CAS supported by most modern CPUs.

Introduction

Existing concurrent BSTs

Design Overview

We have designed an abstract concurrent set in which the underlying data structure is a BST. Our implementation

supports:

• search(k): to check if the key is in the set or not,

• insert(k): to add the key into the abstraction,

• delete(k): to remove the membership of key if it is present in that dataset.

• This design closely mirrors the sequential version of BST except for the delete operation, where the key is first

mark as deleted and then physically removed later by the dedicated separate thread.

Achieving non-blocking or lock-freedom

• Threads do not lock any locations operations owns the locations instead.

• Thread synchronization

• Each node in the BST has an operation pointer field of which last two bits give information about

ongoing operation (In 32-bit system last two bit of address are zero). No extra overhead.

• Any thread intending to do operation,

• Rotation can only be announced by dedicated thread but can be completed by any other thread. Physical

removal can only be done by the dedicated thread.

Rotation operation is shown in figure1 (for right rotation, Similarly for left rotation). After grabbing the required

nodes,

• a newnode having the same key as the node where balance violation has occurred is allocated.

• right and left pointers of the newnode are allocated to the respective children which the original node would get

after the rotation(b).

• next step, is to insert the newnode to its position after rotation (c).

• the third and last step is to connect ‘c’ to the parent ‘p’ thereby removing node ‘n’ from the tree (d).

Summary

Observations

References

• In our design, all the operations are non-blocking.

• Search operation is free of any additional synchronization.

• We are evaluating performance of our algorithm on x86 _ 64

and SPARC multi-core machines against the concurrent

BSTs shown in table 1.

• A mechanised proof outline has been done using

linearisability as the correctness criteria.

• To the best of our knowledge, this is the first design which

utilises decoupling of operations as well as rotations to

balance the tree in a non-blocking concurrent set-up.

In a concurrent environment,

• effect of some rotations might cancel out each other.

• doing rotation with every insert and delete increases

contention. Locking large portion of BST results in decrease in

concurrency. Design all operations non-blocking.

• balancing are Not for correctness!

Hence relax the invariants

The evolution of multi-core/many-core systems has
necessitated the design of scalable and efficient concurrent
data structures. The asynchronous model of computation in
such systems makes it notoriously hard to design a correct and
efficient concurrent data structure that synchronises concurrent
access to shared memory. A considerable amount of research
has been done towards making a concurrent version of
sequential data structures. Performance has been always an
important factor that will always drive the design of new
concurrent data structures.

A concurrent design is non-blocking(or lock-free) if it ensures
that no thread/core accessing the data structure is postponed
indefinitely while waiting for other threads that operate on that
structure.

The Binary Search Tree (BST) is used in many practical real-
world systems as a search structure. In recent years, some
implementations of concurrent BST (both blocking and non-
blocking versions) have been proposed[1-7], but a non-
blocking concurrent BST that relaxes strict sequential
invariants with balancing operation is yet to be seen. In an
unbalanced BST, traversal could take O(n) time, when the
inputs are in an ordered sequence. Rotation operations are
used to balance the tree. Our work focuses on designing a
non-blocking, scalable, and highly concurrent relaxed balanced
BST.

Figure 1: Right Rotation example. T1: a thread carrying out a search operation oblivious of

ongoing concurrent rotation.

Separate operations :

Search ,insert, logical

delete from rotations and

physical deletions .

Traverses the tree in

top down manner,

propagating local

height information.

Maintain a separate

thread(s)

Eventual balancing

Separate thread checks

balance violation, does

rotation as required until

the tree get balanced.

Physical deletion

Separate thread carries

out physical removal of

the deleted nodes

1) N. Mittal A. Natarajan. 2014. Fast concurrent lock-free binary search trees. In Proceedings of the

19th ACM SIGPLAN Symposium on Principles and Prac- tice of Parallel Programming (PPoPP)

(2014).

2) Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. 2014. Efficient Lock-free Binary Search

Trees. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing

(PODC ’14). ACM, New York, NY, USA, 322–331.

3) Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical Concurrent Binary Search

Trees via Logical Ordering. SIGPLAN Not. 49, 8 (Feb. 2014), 343–356.

4) Hassan Cha Nathan G. Bronson, Jared Casper and Kunle Olukotun. 2010. A practical concurrent

binary search tree. ACM SIGPLAN Symposium on Principals and Practice of Parallel

Programming (2010).

5) Jeremy Jones Shane V. Howley. 2012. A non blocking internal binary tree. SPAA (June 2012).

6) M. Raynal T. Crain, V. Gramoli. 2013. contention-friendly binary search tree. In In Euro-Par. 229–

249.

7) Yehuda Afek. 2012. A practical concurrent self-adjusting search tree. Tel Aviv University (2012).

*Corresponding author: Manish Singh, manish.singh@weltec.ac.nz, School of IT, Wellington Institute of Technology, Lower Hutt, NZ

prepares an operation-

descriptor

announces

operation

using CAS

extract information and

Help the ongoing

operation

carry out its own

operation

success fails

retry

Locates the

node/location

mailto:manish.singh@weltec.ac.nz
mailto:lindsay.groves@ecs.vuw.ac.nz
mailto:alex.potanin@ecs.vuw.ac.nz
mailto:manish.singh@weltec.ac.nz

