Basic Computational Biology

High Performance Computing Technology(2)

Introduction to parallel programming

M. Sato

Contents

What Is parallel programming?

MPI between nodes

OpenMP within nodes

Advanced Topics
= Programming for GPU (CUDA and OpenACC)

Cloud Computing
= Map-reduce

How to make computer fast?

= Computer became faster and faster by

= Device
= Computer architecture

= Computer architecture tg perform processing in

parallel at several levefs: _
= Inside of CPU (V

= Inside of Chip
= Between chips

= Between compute\

Why parallelization needs?
4 times speedup by using 4 cores!

1 core 4 cores

parallellzatmn I I I I

Using 4 cores, the execution
time is 1/4 of the single core
time

Time

Shared memory multi-processor system

CPU

CPU

CPU

CPU

& Multiple CPUs share
main memory

€ Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
IN Main memory.

€ Enterprise Server
4 SMP Multi-core
Processors

Distributed memory multi-processor

CPU
Y

\ /

Network

TIVAN

€ System with several
computer of CPU and
memory, connected by
network.

€ Thread executed in each
computer communicate
with each other by
exchanging data
(message) via network.2

& PC Cluster

Very simple example of parallel computing
for(1=0;1<1000; 1++)

Sequential computation

1| B 3] |4

S += A[i]

....................... 1000

NN NN

Parallel computation

\ ’@*S

251

S

3

essor 2

\@roce

R

\

750

751

Processor 1 K@SW

Parallel programming model

= Message passing programming model

Parallel programming by exchange data (message) between processors
(nodes)

Mainly for distributed memory system (possible also for shared memory)
Program must control the data transfer explicitly.

Programming is sometimes difficult and time-consuming

Program may be scalable (when increasing number of Proc)

= Shared memory programming model

Parallel programming by accessing shared data in memory.

Mainly for shared memory system. (can be supported by software
distributed shared memory)

System moves shared data between nodes (by sharing)
Easy to program, based on sequential version
Scalability is limited. Medium scale multiprocessors.

Parallel programming models

Q There are numerous parallel programming models

Q The ones most well-known are: ﬁﬁ
o Distributed Memory $§ ¢Df¢%ﬁ’%
":5",.-
v Sockets (standardized, low level) *“?*? o n“@_& “‘j}
'& g &
&

v PVM - Parallel Virtual Machine (ﬂbsofefe)
=l ~ MPI - Message Passing Interface (de-facto stdff
e Shared Memory “a,

)

v Posix Threads (standardized, low level) %Q {%

== ~ OpenMP (de-facto standard)
v Automatic Parallelization (compiler does it for yau)

Simple example of Message Passing Programming

= Sum up 1000 element in array

int a[250]; /7* 250 elements are allocated 1n each node */

main(){ /* start main i1n each node */
int 1,s,Ss;
s=0;

for(1=0; 1<250;1++) s+= a[1]; /*compute local sum*/
iIf(myad == 0){ /* 1T processor 0 */
for(proc=1;proc<4; proc++){
recv(&ss,proc); /* receive data from others*/
S+=SS; /*add local sum to sum*/
by
} else { /* 1f processor 1,2,3 */
send(s,0); /* send local sum to processor 0 */
+

}

10

Parallel programming using MPI

MPI (Message Passing Interface)
Mainly, for High performance scientific computing
Standard library for message passing parallel programming in high-end
distributed memory systems.
= Required in case of system with
more than 100 nodes.

= Not easy and time-consuming work
= “assembly programming” in distributed
programming

Communication with message

= point-to —point : Send/Receive Send Receive
Collective operations | >

= Reduce/Bcast — /ﬁ\

= Gather/Scatter =I I

S YR
11

Communicator and rank of MPI

= A communicator specifies the process group that can send and
receive messages to each other.

= Rank is a ID number within a group "communicator".

= The endpoint of communication specified by communicator and
rank.

= A predefined communicator MPI_COMM_WORLD is provided
by MPI.

= It allows communication with all processes that are accessible after MPI
Initialization and processes are identified by their rank in it. Usually using
only MPI_COMM_WORLD is enough.

Users may define new communicators if necessary

Lecture on Basic Computational Biology 12

point-to-point Comm. functions

= Int MPI_Send(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm)

= Int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)
= blocking send/receive operation
= buf: initial address of send buffer
= count: number of elements in send buffer
= datatype: datatype of each send buffer element
= dest: rank of destination
= source: rank of source
= tag: message tag
= CcOmm: communicator
= Status: status object (structure MPI_Status)

Lecture on Basic Computational Biology 13

Programming in MPI

#include "mpi.h"
#include <stdio.h>
#define MY_TAG 100
double A[1000/N_PE];
int main(Int argc, char *argvl])
{
int n, myid, numprocs, 1i;
double sum, X;
int namelen;
char processor name[MPI_MAX PROCESSOR_NAME];
MPI_ Status status;

MPI_Init(&argc,&argv);
MP1_Comm_size(MP1_COMM_WORLD,&numprocs) ;
MP1_Comm_rank(MP1_COMM_WORLD,&myid);

MP1_Get processor_name(processor_name,&namelen);

fprintf(stderr,"Process %d on %s¥n'", myid, processor_name);

14

Programming in MPI

sum = 0.0;
for (i = 0; 1 < 1000/N_PE; i++){
sum+ = A[i];

}

iIT(nyid == 0){
for(n = 1; 1 < numprocs; 1++){
MPI_Recv(&t,1,MPI_DOUBLE,1,MY_TAG,MP1_COMM_WORLD, &status
sum += t;
+
} else
MP1_Send(&t,1,MP1_DOUBLE,O,MY TAG,MP1_COMM_WORLD) ;
/* MP1_Reduce(&sum, &sum, 1, MPI_DOUBLE, MPI_SuMm, 0, MPI_COMM
MP1_Barrier(MP1_COMM_WORLD);

MPI_Finalize();
return O;

15

Collective communication

s Collective communication is defined as communication
that involves a group of processes.

PO P1 P2 P3
Broadcast
= J’——;-J

Gather
1 |

Ny, <
Allgather = Gather + Broadcast

&

&

&

&

Scatter il | I

Lecture on Basic Computational Biology 16

Parallel programming models

Q There are numerous parallel programming models

Q The ones most well-known are: ﬁﬁ
o Distributed Memory $§ ¢Df¢%ﬁ’%
":5",.-
v Sockets (standardized, low level) *“?*? o n“@_& “‘j}
'& g &
&

v PVM - Parallel Virtual Machine (ﬂbsofefe)
=l ~ MPI - Message Passing Interface (de-facto stdff
e Shared Memory “a,

)

v Posix Threads (standardized, low level) %Q {%

== ~ OpenMP (de-facto standard)
v Automatic Parallelization (compiler does it for yau)

17

Multithread(ed) programming

= Basic model for shared memory

= Thread of execution = abstraction of execution in processors.

= Different from process
= Procss = thread + memory space
= POSIX thread library = pthread

Many programs are
executed i1n parallel

18

Very simple example of parallel computing
for(1=0;1<1000; 1++)

Sequential computation

1| B 3] |4

S += A[i]

....................... 1000

NN NN

Parallel computation

\ ’@*S

251

S

3

essor 2

\@roce

R

\

750

751

Processor 1 K@SW

19

Programming using POSIX thread

= Create threads = Divide and assign iterations of loop
= Synchronization for sum

Pthread, Solaris thread

int s; /* global */
int n_thd; /* number of threads */
int thd main(int i1d)

for(t=1;t<n_thd;t++){
r=pthread create(thd main,t)

b int c,b,e,1,ss;
thd_main(0): b ml00sn thas
for(t=1; t<n_thd;t++) b=c*id- ’
pthread_join(): e—cict
ss=0;
_ for(i=b; 1<e; 1++) ss += a[i];
Thread = pthread lock();
: S += SS;
Execution of program thread unlock):
return s;

20

Programming in OpenMP

_N1=1+T. OK!

#pragma omp parallel for reduction(+:s)
for(1=0; 1<1000;1++) s+= a[i1];

21

What's OpenMP?

= Programming model and API for shared memory parallel programming

= Itis not a brand-new language.

= Base-languages(Fortran/C/C++) are extended for parallel programming
by directives.

= Main target area is scientific application.

= Getting popular as a programming model for shared memory processors
as multi-processor and multi-core processor appears.

= OpenMP Architecture Review Board (ARB) decides spec.
= Initial members were from ISV compiler venders in US.
= Oct. 1997 Fortran ver.1.0 API
= Oct. 1998 C/C++ ver.1.0 API
= Latest version, OpenMP 3.0

= http://www.openmp.org/ OpenMP

22

OpenMP Execution model

Start from seqguential execution

Fork-join Model
parallel region

= Duplicated execution even in function calls

AL
#pragma omp parallel
{
foo(); /* .B.. */
by
..C....
#pragma omp parallel
{
...D ...
by
.. E ..

forkl A
Call foo()| |Call foo()| |Call foo()| |Call foo()
l \4 B \4 A\ 4
join
C

23

Demo

= Get CPU information by looking at /proc/cpuinfo
= gcc —fopenmp, gcc support OpenMP from 4.2, gfortran
= Control #proessors by OMP_NUM_THREADS

#include <omp.h>
#include <stdio.h>

main()
{

printf("omp-test ... n_thread=%d¥n",omp_get_max_threads());
#pragma omp parallel

{
printf("thread (%d/%d)...¥n",

omp_get_thread_num(),omp_get_num_threads());

¥
printf(end...¥n");

}

24

Work sharing Constructs

= Specify how to share the execution within a team

Used in parallel region
for Construct

= Assign iterations for each threads
« For data parallel program
Sections Construct
= EXxecute each section by different threads
= For task-parallelism
Single Construct
« Execute statements by only one thread

Combined Construct with parallel directive
« parallel for Construct

= parallel sections Construct

threadl thread?

thread3

Duplicated execu

tion

directives

work-sharing, sync

L

|

25

For Construct

= Execute iterations specified For-loop in parallel
= For-loop specified by the directive must be in canonical shape

#pragma omp for |[clause...]
for(var=lb; var logical-op ub; incr-expr)
body

= Var must be loop variable of integer or pointer(automatically private)
ncr-expr
s ++var, var++,--var, var-- , var-=incr, var-=Iincr

logical-op
s <. <=2 2>=
Jump to ouside loop or break are not allows
= Scheduling method and data attributes are specified in c/ause

26

Example: matrix-vector product

#ipragma omp parallel for default(none) \
private(i,j,sum) shared(m,n,a,b,c)
for (1=0; i<m; i++) >
{
sum = 0.0; —
for (3=0; j<n; J++) — ——— | %
sum += b[i] [J]1*c[]];
afi] = sum; .
|
}
TID=0 TID =1
for (i=0,1,2,3,4) for (i=5,6,7,8,9)
i=0 i=5 E:
sum = 2 b[i=0][j]*c[]j] sum = b[i=5][j]*e[]]
a[0] = sum a[5] = sum
1 =1 i=6
—mrJ 2 bli=1][jl*e[]] Tmn—-—b— b[i=6][j]*c[]j]
af[l] = sum a[é] = sum

... efc ...

Performance (Mflop/s)

2500

2000

1500

1000

500

The performance looks like ...

¥ 1 Thread
W 2 Threads
& 4 Threads

A

Matrix too

—

\ \\ g
m —_
A‘ﬂw\‘ Er
e L. " "] m
10 100 1000 10000 100000 1000000

Memory Footprint (KByte)

28

Scheduling methods of parallel loop

m #processor =4

Sequential Iteration space

|:J

schedule(static,n)

Schedule(static)

Schedule(dynamic,n)

Schedule(guided,n)

29

Data scope attribute clause

Clause specified with paral lelconsruct, work sharing
construct
shared(var_list)

= Specified variables are shared among threads.
private(var_list)

= Specified variables replicated as a private variable
firstprivate(var_list)

= Same as private, but initialized by value before loop.
lastprivate(var_list)

= Same as private, but the value after loop is updated by the value of
the last iteration.

reduction(op:var_list)
= Specify the value of variables computed by reduction operation op.

= Private during execution of loop, and updated at the end of loop
30

Barrier directive

= Sync team by barrier synchronization
= Wait until all threads in the team reached to the barrier point.

= Memory write operation to shared memory is completed (flush) at the
barrier point.

= Implicit barrier operation is performed at the end of parallel region, work
sharing construct without nowait clause

#pragma omp barrier

Barrier Region

il
=

=
idle

idle

time

Other directives

Single construct: to specify a region executed by one thread.

Master construct: to specify a region executed by master
thread.

Section construct: to specify regions executed by different
threads (task parallelism)

Critical construct: to specify critical region executed
exclusively between threads

Flush construct
Threadprivate construct

32

GPU Computing

GPGPU - General-Purpose Graphic Processing Unit
= A technology to make use of GPU for general-purpose computing (scientific

applications)

CUDA (Compute Unified Device Architecture)
= Co-designed Hardware and Software to exploit computing power of NVIDIA

GPU for GP computing.
(In other words), at the moment, in order to obtain full performance of

GPGPU, a program must be written in CUDA language.

It is attracting many people’s interest since GPU enables great
performance much more than that of CPU (even multi-core) in some

scientific fields.

Why GPGPU now?— — price (cost-performance)!!!

Applications From NVIDIAs slides)

146X

EHMEROBHESD(5
S9T147GREE

AFHIHFITE TS A /EE

17X

MatlabTH E AR HERSal—

P

149X

ATy FLavmBSLUBORET
ILDEF S L—3

100X

EHDEPICETONEHR

K10).4

BUs 0B LUVBRETERER
BRREOESELCmatchXEFE&

CPU vs. GPU

Connected
via PClexpress

Computing performance Memory bandwidth
100 G200 120
——HVIDIA GPU G80
—a—iniel CPU Gaz Ulera
750 I?li 100 //I
2 GB0 GED
g
s son 80
W
L Bandwidth
0 : 3.2GHz GBjs 60 G71
Harpertown /
NV30D
o 40 NVal
Jan Jun Apr Jun Mar Nov May Jun / Harpertown
2003 2004 2005 2006 2007 2008 Woodcrest
20 -—IWE.E,. Prescott EE
Northwood o e
GT200 = GeForce GTX 280 671 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra e
G592 = GeForce 9600 GTX G570 = GeForoe 7800 GTX MV30 = GeForce FX 5800 0 : ' ' ! y !
2003 2004 2005 2006 2007

GBD = GeForce BB0D GTX NV40 = GeForce 6800 Ukra

NVIDIA GPGPU’s architecture

= Many multiprocessor in a chip

eight Scalar Processor (SP) cores,

two special function units for transcendentals
a multithreaded instruction unit

on-chip shared Memory

= SIMT (single-instruction, multiple-thread).

The multiprocessor maps each thread to one scalar
processor core, and each scalar thread executes
independently with its own instruction address and
register state.

creates, manages, schedules, and executes threads
in groups of 32 parallel threads called warps.

= Complex memory hierarchy

Device Memory (Global Memory)
Shared Memory

Constant Cache

Texture Cache

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

CUDA (Compute Unified Device Architecture)

C programming language on GPUs

Requires no knowledge of graphics APIs or GPU
programming

Access to native instructions and memory

Easy to get started and to get real performance benefit
Designed and developed by NVIDIA

Requires an NVIDIA GPU (GeForce 8xxx/Tesla/Quadro)
Stable, available (for free), documented and supported
For both Windows and Linux

CUDA Programming model (1/2)

= GPU is programmed as a compute device working as co-processor from
CPU(host).

= Codes for data-parallel, compute intensive part are offloaded as functions
to the device

= Offload hot-spot in the program which is frequently executed on the same
data

= For example, data-parallel loop on the same data
= Call “kernel” a code of the function compiled as a function for the device

= Kernel is executed by multiple threads of device.
= Only one kernel is executed on the device at a time.

= Host (CPU) and device(GPU) has its owns memory, host memory and
device memory

= Data is copied between both memory.

CPU GPGPU
:I::E: PCle :j::I:
Graphic

memory

memory

CUDA Programming model (2/2)

computational Grid is composed of
multiple thread blocks

thread block includes multiple
threads
Each thread executes kernel

= A function executed by each thread
called “kernel”

= Kernel can be thought as one
iteration in parallel loop

computational Grid and block can
have 1,2,3 dimension

The reserved variable, blockID and
threadlD have ID of threads.

Grid

Block (0, 0)

Block (1, 0)

Block (2, 0)

R R

Block (0, 1)

Block (1, 1)

“Block (2, 1)

Block (1, 1)

Example: Element-wise Matrix Add

CUDA program

CPU program

The nested for—
loops are
replaced with an "——————
implicit grid

How to be executed

= SM (Streaming
Multiprocessor) execute
blocks in SIMD (single

iInstruction/multiple data),

= SM consists of 8

Processors

Kernel Grid
v v
Device with 2 SMs Device with 4 SMs
SM0 SM1 SM 0 SM1 SM 2 SM 3

An example of GPGPU configuration

)

OO0
o0

Shared
Memory

e A
{000

al |l
Em ”mmm (]
RN} [Be=RNCl
BRI (BRI
|
[l T (e T
EESTI))|
sl WEEEel I
(BRI ==l
[EEEET| WiEssa]
\EBERNC) (3EEENC)
(BRI BRI
BRI (BRI
BRI (BRI
B e

Number of Compute
Multiprocessors Capability
(1 Multiprocessor
= B Processors)
GeForce GTX 295 2%30 1.3
GeForce GTX 285, GTX 280 30
GeForce GTX 260 24
GeForce 9800 GX2 2x16
GeForce GTS 250, GTS 150, 9800 GTX, 16
9800 GTX+, 8800 GTS 512
GeForce 8800 Ultra, 8800 GTX 16
GeForce 9800 GT, 8800 GT, GTX 280M, 14
9800M GTX
GeForce GT 130, 9600 GSO, 8800 GS, 12
8800M GTX, GTX 260M, 9800M GT
Tesla S1070
glesla C1060 30 1.3
Tesla S870 4x16 1.0
Tesla D870 2x16 1.0
Tesla C870 16 1.0
Quadro Plex 2200 D2 2%30 1.3
Quadro Plex 2100 D4 4x14 1.1
Quadro Plex 2100 Model S4 4x16 1.0

Invoke (Launching) Kernel

= Host processor invoke the execution of kernel in this form
similar to function call:

kernel<<<dim3 grid, dim3 block, shmem size>>>(..)

= Execution Configuation (“<<< >>>7
= Dimension of computational grid : x and y
= Dimension of thread block: x.vy. z

Memory management (1/2)

= CPU and GPU have different memory space.
= Hosts(CPU)manages device (GPU) memory

= Allocation and Deallocation of GPU memory
= cudaMalloc(void ** pointer, size_ t nbytes)
= cudaMemset(void * pointer, iInt value, size_ t count)
= cudaFree(void* pointer)

Memory management (2/2)

= Data copy operation between CPU and device

= cudaMemcpy(void *dst, void *src, size t
nbytes, enum cudaMemcpyKind direction);

= Direction specifies how to copy from src to dst , see below

= Block a caller of CPU thread (execution) until the memory transfer
completes.

= Copy operation starts after previous CUDA calls.

= enum cudaMemcpyKind
= cudaMemcpyHostToDevice
= cudaMemcpyDeviceToHost
= cudaMemcpyDeviceToDevice

Example (host-side program)

OpenACC

= A spin-off activity from OpenMP ARB for supporting
accelerators such as GPGPU

= NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

= Directive to specify the code offloaded to GPU.

OpenACC.

DIRECTIVES FOR ACCELERATORS

A simple example

. Host->device
#define N 1024

int main(){ Device->Host O O
int 1;

int a[N], b[N],c[N];

#pragma acc data copyin(a,b) copyout(c) host

1 device
#pragma acc parallet | =-==== >
{
#pragma acc loop copy a,b
for(i = 0; 1 < N; i++){
c[i] = a[i] + b[i];
}
}
; copy ¢
} €c-—-2= ¥

A simple example

#define N 1024

int main(){ block(0)
L thread(0)
int a[N], b[N],c[N]; -
#pragma acc data copyin(a,b) copyout(c) i

{ :
#pragma acc parallel thread(255)
{ i=255

block(3)

thread(0)
=768

thread(255)
i=1023

#pragma acc loop
for(hn = 0; 1 < N; 1++){

}

cbil =alil = bl 0 execute iterations

} like CUDA kernel

}
}

Matrix Multiply in OpenACC

#define N 1024

void main(void)
{
double a[N][N], b[N][N], c[N][N];
int I,j;
/l ... setup data ...
#pragma acc parallel loop copyin(a, b) copyout(c)
for(i=0; i < N; i++){
#pragma acc loop
for(j = 0; J < N; J++){
int k;
double sum = 0.0;
for(k = 0; k < N; k++){
sum += a[i][k] * b[K][;
by
c[i][j] = sum:;
¥
¥
¥

Performance of OpenACC code

exec time matrix multiply
120
100
80
60 M cpulcore
M cray(128)
40
. I. l
0 ,E,-_,l., - size
2K 3K 4K 5K 6K 7K 8K

1K

Remarks

GPGPU is a good solution for apps which can be parallelized
for GPU.

= It can be very good esp. when the app fits into one GPU.

» If the apps needs more than one GPU, the cost of
communication will kill performance.

Programming in CUDA is still difficult ...
= Performance tuning, memory layout ...
= OpenACC will help you!

Cloud Computing

* Only required amount of CPU and storage can be
used anytime from anywhere via network

— Availability, throughput, reliability
— Manageability

* No need to procure, maintain, and update
computers

e Large-scale distributed data processing by
MapReduce

— Loosely coupled data intensive computing
— Can be a standard parallel language other than MPI

Amazon Web Services (2002)

* On-demand elastic infrastructure managed by web services
— Elastic Compute Cloud (EC2)

* Web service that provides resizable compute capacity

— Simple Storage Service (S3)
» Simple web service |/F to store and retrieve data

— Elastic Block Store (EBS)

* Block level storage used by EC2 in the same AZ
e Automatically replicate within the same AZ
* Point-in-time snapshots can be persisted to S3

* Region and Availability Zone

Welcome to the Cloud

Amazon Web Services makes cloud computing a reality
for hundreds of thousands of customers looking for a
cost-effective infrastructure to deploy highly scalable and
dependable solutions.

» Learn how vou can benefit from cloud computing

Taxonomy of Cloud

* SaaS (Software as a Service)
— Google Apps (Gmail, ...), CRM Service

Software package

— Microsoft Online Services

* PaaS (Platform as a Service)
— Development of Web apps

* Force.com
* Google App Engine
* |aaS (Infrastructure as a Service)
— Amazon EC2, S3

— Microsoft Azure

Platform
Service, Database

Infrastructure
Hardware

Cloud technology

* SaaS (Software as a Service)

— Web 2.0 Service
. f k
* PaaS (Platform as a Service) >oftware package
— Web API

. Platf
— Web Service e

e XML, WSDL, SOAP/REST

* |aaS (Infrastructure as a Service) —
nrrastructure

— Virtual machine (Xen, KVM) Hardware

— Virtualization of harddisk, storage
and network

Service, database

Cloud =
controller

Example of 1aaS: Eucalyptus [2009 Nurmi]

Cluster
controller (CC)

Storage
controller (SC)

4) Allocate NCs via CC’/FL
and execute the V/ image

Node
controller

Each node is (NC)

virtualized by
Xen or KVM

Storage system in cloud

* Availability, reliability
e Amazon Web Services

— S3, EBS

— Can construct any (file) system that uses block device
* HDFS (using EBS) for Elastic MapReduce

— Difficult to construct a system beyond Availability
Zone and Region

* Google App Engine
— Utilize GFS and BigTable

Summary of cloud computing

Resources in cloud computing

— Inexpensive, always available, reliable, high
performance

— Easy to maintain
Realized by virtualization and web interface

No need to procure, maintain, and update
computers

If required, more resources can be obtained
by cloud

MapReduce (2004)

* Programming model and runtime for data
processing on large-scale cluster

* A user specifies map and reduce functions

* Runtime system does
— Automatically parallelize
— Manage machine failure

— Schedule jobs to efficiently exploit disk and
network

Background

* Google requires to process
— Inverted index
— Various graph expression of Web documents
— Number of pages that each host crawls

— Set of the hottest query in a day

* from large amount of crawled documents and Web request
logs using hundreds to thousands of compute nodes

* Large amount of codes for parallelization, data
distribution, error handing are required

* These hide original code for computation

New abstraction (1)

* Describes only required computation

* Runtime library hides complicated processes including
parallelization, fault handling, data distribution, load
balancing

 Most computation has the following same pattern

K1, vl
Input 1 map K2, v2

K3, v3
K1, v4 '
Input 2 map . V ‘4
Input 3 map . '\'_,_4 »“ '
* K3, [v2, v4, v5]
’ K4, [v1, v3] reduce Output N

Shuffle
and sort

K1, [v1, v2, v4]
K2, [v2, v3] reduce Output 1

New abstraction (2)

e A functional model of user-supplied map and
reduce operations enables

— Easy parallelization of large-scale computation
— To run failed tasks again for fault tolerance

* Simple but powerful interface

* |t enables high-performance computation on

large-scale cluster by auto-parallelization and
auto-distribution

Comments on MapReduce

 MapReduce programming model has been
successfully used at Google for many different
purposes
— Easy to use

— It hides details of parallelization, fault tolerance,
locality optimization and load balancing

— A large variety of problems are easily expressible

— Scales to large clusters of machines comprising
thousands of machines

* |t can be obtained by restricting the programing
model

