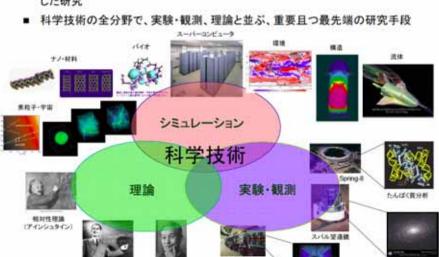
IT革命を解き明かす II


スーパーコンピュータと計算科学

担当 佐藤

川革命を解き明かすⅡ

科学の三本柱としての計算科学

■ 超高速計算機(スーパーコンピュータ)を用いた大規模シミュレーションを中心とした研究

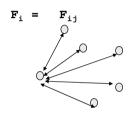
丌革命未保き明かすⅡ

もくじ

- ◆ 計算科学とは
- ◆ コンピュータはどのくらい早くなったのか
- ◆ スーパーコンピュータと並列処理
- ◆ 計算科学研究センター、PACS-CSの紹介
- ◆ 何ができるのか、何ができたのか
- ◆課題、最近の話題
- ◆ グリッドコンピューティングへ

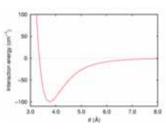
2

川蓝命寺解き明かすⅡ


計算科学:第三の科学

- ◆ 第三の科学
 - 実験できない領域
 - 素粒子科学 Ouantum chromodynamics (量子色力学)
 - クオークの質量
 - 宇宙物理学
 - 宇宙の成り立ち
 - 地球温暖化 予測
 - ■このまま進むとどうなるか
 - 第一原理的手法を使用すれば,実験不可能なことでも,シミュレーションによって解明される,であろうことが明らかになりつつある。
 - パイオ・ナノテクノロジー
 - 現在の計算機リソースでは不可能なものも多い: 例えば, AMD Opteron×1024クラスタの10,000倍規模の計算機必要など
 - 実験,観測の検証。それでも実験より手軽に実施可能である。
 - 流体シミュレーション、構造設計
 - 自動車、ビル設計、飛行機・ロケットの設計

代表的な計算科学の手法


◆ 粒子計算

- 個々の粒子の相互作用を計算する
- 宇宙:重力
 - $F_{ij} = G m_i m_i / r^2$
- 分子ジミュレージョン: Van der Waals forces
 - 分子動力学
 - 2体(或いはそれ以上)の原子間ポテンシャルの下に、古典 力学におけるニュートン方程式を解いて、系の静的、動的安 定構造や、動的過程(ダイナミクス)を解析する手法。

F = m a V = v+a t p = p+v t

各ステップで 運動方程式 を解く

川革命を解き明かすⅡ

代表的な計算科学の手法

◆ 第一原理計算

- 量子力学の基本方程式であるシュレデンガー方程式を 解いて、原子レベルのシミュレーションを行う方法
 - 「既存の実験結果(事実)を含めて経験的パラメーター等を一切用いない」という強いものから、「実験結果に依らない」とする比較的緩い解釈まである。
- 量子化学:分子軌道法 (MO)
- 密度汎関数法 (DFT計算)
- 原理的にはどのような現象でも解けるはずであるが、 膨大な計算量を必要とする

川革命を解き明かすⅡ

代表的な計算科学の手法

- ◆ 連続体シミュレーション
 - 偏微分方程式を解く
 - 離散化
 - 本来連続体である対象を要素の集合体によって近似する。
 - _ 有限要素法
 - 計算対象の構造に外力が加わって変形する場合等を解析する際、対象 の構造をメッシュで区切り(有限数の小さな要素で区切る)、各々の 要素内で成り立つ連立一次方程式を作成する(未知数は変位、速度、 圧力など)。次に、各要素における方程式を全解析領域分足し合わせ ることで大きな連立一次方程式(マトリクス方程式)を作成し、解を 求める。
 - 境界要素法
 - 解くべき対象である偏微分方程式を、境界上の積分方程式の問題に置き換えて解く手法。
 - 流体計算
 - ナビエーストークス方程式

U

川革命を解き明かすⅡ

計算機はどのくらい早くなったか

- ◆能力はどうやって計るのか?
 - 1秒あたりの演算可能回数
 - Top500
- ◆ マイクロプロセッサの発展
 - クロックスピードにほぼ比例して早くなる
- ◆ スーパーコンピュータは並列処理の時代へ
 - 単一プロセッサでは限界!
 - スーパーコンピュータは並列処理により早くなっている

川道命を解き明かすⅡ

いろいろなマイクロプロセッサ(1)

- ◆ マイコン(4ビットマイコン)
 - 4004(世界初、1971年、750KHz)
- ◆ 8 ビットマイコン
 - 8008(1972年、500KHz、インテル)
 - 8080(1974年、2MHz、インテル)
 - z 8 0 (1976年、10?MHz、ザイログ)
 - MC6800 (1974年、1MHz、モトローラ)
 - MC6809
- ◆ 16ピットマイコン
 - 8086 (1978年、インテル)
 - IBM PC/MS-DOS
 - 80286(1982年、インテル)
 - MC68000 (1979年、モトローラ)
 - UNIX
- **◆ 8 ビット、16 ビットとは、バスの幅、メモリ空間のビット幅のこと。**

川革命を解き明かすⅡ

高速化とは

- ◆ コンピュータの高速化
 - デバイス
 - 計算機アーキテクチャ

パイプライン、 スーパスカラ

- ◆ 計算機アーキテクチャの高速化の本質は、いろい るな処理を同時にやること マルチ・コア
 - CPUの中
 - チップの中

共有メモリ 並列コンピュータ

– チップ間

- コンピュータ間

分散メモリ並列コンピュータ グリッド

川道命を保き明かすⅡ

いろいろなマイクロプロセッサ(2)

- ◆ 32ビットプロセッサ
 - 80386 (1985年)、80486 (1989年、40MHz~)
 - MC68020(1984年)、MC68030 (1987年)
 - 仮想記憶
 - Pentium (1995年,100MHz ~ 200MHz)
 - Pentium II (1998年,300MHz~)
 - SSE/MMX
 - Pentium III (1997年、900MHz~)
 - 1GHzを超える
 - Pentium 4 (2000年、~3.2GHz)
 - AMD K9, AMD Athlon
- ◆ 64ピットプロセッサ
 - Itanium(2000), Itanium II (2001)
 - AMD Opteron (2003)
- ◆ 3 0 年間で、1MHzから1GHz、1000倍の進歩

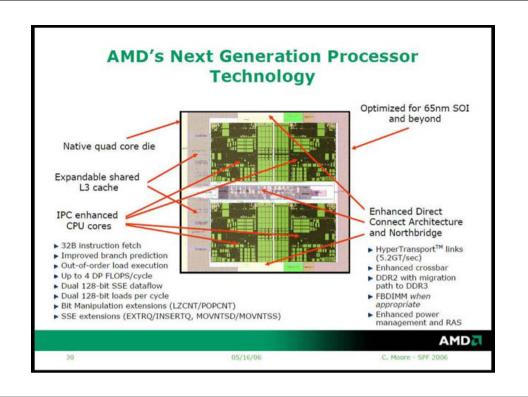
川道命を輝き明かすⅡ

プロセッサ研究開発の動向

- ◆ さらなる高速化、高性能化へ
 - クロックの高速化、製造プロセスの微細化
 - いまでは3GHz, 数年のうちに10GHzか

■ インテルの戦略の転換

マルチコア


■ プロセスは90nm

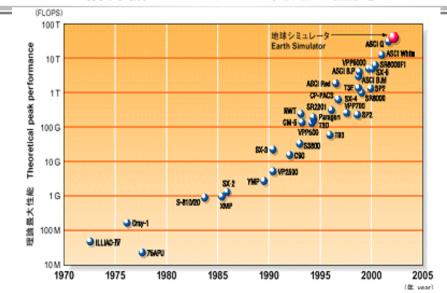
65nm, 将来的には45nm

- 量子的な限界?
- アーキテクチャの改良
 - スーパーパイプライン、スーパースカラ、VLIW...
 - キャッシュの多段化、マイクロプロセッサでもL3 キャッシュ
 - マルチスレッド化、Intel Hyperthreading、複数の プログラムを同時に処理
 - マルチコア:1つのチップに複数のCPU

インテル® Pentium® プロセッサ エクストリーム・エディションのダイ

丌革命李佩孝明かすⅡ

計算機ハードウェアの歴史


- ◆ 1.5年に2倍の割合で処理速度が増加している (Moore's Law)
- ◆ 1983年:1 GFLOPS, 1996年:1 TFLOPS, 2002年:36 GFLOPS
 - MFLOPS: <u>Millions of FLoating Point OP</u>eration<u>S</u>. (1秒間に10⁶回の浮動小数点処理)
 - GFLOPS: 10⁹ , TFLOPS: 10¹² , PFLOPS: 10¹⁵
 - 2010年頃にはPFLOPS (Peta FLOPS) マシンが登場すると言われている。
- ◆ 「地球シミュレータ」はピーク性能 40 TFLOPS
- ◆ 2005年にはIBM BlueGene/L (367 TFLOPS)が完成

14

IT革命を解き明かす II

http://www.es.iamstec.go.ip/

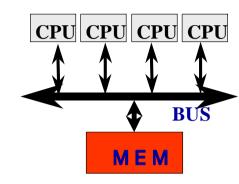
計算機ハードウェア発達の歴史

IT革命を解き明かすII

計算機の進歩

- ◆ 個々のプロセッサ
 - ベクトルプロセッサ 10年前はこのタイプが多かった
 - 一つのプロセッサで行列演算を効率的にできる
 - スカラープロセッサ: Pentium, Power, Alpha, Itanium
- ◆ 並列計算機のアーキテクチャの種類
 - **分散メモリ型並列計算機**
 - SMP (Symmetrical Multi Processor):共有メモリ型並列計算機
 - SMPクラスタ型並列計算機(「Constellation」とも言う)
- ◆ 並列計算機の別の分類
 - PCクラスタ
 - 専用並列計算機
 - 専用機・・・GRAPE等:プラックホールのシミュレーション

. -

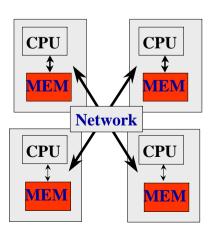

並列処理と分散処理

- ◆ 並列処理(parallel processing)とは、複数のプロセッサを用いて、処理を高速化する技術
 - HPC(High Performance Computing)
 - 数値シミュレーションなど
 - HTC (High Throughput Computing)
 - 大量のデータ処理
- ◆ 分散処理(distributed processing)は、もちろん、複数のプロセッサを用いるため処理を高速化することもあるが、本質的にはいろいろな場所で行う様々な処理、あるいは機能を結合し、機能分担させることが目的であり、必ずしも高速化だけが目的ではない
 - 分散オブジェクト技術
 - RMI, J2EE, Jini...

17

川革命を解き駅かす川

共有メモリ型計算機

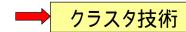


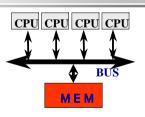
- ◆複数のCPUが一つのメモリ にアクセスするシステム。
- ◆それぞれのCPUで実行されているプログラム(スレッド)は、メモリ上のデータにお互いにアクセスすることで、データを交換し、動作する。
- ◆大規模サーバ

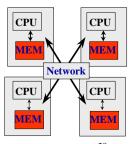
18

川革命を解き明かすⅡ

分散メモリ型計算機

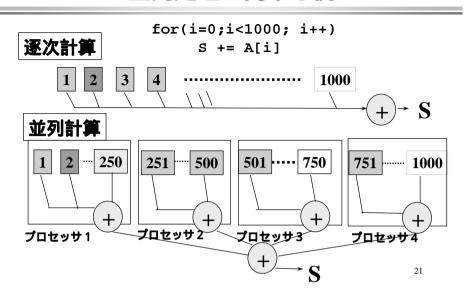

- ◆CPUとメモリという一つの計 算機システムが、ネットワーク で結合されているシステム
- ◆それぞれの計算機で実行 されているプログラムはネット ワークを通じて、データ(メッ セージ)を交換し、動作する
- ◆超並列(MPP: Massively Parallel Processing)コンピュ
- ◆クラスタ計算機


一夕


川革命を解き明かすⅡ

並列処理の利点

- ◆ 計算能力が増える。
 - 1つのCPUよりも多数のCPU。
- ◆ メモリの読み出し能力 (バンド幅)が増える。
 - それぞれのCPUがここのメモリを読み出すことができる。
- **◆ ディスク等、入出力のパンド幅が増える。**
 - それぞれのCPUが並列にディスクを読み出すことができる。
- **◆ キャッシュメモリが効果的に利用できる。**
 - 単一のプロセッサではキャッシュに載らないデータでも、処理単位が小さくなることによって、キャッシュを効果的に使うことができる。
- **◆ 低コスト**
 - マイクロプロセッサをつかえば。



川道命を解き明かすⅡ

並列処理の簡単な例

TT革命を解き明かす IT

スーパーコンピュータの速さはどうやって測るのか

◆ 演算速度

- 個々プロセッサの演算速度×台数
- ◆ Top500 List
 - 世界のコンピュータの速度を決める基準になっている

22

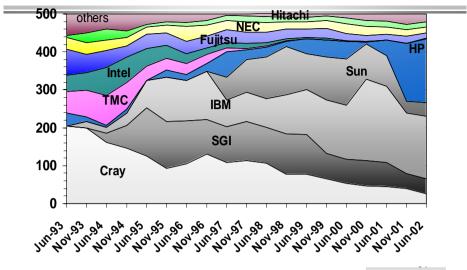
川革命を解き明かすⅡ

TOP 500 List

http://www.top500.org/

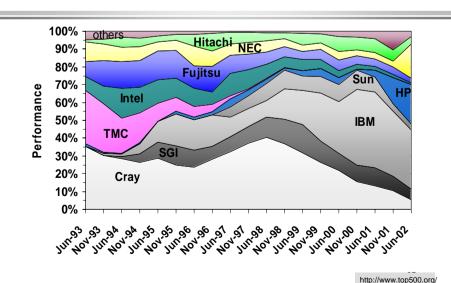
- ◆ LINPACKと言われるペンチマークテストを実施する。
 - 密行列を係数とする連立一次方程式を解く
 - ベクトル機でもスカラー機でも性能が出やすい
 - 例えば地球シミュレータはピーク性能40TFLOPS(設計値)に対して35 TFLOPS以上の性能が出ている。
- ◆ 実際のアプリケーションではこれほどの性能は出ない
 - 差分法,スペクトル法系の手法:ピーク性能の60%程度
 - AFES on the Earth Simulator: 26 TFLOPS (ピーク性能の65%)
 - 有限要素法
 - GeoFEM on the Earth Simulator (512 ノード): 10 TFLOPS (30%)
 - スカラー機ではこれほど出ない:5%~10%

川革命を解き明かすII


Me Com	y ass.					
Rank	Site	Computer	Processors	Year	R _{max}	Rpeak
1	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution IBM	131072	2005	280600	367000
2	IBM Thomas J. Watson Research Center United States	BGW - eServer Blue Gene Solution IBM	40960	2005	91290	114688
3	DOE/NNSA/LLNL United States	ASC Purple - eServer pSeries p5 575 1.9 GHz IBM	12208	2006	75760	92781
4	NASA/Ames Research Center/NAS United States	Columbia - SGI Altix 1.5 GHz, Voltaire Infiniband SGI	10160	2004	51870	60960
5	Commissariat a l'Energie Atomique (CEA) France	Tera-10 - NovaScale 5160, Itanium2 1.6 GHz, Quadrics Bull SA	8704	2006	42900	55705.6
6	Sandia National Laboratories United States	Thunderbird - PowerEdge 1850, 3.6 GHz, Infiniband Dell	9024	2006	38270	64972.8
7	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME Grid Cluster - Sun Fire X64 Cluster, Opteron 2.4/2.6 GHz, Infiniband NEC/Sun	10368	2006	38180	49868.8
8	Forschungszentrum Juelich (FZJ) Germany	JUBL - eServer Blue Gene Solution IBM	16384	2006	37330	45875
9	Sandia National Laboratories United States	Red Storm Cray XT3, 2.0 GHz Cray Inc.	10880	2005	36190	43520
	The Earth Simulator Center Japan	Earth-Simulator NEC	5120	2002	35860	40960
11	Barcelona Supercomputer Center Spain	MareNostrum - JS20 Cluster, PPC 970, 2.2 GHz, Myrinet IBM	4800	2005	27910	42144
12	ASTRON/University Groningen Netherlands	Stella - eServer Blue Gene Solution IBM	12288	2005	27450	34406.4

TT革命を解き明かすIT

川革命を解き明かすⅡ


Manufacturers

http://www.top500.org/

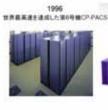
川革命を解き明かすⅡ

Manufacturers

TT事命を解き明かす IT

クラスタコンピューティング

- ◆ PCやネットワークなど、汎用 (コモデティ) の部品を 組み合わせて、並列システムを構成する技術
 - PCが急激に進歩した!
 - ネットワークも早くなっている!
 - 安価に、個人レベルでも並列システムを作れる!


川革命を解き明かすⅡ

http://www.ccs.tsukuba.ac.jp/PACS-CS/

筑波大学における超並列計算機の開発の歴史

光成年	6.86	計算速度
19784	PACS-9	7111/10
1980\$	PAXS-32	507512/19
1983年	PAX-128	4百万层/粉
1964/6	PAX-32J	1百万三/砂
1969/\$	QCOPAX	1498/8
1990/5	OP-PACS	614億回/89
2006/1	PACS-CS	14月3千億巨/10

- 1977年(星野・川合)に始まる超並列計算機の研究・開発のバイオニア
- 1996年完成のCP-PACS(岩崎・中澤)は世界最高速を達成
- 計算科学者と計算機工学者の協力による。科学の明確な目標を持った計算機開発
- 開発における計算機メーカとの産学連携

29

川革命を解き明かす II

PACS-CS

Parallel Array Computer System for Computational Sciences

◆ 計算科学計算センターで7月から稼動

◆ 国内で開発 されたスパコンと しては、2位

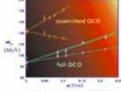
Peak 14.34TF Linpack 10.35TF

34位(2006/6)

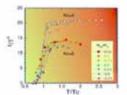
TT革命を解き明かす II

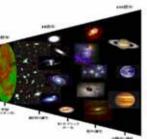

http://www.ccs.tsukuba.ac.jp/PACS-CS/

Theoretical peak speed	14.3TFLOPS(*) (64bit double precision , 2560 nodes)				
Total main memory	5.0TByte 0.41PByte				
Total distributed disk					
Node	processor	Intel Low Voltage Xeon 2.8GHrz			
	memory 2GByte DDR2/400				
	FSB 800MHz				
	Local disk	160GByte x 2 (RAID-1 mirror)			
	Topology	3-dimensional Hyper Crossbar (16x16x1			
Network	Data transfer bandwidth 250MByte/sec (per direction 750MByte/sec(node aggregate of 150MByte/sec)				
	Method	Specially developed driver			
Shared disk storage	10 TByte RAID-5 disk				
External connection	Trunked Gigabit Ethernet	Theoretical peak bandwidth 250Mbyte/sec			
System size	59 racks/100m ² foot print				
Power dissipation		545 kW maximum			


丌革命赤耀寺明かすⅡ

http://www.ccs.tsukuba.ac.jp/PACS-CS/

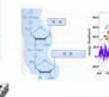

PACS-CSによる素粒子と宇宙の研究


クォークの質量(重さ)の決定

宇宙初期にあったと考えられている。 ウォーク グルオン プラズマへの相転移 の音を

現在までの研究により、物質の最小の構成単位クォークは予想されていたより約50%も軽いことや、温度を1兆5千億度以上に上げると、クォークが陽子や中性子から飛び出して自由に飛び回るクォーク グルオン ブラズマ状態に転移することなどが判明しつつある。

これらの研究を進めることにより、素粒子の成 り立ちが解明され、さらには宇宙誕生の謎も解 明されることが期待される。


TT基金表别含明かす II

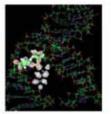
http://www.ccs.tsukuba.ac.jp/PACS-CS/

PACS-CSによる物質と生命の研究

appropriate to the state of the

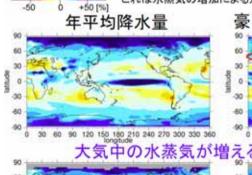
リボザイムの切断機能

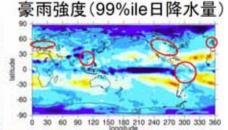
半導体 全属 カーポンナノチューブの性質

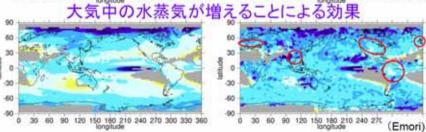

シリコン表面の階段構造

現在までの研究により、カーボンナノチューブや、蛋白質など、ナノバイオ 物質の性質を解明するには、空間サイズ10ナノメートル以上、原子数1万 個以上の量子力学シミュレーションが重要なことが判明しつつある。

このようなシミュレーションを実現することにより、ナノバイオ物質が、どのようにして様々の機能を持つかを理解し、さらに、新機能を持つナノバイオ新物質の設計・制御への道が開拓されることが期待される。


触媒作用を持つRNA


TT革命を解き明かす IT


http://www.ccs.tsukuba.ac.jp/ccs/workshops/

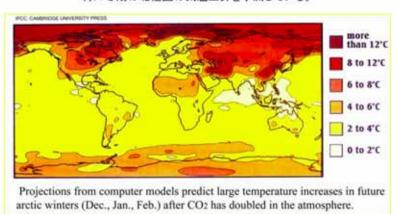
温暖化による平均降水量および豪雨強度の変化率

赤丸をつけた領域は、平均降水量は増えないが、豪雨強度は増える これは水蒸気の増加による効果が場所によって異なるため

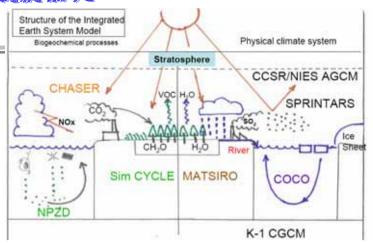
川革命を解き明かすⅡ

http://www.ccs.tsukuba.ac.jp/ccs/workshops/

地球シミュレータ



川革命を解き明かすⅡ


http://www.ccs.tsukuba.ac.jp/ccs/workshops/

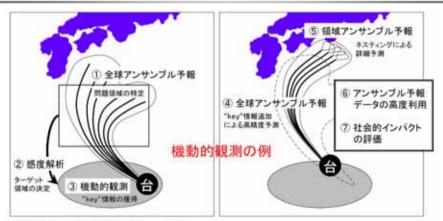
CO2倍增実験

大気中の二酸化炭素増加を想定したコンピューターの気候予測は 特に冬期の北極圏の気温上昇を予測している。

http://www.ccs.tsukuba.ac.jp/ccs/workshops/

これをシミュレーションするには、複雑なモデル、膨大な計算 能力が必要

IT革命を解き明かす II

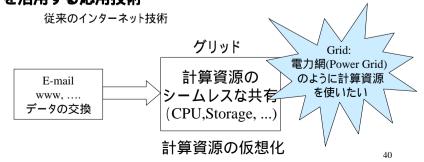

これからの計算科学の課題

- ◆ 計算を細かくやっても限界があることがある
 - 天気予報はあたるか? カオスの問題
 - バタフライエフェクト:ある場所で蝶がはばたいただけで地球の反対で台風が起こる!?
 - アンサンブル計算
- ◆ 計算精度の問題
 - 現在は64ビットの浮動小数点という形式を使っている
 - $-1.79769 \times 10^{308} \sim 1.79769 \times 10^{308}$
- ◆ まだまだ性能が足りない
 - 「京速計算機プロジェクト」
 - 10PFlopsのスパコンの開発を目指す

38

川革命を解き明かすⅡ

アンサンブル予報



台風予報を例にとった、本計画のねらいの概念図

川革命を解き明かすII

グリッドコンピューティングとは

◆ グリッド技術とは広域の高速ネットワーク上において、 「安全に」大量のデータ、計算資源、貴重な装置等を共有 し、協調作業、資源の有効活用するネットワーク基盤技術 (ソフトウエア、ネットワーク、ハードウエア)と、これ を活用する応用技術

37