This source file includes following definitions.
- main
1
2
3 #include "mpi.h"
4 #include <stdio.h>
5 #include <string.h>
6
7 #define D 3
8
9 #define X 256
10 #define Y 256
11 #define Z 256
12
13 #define nx 128
14 #define ny 128
15 #define nz 128
16
17 #define ng (nx*ny*nz)
18
19 #define npx 2
20 #define npy 2
21 #define npz 2
22
23 #define np (npx*npy*npz)
24
25 #define LOOP 1
26
27 #define MAX_RR_NAME 7
28
29 int
30 main(int argc, char* argv[])
31 {
32 int i, rank, npes, bug=0;
33 int buf[ng];
34 MPI_File thefile;
35 MPI_Status status;
36 MPI_Datatype filetype;
37 MPI_Comm new_comm;
38 MPI_Offset offset=0;
39 MPI_Info info=MPI_INFO_NULL;
40 int gsize[D],distrib[D],dargs[D],psize[D];
41 int dims[D],periods[D],reorder;
42 double t1,t2,mbs;
43 double to1,to2,tc1,tc2;
44 double et,eto,etc;
45 double max_mbs,min_mbs,avg_mbs;
46 double max_et,min_et,avg_et;
47 double max_eto,min_eto,avg_eto;
48 double max_etc,min_etc,avg_etc;
49 char process_name[MPI_MAX_PROCESSOR_NAME + 1];
50 char rr_blank[] = {" "};
51 char rr_empty[] = {"???????"};
52 int count;
53
54 MPI_Init(&argc, &argv);
55 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
56 MPI_Comm_size(MPI_COMM_WORLD, &npes);
57 if ( rank == 0 )
58 {
59 if ( argc < 2 )
60 {
61 printf(" ERROR: no filename given\n");
62 bug++;
63 }
64 if ( npes == np )
65 {
66 printf(" file name: %s\n",argv[1]);
67 printf(" total number of PE's: %3d\n",np);
68 printf(" number of PE's in x direction: %4d\n",npx);
69 printf(" number of PE's in y direction: %4d\n",npy);
70 printf(" number of PE's in z direction: %4d\n",npz);
71 printf(" global grid size: %dx%dx%d 4 byte integers (total %lu)\n",X,Y,Z,(unsigned long)X*Y*Z);
72 printf(" local grid size: %dx%dx%d 4 byte integers (total %d)\n",nx,ny,nz,ng);
73 }
74 else
75 {
76 printf(" ERROR: total number of PE's must be %d\n",np);
77 printf(" actual number of PE's was %d\n",npes);
78 bug++;
79 }
80 if ( bug )
81 {
82 MPI_Abort(MPI_COMM_WORLD,-1);
83 }
84 }
85 if ( MPI_Get_processor_name(process_name, &count) != MPI_SUCCESS)
86 {
87 sprintf(process_name, "%s", rr_empty);
88 }
89 else
90 {
91 if (count < MAX_RR_NAME) strncat(&process_name[count],rr_blank,MAX_RR_NAME-count);
92 process_name[MAX_RR_NAME] = '\0';
93 }
94
95 MPI_Barrier(MPI_COMM_WORLD);
96
97 MPI_Info_create(&info);
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121 for ( i=0; i<ng; i++ ) buf[i] = rank*10000 + (i+1)%1024;
122
123 for ( i=0; i<D; i++ )
124 {
125 periods[i] = 1;
126 }
127
128 reorder = 1;
129
130 dims[0] = npx;
131 dims[1] = npy;
132 dims[2] = npz;
133
134 MPI_Cart_create(MPI_COMM_WORLD, D, dims, periods, reorder, &new_comm);
135
136 for ( i=0; i<D; i++ )
137 {
138 distrib[i] = MPI_DISTRIBUTE_BLOCK;
139 dargs[i] = MPI_DISTRIBUTE_DFLT_DARG;
140
141 }
142
143 gsize[0] = X;
144 gsize[1] = Y;
145 gsize[2] = Z;
146
147 psize[0] = npx;
148 psize[1] = npy;
149 psize[2] = npz;
150
151
152
153
154
155
156
157 MPI_Type_create_darray(npes, rank, D, gsize, distrib, dargs, psize, MPI_ORDER_FORTRAN, MPI_INT, &filetype);
158
159
160 MPI_Type_commit(&filetype);
161
162 to1 = MPI_Wtime();
163 MPI_File_open(new_comm, argv[1], MPI_MODE_WRONLY | MPI_MODE_CREATE, info, &thefile);
164 to2 = MPI_Wtime();
165
166 MPI_File_set_size(thefile, offset);
167
168 MPI_File_set_view(thefile, offset, MPI_INT, filetype, "native", MPI_INFO_NULL);
169
170 t1 = MPI_Wtime();
171 for ( i=0; i<LOOP; i++)
172 {
173 MPI_File_write_all(thefile, buf, ng, MPI_INT, &status);
174 }
175 t2 = MPI_Wtime();
176
177 tc1 = MPI_Wtime();
178 MPI_File_close(&thefile);
179 tc2 = MPI_Wtime();
180
181 et = (t2 - t1)/LOOP;
182 eto = (to2 - to1)/LOOP;
183 etc = (tc2 - tc1)/LOOP;
184
185 mbs = (((double)(LOOP*X*Y*Z)*sizeof(int)))/(1000000.0*(t2-t1));
186
187
188
189 MPI_Barrier(MPI_COMM_WORLD);
190
191 MPI_Reduce(&mbs, &avg_mbs, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
192 MPI_Reduce(&mbs, &min_mbs, 1, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);
193 MPI_Reduce(&mbs, &max_mbs, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
194
195 MPI_Reduce(&et, &avg_et, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
196 MPI_Reduce(&et, &min_et, 1, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);
197 MPI_Reduce(&et, &max_et, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
198
199 MPI_Reduce(&eto, &avg_eto, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
200 MPI_Reduce(&eto, &min_eto, 1, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);
201 MPI_Reduce(&eto, &max_eto, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
202
203 MPI_Reduce(&etc, &avg_etc, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
204 MPI_Reduce(&etc, &min_etc, 1, MPI_DOUBLE, MPI_MIN, 0, MPI_COMM_WORLD);
205 MPI_Reduce(&etc, &max_etc, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
206
207 fflush(stdout);
208
209 if ( rank == 0 )
210 {
211 mbs = avg_mbs/npes;
212 printf("\n average write rate: %9.1f mbs\n", mbs);
213 printf(" minimum write rate: %9.1f mbs\n", min_mbs);
214 printf(" maximum write rate: %9.1f mbs\n\n", max_mbs);
215 avg_eto = avg_eto/npes;
216 avg_et = avg_et/npes;
217 avg_etc = avg_etc/npes;
218 printf(" open time: %9.3f min %9.3f avg %9.3f max\n",min_eto,avg_eto,max_eto);
219 printf(" write time: %9.3f min %9.3f avg %9.3f max\n",min_et,avg_et,max_et);
220 printf(" close time: %9.3f min %9.3f avg %9.3f max\n\n",min_etc,avg_etc,max_etc);
221 fflush(stdout);
222 }
223
224 MPI_Finalize();
225
226 return 0;
227 }