Basic Computational Biology

High Performance Computing Technology(2)

Introduction to parallel programming
how to program the parallel computers

M. Sato

Contents

What is parallel programming?

Parallel Programming
= MPI between nodes
= OpenMP within nodes

Programming for GPU (CUDA and OpenACC)

Map-reduce & Cloud Computing

How to make computer fast?

= Computer became faster and faster by
= Device
= Computer architecture

= Computer architecture t@ perform processing in
parallel at several levefs: _
« Inside of CPU (M
= Inside of Chip
= Between chips

= Between compute\

Shared memory multi-processor system

CPU

CPU

CPU

CPU

Lecture on Basic Computational Biology

€ Multiple CPUs share
main memory

¢ Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
in main memory.

¢ Enterprise Server
4 SMP Multi-core
processors

Distributed memory multi-processor

& System with several
CPU computer of CPU and
$ memory, connected by
-\ / network.
Network ¢ Thread executed in each

computer communicate
CPU / \ CPU with each other by
3 J exchanging data
- (message) via network.”

€ PC Cluster
4 AMP Multi-core processor

Lecture on Basic Computational Biology o

Parallel computing

For efficient parallel processing, certain “granularity” of parallel processing
unit and enough degree of parallelisms are necessary

Ordinary (non-scientific) applications are not sufficient to satisfy these
conditions naturally

= eXx. "Word” or “"Excel” applications do not have parallelism nor large amount of
computation in a second

Various scientific computations satisfy these conditions, and there are much
requirement of solving these problems (especially for high-end domain
science)

Large scale parallel processing is naturally getting along with HPC

So many numerical algorithms have been developed for scientific
computation which is enable on parallel systems

In many cases, matrix computation is essential, but direct solution is more
effective in some cases

Lecture on Basic Computational Biology

Some terminologies

Node — A standalone "computer in a box". Usually comprised of
multiple CPUs/processors/cores. Nodes are networked together
to comprise a parallel system.

Task — A logically discrete section of computational work. A
parallel program consists of multiple tasks running on multiple
Processors.

Communications — Parallel tasks typically need to exchange
data. There are several ways this can be accomplished, such
as through a shared memory bus or over a network.

Synchronization — The coordination of parallel tasks in real
time, very often associated with communications. Often
implemented by establishing a synchronization point with an
applications where a task may not proceed further until another
task(s) reaches the same or logically equivalent point.

Lecture on Basic Computational Biology

Some terminologies

Granularity — in parallel computing, granularity is a
qualitative measure of the ratio of computation to
communication.

Coarse : relatively large amount of computational work are
done between communication events

Fine: relatively samll amount of computational work are done
between communication events

Parallel overhead — The amount of time required to
coordinate parallel tasks, as opposed to doing useful work.
Parallel overhead can include factors such as:

Task start-up time

Synchronization

Data communications

Software overhead imposed by parallel compiler, libs, tools,

Task terminations

Lecture on Basic Computational Biology

2w}

awi}

¥

communication
computation

Wallclock time

Overhead of parallel execution

Serial
Execution

>
[

Parallel - Without
communication If comm or

I ISync is required

Perfect Load Balancing LO@ds Of each

I I proc

is dlffeient

Parallel - With
communication

-1
o

Load Imbalance

Load Balancing

Load Balancing refers to the practice of distributing work among tasks so
that all tasks kept busy all of the time. It can be considered a
minimization of task idle time.

Load balancing is important to parallel programs for performance. For
example, if all tasks are subject to a barrier sync point, the slowest task
will determine the overall performance.

How to achieve load balance:
= Equally partition the work
each tasks receive.
= Use dynamic work assignment
« Master-Worker

time

Some terminologies

Scalability — Refers to a parallel system's (hardware and/or
software) ability to demonstrate a proportionate increase in
parallel speedup with the addition of more processors. Factors
that contribute to scalability include:

= Hardware — particularly memory-cpu bandwidth and network
communications

= Application algorithm
= Parallel overhead related
= Characteristics of your coding and apps.

Lecture on Basic Computational Biology 11

Data Parallel Model

= The data parallel models demonstrates the followings:

= Most of the parallel work focuses on performing operations on a data
sets. The data set is typically organized into common structure, such as
an array or cube.

= A set of task work collectively
on the same data structure, however,

each task works on different array A
partition of the same data structure. 4 — - _

= Tasks perform the same
operation on their partition

of work do i=26,50 do i=m,n
A(i)=B(i)*delta A(i)=B(i)*delta
end do end do

task 1 task 2 task n

Lecture on Basic Computational Biology 12

Example of data parallel model

= domain decomposition " Problem Data Set
= Divide the space of simulation

into uniform grids | N —
= Perform the same |-||.||.||-|
computation on each gird, tacko Q| piekl | | optisk2 Y | ek2

sometimes with interaction of
neighbor

= example:

grid for computational
unit

£
ST

for(t=0; t < T; t++){
for(i=0; i < N; i++)
a[i] = b[i-1] + 2*b[i] + b[i+1];
for(i=0; i < N; i++)
b[i] = a[i]; .
y b[..] DEZTET () % gimulation space
DAV TIIDAMNETLS 13

Simple Heat Equation

= Most problems in parallel computing require communication among the
tasks. A number of common problem require communications "neibhbor"
task. (stencil computations)

= A finite difference scheme is employed to solve the heat equations
numerically on a square regions.

= For the fully explicit problem, a time stepping algorithm is used. The
element of a 2-dimensional array represent the temperature at the point on
the square.

UH’,_'," = UX,}I’

+C *(Uyqy *Upgy 27U,)

+ C}, - (Ux,}ﬁj + Ux,},_j -2" Ux,},) .

U x,y+1

Ux1y | Uxy U x+1,y

U x,y-1

Lecture on Basic Computational Biology

Simple Heat Equation

= The entire array is partitioned and distributed as subarray to all
task. Each task owns a portion of the total array.
= send slave read of ul to neighbor processor
= receive ul
= compute u2 at each processor
= update ul with u2
= repeat the above computation until
the condition is satisfied.

doiy = 2, ny-1
do ix = 2, nx-1
u2(ix,iy) = ul(ix,iy)+
cx*(ul(ix+1),y)+ul(ix+1,iy)-2*ul(ix,iy))+
cy*(ul(ix,iy+1)+ul(ix,iy-1)-2*(ix,iy))
end do
end do

Lecture on Basic Computational Biology 15

Pipeline

= Breaking a task into steps performed by different processors
unit, with inputs streams through, much like assemble lines

= Example: signal processing
to P5 I I to P1
' +—

P1 P2 P3 P4

time
Plants
Herbivores
Carnivores

data

16

time

master/worker parallel processing

one master processor and several worker processors
A pool of work in master processor.
master pick up one work to send the work to a worker.

When worker finish the given work, then it return the result
and receive next work

master:: worker::

// give a job to each worker while(1){

while(1){ // receive a job from master
// receive a worker’s result // process the job
// give the next job to that worker // send the result to master

} ¥

17

master/worker parallel processing

= It is effective parallel processing when each work have
different load --> load balancing

job pool (EP)=/\52EMH 5
18

Parallel Programming

MPI & OPENMP

Lecture on Basic Computational Biology

19

Very simple example of parallel computing for high performance

@- s

751

for(1=0;1<1000; 1++)
+= Al
Sequential computation S [1]
1 . 3 4 1000
LN N AN
Parallel computation
251 501 750
é f—

Processor 1

L

1000

|

cessor 2 \@rocesw
S

Lecture on Basic Computational Biology

20

Why parallelization needs?
4 times speedup by using 4 cores!

1 core 4 cores

parallellzatmn I I I I

Using 4 cores, the execution
time is 1/4 of the single core
time

Time

21

Parallel programming models

Q There are numerous parallel programming models

Q The ones most well-known are: ﬁﬁ
o Distributed Memory $§ ¢Df¢%ﬁ’%
":5",.-
v Sockets (standardized, low level) *“?*? o n“@_& “‘j}
'& g &
&

v PVM - Parallel Virtual Machine (ﬂbsofefe)
=l ~ MPI - Message Passing Interface (de-facto stdff
e Shared Memory “a,

)

v Posix Threads (standardized, low level) %Q {%

== ~ OpenMP (de-facto standard)
v Automatic Parallelization (compiler does it for yau)

22

Simple example of Message Passing Programming

= Sum up 1000 element in array

int a[250]; /7* 250 elements are allocated 1n each node */

main(){ /* start main i1n each node */
int 1,s,Ss;
s=0;

for(1=0; 1<250;1++) s+= a[1]; /*compute local sum*/
iIf(myad == 0){ /* 1T processor 0 */
for(proc=1;proc<4; proc++){
recv(&ss,proc); /* receive data from others*/
S+=SS; /*add local sum to sum*/
by
} else { /* 1f processor 1,2,3 */
send(s,0); /* send local sum to processor 0 */
+

}

23

Parallel programming using MPI

MPI (Message Passing Interface)
Mainly, for High performance scientific computing
Standard library for message passing parallel programming in high-end
distributed memory systems.
= Required in case of system with
more than 100 nodes.

= Not easy and time-consuming work
= assembly programming” in distributed
programming

Communication with message

= point-to —point : Send/Receive Send Receive
Collective operations | >
= Reduce/Bcast = /E\
= Gather/Scatter I :I
S YR

24

Communicator and rank of MPI

= A communicator specifies the process group that can send and
receive messages to each other.

= Rank is a ID number within a group "communicator”.

= The endpoint of communication specified by communicator and
rank.

= A predefined communicator MPI_COMM_WORLD is provided
by MPIL.

= It allows communication with all processes that are accessible after MPI
initialization and processes are identified by their rank in it. Usually using
only MPI_COMM_WORLD is enough.

Users may define new communicators if hecessary

Lecture on Basic Computational Biology 25

point-to-point Comm. functions

= int MPI_Send(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm)

= int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)
= blocking send/receive operation
= buf: initial address of send buffer
= count: number of elements in send buffer
= datatype: datatype of each send buffer element
= dest: rank of destination
= source: rank of source
= tag: message tag
= comm: communicator
= status: status object (structure MPI_Status)

Lecture on Basic Computational Biology 26

Programming in MPI

#include "mpi.h"
#include <stdio.h>
#define MY_TAG 100
double A[1000/N_PE];
int main(Int argc, char *argvl])
{
int n, myid, numprocs, 1i;
double sum, X;
int namelen;
char processor name[MPI_MAX PROCESSOR_NAME];
MPI_ Status status;

MPI_Init(&argc,&argv);
MP1_Comm_size(MP1_COMM_WORLD,&numprocs) ;
MP1_Comm_rank(MP1_COMM_WORLD,&myid);

MP1_Get processor_name(processor_name,&namelen);

fprintf(stderr,"Process %d on %s¥n'", myid, processor_name);

27

Programming in MPI

sum = 0.0;
for (i = 0; 1 < 1000/N_PE; i++){
sum+ = A[i];

}

iIT(nyid == 0){
for(n = 1; 1 < numprocs; 1++){
MPI_Recv(&t,1,MPI_DOUBLE,1,MY_TAG,MP1_COMM_WORLD, &status
sum += t;
+
} else
MP1_Send(&t,1,MP1_DOUBLE,O,MY TAG,MP1_COMM_WORLD) ;
/* MP1_Reduce(&sum, &sum, 1, MPI_DOUBLE, MPI_SuMm, 0, MPI_COMM
MP1_Barrier(MP1_COMM_WORLD);

MPI_Finalize();
return O;

28

Collective communication

s Collective communication is defined as communication
that involves a group of processes.

PO F1 B2 P3
Broadcast
= J’——;-J

Gather
1 |

Ny, <
Allgather = Gather + Broadcast

&

&

&

Scatter il | I

&

Lecture on Basic Computational Biology 29

Parallel programming models

Q There are numerous parallel programming models

Q The ones most well-known are: ﬁﬁ
o Distributed Memory $§ ¢Df¢%ﬁ’%
":5",.-
v Sockets (standardized, low level) *“?*? o n“@_& “‘j}
'& g &
&

v PVM - Parallel Virtual Machine (ﬂbsofefe)
=l ~ MPI - Message Passing Interface (de-facto stdff
e Shared Memory “a,

)

v Posix Threads (standardized, low level) %Q {%

== ~ OpenMP (de-facto standard)
v Automatic Parallelization (compiler does it for yau)

30

Multithread(ed) programming

= Basic model for shared memory

= Thread of execution = abstraction of execution in processors.
= Different from process
= Procss = thread + memory space

= POSIX thread library = pthread
Many programs are
executed i1n parallel

31

Very simple example of parallel computing
for(1=0;1<1000; 1++)

Sequential computation S += AlL1]
1 . 3 4 1000
{4)~ S

Parallel computation

251

501 -1 750 751 e 1000

\\éL

Y

+ +

Processor 1 cessor 2 \ﬂ’rocess Pro

“)S

32

Programming using POSIX thread

= Create threads = Divide and assign iterations of loop
= Synchronization for sum

Pthread, Solaris thread

int s; /* global */
int n_thd; /* number of threads */
int thd main(int i1d)

for(t=1;t<n_thd;t++){
r=pthread create(thd main,t)

¥ _ { Int c,b,e,1,ss;
thd_main(0); c=1000/n_thd:
for(t=1; t<n_thd;t++) b=c*id- ’
pthread_join(): e—cict
ss=0;
_ for(i=b; 1<e; 1++) ss += a[i];
Thread = pthread lock();
: S += SS;
Execution of program thread unlock):
return s;

33

Programming in OpenMP

_N1=1+T. OK!

#pragma omp parallel for reduction(+:s)
for(1=0; 1<1000;1++) s+= a[i1];

34

What's OpenMP?

= Programming model and API for shared memory parallel programming
« Itis not a brand-new language.

= Base-languages(Fortran/C/C++) are extended for parallel programming
by directives.

= Main target area is scientific application.

= Getting popular as a programming model for shared memory processors
as multi-processor and multi-core processor appears.

= OpenMP Architecture Review Board (ARB) decides spec.
= Initial members were from ISV compiler venders in US.
= Oct. 1997 Fortran ver.1.0 API
= Oct. 1998 C/C++ ver.1.0 API
= Latest version, OpenMP 3.0

= http://www.openmp.org/ OpenMP

35

OpenMP Execution model

Start from sequential execution

Fork-join Model
parallel region

= Duplicated execution even in function calls

AL
#pragma omp parallel
{
foo(); /* .B.. */
by
..C....
#pragma omp parallel
{
...D ...
by
.. E ..

forkl A
Call foo()| |Call foo()| |Call foo()| |Call foo()
l A\ 4 B \ 4 v
join
C

| o

36

Work sharing Constructs

= Specify how to share the execution within a team

Used in parallel region
for Construct
= Assign iterations for each threads
= For data parallel program
Sections Construct

= Execute each section by different threads
= For task-parallelism

Single Construct
= Execute statements by only one thread

Combined Construct with parallel directive
=« parallel for Construct

=« parallel sections Construct

threadl thread2

thread3

Duplicated execu

tion

directives

work-sharing, sync

|

L

|

37

For Construct

= Execute iterations specified For-loop in parallel
= For-loop specified by the directive must be in canonical shape

#pragma omp for |[clause...]
for(var=lb; var logical-op ub; incr-expr)
body

= lar must be loop variable of integer or pointer(automatically private)
Incr-expr
« ++var, vart+,--var, var-- , vart=incr, var-=incr
logical-op
< <=>.>=
Jump to ouside loop or break are not allows
= Scheduling method and data attributes are specified in clause

38

Example: matrix-vector product

#ipragma omp parallel for default(none) \
private(i,j,sum) shared(m,n,a,b,c)
for (1=0; i<m; i++) >
{
sum = 0.0; —
for (3=0; j<n; J++) — ——— | %
sum += b[i] [J]1*c[]];
afi] = sum; .
|
}
TID=0 TID =1
for (i=0,1,2,3,4) for (i=5,6,7,8,9)
i=0 i=5 E:
sum = 2 b[i=0][j]*c[]j] sum = b[i=5][j]*e[]]
a[0] = sum a[5] = sum
1 =1 i=6
—mrJ 2 bli=1][jl*e[]] Tmn—-—b— b[i=6][j]*c[]j]
af[l] = sum a[é] = sum

... efc ...

IV

Barrier directive

= Sync team by barrier synchronization
= Wait until all threads in the team reached to the barrier point.

= Memory write operation to shared memory is completed (flush) at the
barrier point.

« Implicit barrier operation is performed at the end of parallel region, work
sharing construct without nowait clause

#pragma omp barrier

Barrier Region

il
=

=
idle

idle

time

Other directives

Single construct: to specify a region executed by one thread.

Master construct: to specify a region executed by master
thread.

Section construct: to specify regions executed by different
threads (task parallelism)

Critical construct: to specify critical region executed
exclusively between threads

Flush construct
Threadprivate construct

41

GPU Computing

GPGPU - General-Purpose Graphic Processing Unit

= A technology to make use of GPU for general-purpose computing (scientific
applications)

CUDA (Compute Unified Device Architecture)

=« Co-designed Hardware and Software to exploit computing power of NVIDIA
GPU for GP computing.

=« (In other words), at the moment, in order to obtain full performance of
GPGPU, a program must be written in CUDA language.

It is attracting many people’s interest since GPU enables great
performance much more than that of CPU (even multi-core) in some
scientific fields.

Why GPGPU now?— — price (cost-performance)!!!

Parallel Programming for GPU

CUDA & OPENACC

Lecture on Basic Computational Biology

43

Applications (From NVIDIA' slides)

146X

EHMEROBHESD(5
S9T147GREE

AFHIHFITE TS A /EE

17X

MatlabTH E AR HERSal—

P

149X

ATy FLavmBSLUBORET
ILDEF S L—3

100X

EHDEPICETONEHR

K10).4

BUs 0B LUVBRETERER
BRREOESELCmatchXEFE&

CPU vs. GPU

Computing performance

100

GT200

—4—HYIDIA GPU
—a—iniel CPU @80 oo

7500 Ultra
B0

S0

Peak GFLOP/s

G70
250 + M40 = 3.2 GH=
3.0 GHz Harpertown
MV30 CoreZ Dua
. _. 4.__*-“-—-—.
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2003 2008 2007 2008
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
G392 = GeForce 3800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800

GBD = GeForce BB0D GTX NV40 = GeForce 6800 Ukra

120

Loo

&0

Bandwidth
Gu‘ 60

40

20

Connected
via PClexpress

Memory bandwidth

GED

Ulira
.|

?%/’

o)

VD
Harpertown
Woodcrest
ARG

Prescott EE
"/I;'nrthwmd. _..——-—'-.

-
[

2002 2004 2005 2006 2007

NVIDIA GPGPU'’s architecture

Many multiprocessor in a chip Device
= eight Scalar Processor (SP) cores, Multiprocessor N
= two special function units for transcendentals
= a multithreaded instruction unit
= on-chip shared Memory

Multiprocessor 2

Multiprocessor 1

SIMT (single-instruction, multiple-thread).

= The multiprocessor maps each thread to one scalar
processor core, and each scalar thread executes
independently with its own instruction address and
register state.

= Ccreates, manages, schedules, and executes threads
in groups of 32 parallel threads called warps.

Instruction
Unit

Complex memory hierarchy
= Device Memory (Global Memory) i
= Shared Memory Y
= Constant Cache
= Texture Cache

CUDA (Compute Unified Device Architecture)

C programming language on GPUs

Requires no knowledge of graphics APIs or GPU
programming

Access to native instructions and memory

Easy to get started and to get real performance benefit
Designed and developed by NVIDIA

Requires an NVIDIA GPU (GeForce 8xxx/Tesla/Quadro)
Stable, available (for free), documented and supported
For both Windows and Linux

CUDA Programming model (1/2)

= GPU is programmed as a compute device working as co-processor from
CPU(host).

= Codes for data-parallel, compute intensive part are offloaded as functions
to the device

« Offload hot-spot in the program which is frequently executed on the same
data

= For example, data-parallel loop on the same data
= Call “kernel” a code of the function compiled as a function for the device

= Kernel is executed by multiple threads of device.
= Only one kernel is executed on the device at a time.

= Host (CPU) and device(GPU) has its owns memory, host memory and
device memory

« Data is copied between both memory.

CPU GPGPU
:I::E: PCle :j::I:
Graphic

memory

memory

CUDA Programming model (2/2)

computational Grid is composed of
multiple thread blocks

thread block includes multiple
threads
Each thread executes kernel

= A function executed by each thread
called “kernel”

= Kernel can be thought as one
iteration in parallel loop

computational Grid and block can
have 1,2,3 dimension

The reserved variable, blockID and
threadID have ID of threads.

Grid

Block (0, 0) Block (1,0) Block (2, 0)

R R

Block (0, 1)~ Block (1,1) Block (2, 1)

Block (1, 1)

Example: Element-wise Matrix Add

CUDA program

CPU program

The nested for—
loops are
replaced with an "——————
implicit grid

How to be executed

= SM (Streaming

Multiprocessor) execute

blocks in SIMD (single

instruction/multiple data).

= SM consists of 8
Processors

Kernel Grid

Device wi

Device with 4 SMs

SM 0

SM1

SM 2

SM 3

An example of GPGPU configuration

[1] it
OO & =2
|EEEACT)) (EEEEl
[Eecen Il BRI |
RN} [Be=RNCl
BRI (BRI
|
[l T (e T
EESTI))|
(e[| (R]
(FEEEN I IBEEE
[EEEET | RiEssa
\EBERNC) (3EEENC)
(BRI BRI
BRI (BRI
BRI (BRI
B e

Number of Compute
Multiprocessors Capability
(1 Multiprocessor
= B Processors)
GeForce GTX 295 2%30 1.3
GeForce GTX 285, GTX 280 30
GeForce GTX 260 24
GeForce 9800 GX2 2x16
GeForce GTS 250, GTS 150, 9800 GTX, 16
9800 GTX+, 8800 GTS 512
GeForce 8800 Ultra, 8800 GTX 16
GeForce 9800 GT, 8800 GT, GTX 280M, 14
9800M GTX
GeForce GT 130, 9600 GSO, 8800 GS, 12
8800M GTX, GTX 260M, 9800M GT
Tesla S1070
glesla C1060 D 30 1.3
Tesla S870 4x16 1.0
Tesla D870 2x16 1.0
Tesla C870 16 1.0
Quadro Plex 2200 D2 2%30 1.3
Quadro Plex 2100 D4 4x14 1.1
Quadro Plex 2100 Model S4 4x16 1.0

Invoke (Launching) Kernel

= Host processor invoke the execution of kernel in this form
similar to function call:

kernel<<<dim3 grid, dim3 block, shmem size>>>(..)

= Execution Configuation ("<<< >>>")
= Dimension of computational grid : x and y
= Dimension of thread block: x. y. z

Memory management (1/2)

= CPU and GPU have different memory space.
= Hosts(CPU) manages device (GPU) memory

= Allocation and Deallocation of GPU memory
= cudaMalloc(void ** pointer, size_ t nbytes)
= cudaMemset(void * pointer, iInt value, size_ t count)
= cudaFree(void* pointer)

Memory management (2/2)

= Data copy operation between CPU and device

= cudaMemcpy(void *dst, void *src, size t
nbytes, enum cudaMemcpyKind direction);

= Direction specifies how to copy from src to dst , see below

= Block a caller of CPU thread (execution) until the memory transfer
completes.
= Copy operation starts after previous CUDA calls.

= enum cudaMemcpyKind
= cudaMemcpyHostToDevice
= cudaMemcpyDeviceToHost
= cudaMemcpyDeviceToDevice

Example (host-side program)

OpenACC

= A spin-off activity from OpenMP ARB for supporting
accelerators such as GPGPU

= NVIDIA, Cray Inc., the Portland Group (PGI), and
CAPS enterprise

= Directive to specify the code offloaded to GPU.

OpenACC.

DIRECTIVES FOR ACCELERATORS

A simple example

ireion_Lcom Lo corout

. Host->device O
#define N 1024

int main({ Device->Host O O
int 1;

int a[N], b[N],c[N];

#pragma acc data copyin(a,b) copyout(c) host

1 device
#pragma acc parallet | =-==== >
{
#pragma acc loop copy a,b
for(i = 0; i < N; i++){
c[i]l = a[i] + b[i];
}
}
} Copy C
} €c-—2= ¥

A simple example

#define N 1024

int main({ block(0)

Int i; thread(0)
int a[N], b[N],c[N]; -
#pragma acc data copyin(a,b) copyout(c) i

{ :
#pragma acc parallel thread(255)
{ i=255
#pragma acc loop

block(3)

thread(0)
=768

thread(255)
i=1023

for(hn = 0; 1 < N; 1++){

}

cbil =alil +olils 0 execute iterations

} like CUDA kernel

}
}

Matrix Multiply in OpenACC

#define N 1024

void main(void)
{
double a[N]J[N], b[N]J[N], c[N]J[N];
inti,j;
// ... setup data ...
#pragma acc parallel loop copyin(a, b) copyout(c)
for(i=0; i <N; i++){
#pragma acc loop
for(G = 0; j < N; j++){
int k;
double sum = 0.0;
for(k = 0; k < N; k++){
sum += a[i][k] * b[k][j];
}

c[i][j] = sum;
}

}
}

Performance of OpenACC code

exec time matrix multiply

120

100

80

60 M cpulcore
M cray(128)
40
) L l
0 ——— L T L T T T T Slze
2K 3K 4K 5K 6K 7K 8K

1K

MAPREDUCE & CLOUD

64

MapReduce (2004)

* Programming model and runtime for data
processing on large-scale cluster

* A user specifies map and reduce functions

* Runtime system does
— Automatically parallelize
— Manage machine failure

— Schedule jobs to efficiently exploit disk and
network

Background

* Google requires to process
— Inverted index
— Various graph expression of Web documents
— Number of pages that each host crawls

— Set of the hottest query in a day

e from large amount of crawled documents and Web request
logs using hundreds to thousands of compute nodes

* Large amount of codes for parallelization, data
distribution, error handing are required

* These hide original code for computation

New abstraction (1)

* Describes only required computation

* Runtime library hides complicated processes including
parallelization, fault handling, data distribution, load
balancing

 Most computation has the following same pattern

K1, vl
Input 1 map K2, v2

K3, v3
K1, v4 '
Input 2 map ~ V ‘4
Input 3 map . '\‘_,_4 »“ '
* K3, [v2, v4, v5]
’ K4, [v1, v3] reduce Output N

Shuffle
and sort

K1, [v1, v2, v4]
K2, [v2, v3] reduce Output 1

New abstraction (2)

e A functional model of user-supplied map and
reduce operations enables

— Easy parallelization of large-scale computation
— To run failed tasks again for fault tolerance

* Simple but powerful interface

* |t enables high-performance computation on

large-scale cluster by auto-parallelization and
auto-distribution

Comments on MapReduce

 MapReduce programming model has been
successfully used at Google for many different
purposes
— Easy to use

— It hides details of parallelization, fault tolerance,
locality optimization and load balancing

— A large variety of problems are easily expressible

— Scales to large clusters of machines comprising
thousands of machines

* |t can be obtained by restricting the programing
model

Cloud Computing

* Only required amount of CPU and storage can be
used anytime from anywhere via network

— Availability, throughput, reliability
— Manageability

* No need to procure, maintain, and update
computers

e Large-scale distributed data processing by
MapReduce

— Loosely coupled data intensive computing
— Can be a standard parallel language other than MPI

Amazon Web Services (2002)

* On-demand elastic infrastructure managed by web services
— Elastic Compute Cloud (EC2)

* Web service that provides resizable compute capacity

— Simple Storage Service (S3)
* Simple web service |/F to store and retrieve data

— Elastic Block Store (EBS)

* Block level storage used by EC2 in the same AZ
* Automatically replicate within the same AZ
* Point-in-time snapshots can be persisted to S3

* Region and Availability Zone

Welcome to the Cloud

Amazon Web Services makes cloud computing a reality
for hundreds of thousands of customers looking for a
cost-effective infrastructure to deploy highly scalable and
dependable solutions.

» Learn how vou can benefit from cloud computing

Taxonomy of Cloud

* SaaS (Software as a Service)
— Google Apps (Gmail, ...), CRM Service

Software package

— Microsoft Online Services

* PaaS (Platform as a Service)
— Development of Web apps

* Force.com
* Google App Engine
* |aaS (Infrastructure as a Service)
— Amazon EC2, S3

— Microsoft Azure

Platform
Service, Database

Infrastructure
Hardware

Cloud technology

* SaaS (Software as a Service)

— Web 2.0 Service
. f k
* PaaS (Platform as a Service) >oftware package
— Web API

. Platf
— Web Service e

e XML, WSDL, SOAP/REST

* |aaS (Infrastructure as a Service) —
nrrastructure

— Virtual machine (Xen, KVM) Hardware

— Virtualization of harddisk, storage
and network

Service, database

Storage system in cloud

* Availability, reliability
e Amazon Web Services

— S3, EBS

— Can construct any (file) system that uses block device
* HDFS (using EBS) for Elastic MapReduce

— Difficult to construct a system beyond Availability
Zone and Region

* Google App Engine
— Utilize GFS and BigTable

Summary of cloud computing

Resources in cloud computing

— Inexpensive, always available, reliable, high
performance

— Easy to maintain
Realized by virtualization and web interface

No need to procure, maintain, and update
computers

If required, more resources can be obtained
by cloud

