GPU Programming (1)

M. Sato

RIKEN R-CCS
and University of Tsukuba

Sep. 2021 Advanced Course in Massively Parallel Computing

Outline

o0 Why GPU is emerging?

0 GPU programming environment (1)
— CUDA
— GPU by Libraries

0 GPU programming environment (2)
— OpenCL, SYCL
— OpenMP/OpenACC

Sep. 2021 Advanced Course in Massively Parallel Computing

GPU Computing

0 GPGPU - General-Purpose Graphic Processing Unit
— A technology to make use of GPU for general-purpose computing (scientific
applications)

0 CUDA (Compute Unified Device Architecture)
— Co-designed Hardware and Software to exploit computing power of NVIDIA

GPU for GP computing.
— (In other words), in order to obtain full performance of GPGPU, a program

must be written in CUDA language.

o Itis attracting many people’s interest since GPU enables great
performance much more than that of CPU (even multi-core) in some

scientific fields.

o0 Why GPGPU now?— — price (cost-performance)!!!
Sep. 2021 Advanced Course in Massively Parallel Computing

Applications (From NVIDIA’s slides, 2010?)

146X 17X 100X

FRAEROBREHOAS Matlab TO A HEE 22— TR - 551 BN
SHT47GREL ey

149X

- . ADwFL 3O HALBORET B UEESGEE TR
ARSI ER hOEE Tl —2gs BREOBTLCmatch N ES

Peak GFLOP/s

Ta0

SO0

250

CPU vs.

GPU

CPU

¢

GPGPU

PCle

Graphic

Connected
via PClexpress

memory
memory
Computing performance 6200 Memory bandwidth
4—NVIDIA GPU ; Lzn
el | CFLI GED a2 GE0
Ul Ultra
GS80 o L0 —> .
GED
r
71 B0 f{
70 s
3.2GH=z newsidth
Nvss NV4D & 3.0 GHz Harpertown - G;.g ' B0 G71 ;;‘f
NVa0 . - CoreZ Duo .
oo - o—o—"° /
Jan Jun A.pr Jun Mar Nov May Jun 40 NvVaT A
S
2003 2004 2003 2006 2007 2008 Harpertown
Woodcrest
40 AR Prescott EE
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra v Northwood s il
G892 = GeForce 3800 GTX G70 = GeForce 7B00 GTX MNV30 = GeForce FX 5800 " -
Beprzp2oc™ W ARRFARICed Course in Massively Parallel Computing 2006 2005 200 200b

NVIDIA GPGPU’s architecture

o Many multiprocessor in a chip Device
— eight Scalar Processor (SP) cores, e
— two special function units for transcendentals
— amultithreaded instruction unit
— on-chip shared Memory

Multiprocessor 2

Multiprocessor 1

o SIMT (single-instruction, multiple-thread).

— The multiprocessor maps each thread to one scalar
processor core, and each scalar thread executes
independently with its own instruction address and
register state.

— creates, manages, schedules, and executes threads in
groups of 32 parallel threads called warps.

Instruction
Unit

Processor 1 Processor 2 | *** | Processor M

o Complex memory hierarchy
— Device Memory (Global Memory) |
— Shared Memory 4
— Constant Cache
— Texture Cache

Sep. 2021 Advanced Course in Massively

O

O O O Oo O 0O

CUDA (Compute Unified Device Architecture)

C programming language on GPUs

Requires no knowledge of graphics APIs or GPU
programming

Access to native instructions and memory

Easy to get started and to get real performance benefit
Designed and developed by NVIDIA

Requires an NVIDIA GPU (GeForce 8xxx/Tesla,)
Stable, available (for free), documented and supported
For both Windows and Linux

Sep. 2021 Advanced Course in Massively Parallel Computing

CUDA Programming model (1/2)

GPU is programmed as a compute device working as co-processor from
CPU(host).

— Codes for data-parallel, compute intensive part are offloaded as functions to
the device

— Offload hot-spot in the program which is frequently executed on the same data
= For example, data-parallel loop on the same data
— Call “kernel” a code of the function compiled as a function for the device

— Kernel is executed by multiple threads of device.
= Only one kernel is executed on the device at a time.

— Host (CPU) and device(GPU) has its owns memory, host memory and device
memory

— Data is copied between both memory.

CPU GPGPU
:I::I: PCle :I::I:
Graphic

Sep. 2021 Advanced Course in Massively PafBféNeEMputing memOI’By

CUDA Programming model (2/2)

Computational Grid is composed of Grid
multiple thread blocks Block (0,0) Block (1,0) | Block (2, 0)

Thread block includes multiple

threads Block (0, 1) Block (1,1) “Block (2, 1)
Each thread executes kernel

— A function executed by each thread
called “kernel”

— Kernel can be thought as one

iteration in parallel loop Block (1, 1)

Computational Grid and block can
have 1,2,3 dimension

The reserved variable, blockID and

threadlD have ID of threads.
Sep. 2021 Advanced Course in Massively P..

Example: Element-wise Matrix Add

void add_matrix
(float* a, float* b, float* ¢, Int N) {

Int index;
for C int 1 =0; 1 < Nj; ++1)
for (int j = O; j < N; ++J) {
index = 1 + J*N
c[index] = a[i dex] + b[i1ndex];
+
} CUDA program
int main() {
add_matrix(a, b, c, N); __global__ add_matrix
+ (float* a, float* b, float* c, int N) {
CPU program int 1 = blockldx.x * blockDim.x + threadldx.x;
int J = blockldx.y * blockDim.y + threadldx.y;
int |ndex =1 + J*N;
iIfF (1 <N&& jJ <N)
c[index] = aJindex] + b[index];
The nested for— }
int main() {
loops are dim3 dimBlock(blocksize, blocksize);
replaced with an dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
implicit grid add_matrix<<<dimGrid, dimBlock>>>(C a, b, c, N);

Sep. 2021 Advanced Gourse in Massively Parallel Computing 10

How Threads are executed

0 SM (Streaming
Multiprocessor) execute
blocks in SIMD (single

Instruction/multiple data),

0 SM consists of 8 processors

Sep. 2021

Advanced Io

Kernel Grid
v v
Device with 2 SMs Device with 4 SMs
SMO SM1 SMO SM1 SM 2 SM 3
-s-a lel Computing 11

An example of GPGPU configuration
10— X TP —FTIF~F <X

nvibDiA

® 20EDRLYETObEYH B —RILALYRE LR

® JEOTIILFTOEVH . FhEANKRDI=VFERER
® sEORLYFTOEYY
® EBEomEL=Vr
® vk DIREAEY

< IJILFOotvH

AbwkFotuy

Sep. 2021 Advanced Course in Massively Parallel Computing

Number of Compute
Multiprocessors | Capability
(1 Multiprocessor
= B Processors)
GeForce GTX 295 2%30 1.3
GeForce GTX 285, GTX 280 30 1.3
GeForce GTX 260 24
GeForce 9800 GX2 2x16 Tesla C1060
GeForce GTS 250, GTS 150, 9800 GTX, 16 #eore: 240 cores
9800 GTX+, Emd GTS 512‘ Clock Frequer_mcy: 1.3GHz
memory capacity: 4GB

GeForce 8800 Ultra, 8800 GTX 16 Performance (SP): 933GFlops (peak)
GeForce 9800 GT, 8800 GT, GTX 280M, 14 Performance (DP): 78GFlops (peak)
9800M GTX Memory Bandwidth: 102GB/sec
GeForce GT 130, 9600 G50, 8800 G5, 12 Standard Power Consumption: 187.8W

8800M GTX, GTX 260M, 9800M GT

Floating Point Format: IEEE 754 SP/DP

T B e oW e

Host Intf: PCI Express x16 (PCle 2.0)

Tesla S1070 4%30 1.3
Jesiac1060 D 30 1.3
Tesla S870 4x16 1.0
Tesla D870 2%16 1.0
Tesla C870 16 1.0
Quadro Plex 2200 D2 2x%30 1.3
Quadro Plex 2100 D4 4x14 1.1
Sep. 2021 | Quadro Plex 23R ieg'Cotirse in Massively Parallel Computirftj<16 1.013

2018

TESLA V100

21B transistors
815 mm?

80 SM
5120 CUDA Cores
640 Tensor Cores

16 GB HBM2

900 GB/s HBM2
300 GB/s NVLink A et
TENSOR CORE
T e e Mixed Precision Matrix Math
Vo I ta Vloo 4x4 matrices

#core: 5129 cores (80SM)

Clock Frequency: 1.455GHz (boost)
memory capacity: 16GB

Performance (SP): 15TFlops (peak) [)
Performance (DP): 7.5TFlops (peak)

Memory Bandwidth: 1TB/sec 77?7
Standard Power Consumption: ??? W
Floating Point Format: IEEE 754 SP/DP FP16 or FP31 FP16 FP16 FF16 or FP32

Host 1i$ep: 221 Express x16 @®aven&dRolrse in Massively Parallel Computin& C 14
+

GPU PERFORMANCE COMPARISON

P100 V100 Ratio

DL Training 10 TFLOPS 120 TFLOPS 12X

DL Inferencing 21 TFLOPS 120 TFLOPS 6Xx

FP64/FP32 5/10 TFLOPS 7.5/15 TFLOPS 1.5%
HBM2 Bandwidth 720 GB/s 900 GB/s 1.2x
STREAM Triad Perf 557 GB/s 855 GB/s 125x
NVLink Bandwidth 160 GB/s 300 GB/s 1.9x
L2 Cache 4 MB 6 MB 1.5%
L1 Caches 1.3 MB 10 MB =X

Sep. 2021 Advanced Course in Massively Parallel Computing 15

Ampere 100

X
ax
)

B

LK
X
2%

4X

g
EE -{

o0 vVi00D vioo o vVioo A100
2014 2017 2016 2017 2070

Ampere A100

#core: 6,912 cores

Clock Frequency: ???7?

memory capacity: 40 GB

Performance (SP): 19.5 TFlops (peak)
Performance (DP): 9.7 TFlops (peak)
Memory Bandwidth: 1.6 TB/sec

Standard Power Consumption: 400 W
Floating Point Format: IEEE 754 SP/DP
Host 1$ep: 2021 Express x ?? A8CGdecetl Gpu

'se in Massively Parallel Computing

16

Invoke (Launching) Kernel

0 Host processor invoke the execution of kernel in this form
similar to function call:

kernel<<<dim3 grid, dim3 block, shmem size>>>(..)

0 Execution Configuation (“<<< >>>”
— Dimension of computational grid : x and y
— Dimension of thread block: x, y. z

dim3 grid(16 16);

dim3 block(16,16);
kernel<<<grid, block>>>(...);
kernel<<<32, 512>>>(...);

Sep. 2021 Advanced Course in Massively Parallel Computing

17

CUDA kernel and thread

o0 Parallel part of applications are executed as a kernel of
CUDA on the device
— One kernel is executed at a time
— Many threads execute kernel function in parallel.

o Difference between CUDA thread and CPU thread

— CUDA thread is a very light-weight thread
» Qverhead of thread creation is very small
» Thread switching is also very fast since it is supported by hardware.

— CUDA exploit its performance and efficient execution by a thousands
of threads.

= Conventional Multicore supports only a few threads (by software)

Sep. 2021 Advanced Course in Massively Parallel Computing 18

C Program
Sequential
Execution

Serial code Host g

Parallel kernel Device

Execution of Kerne10<<<>>>0 | || Grido
CPU COde and Block (0, 0) || Block (1, 0) | Block (2, 0)
Kernel code by

Block (0, 1) Block (1, 1) Block (2, 1)

Device AN e

Serial code Host
Device
Parallel kernel
Kernell<<<>>> () Grid 1
Block (0, 0) Block (1, O)
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

Sep. 2021 Advanged Course in Massively Parallel Computing 19

Grid, Block, thread and
Memory hierarchy

Thread

_ _ Per-thread local
D " memory

o0 Thread can access local
memory (per-thread) thread Block _

< » Per-block shared
< > memory

0 Thread can access “shared
memory” on chip, which is Grid 0
attaChEd fOl" eaCh th r‘ead Block (0, 0) | Block (1,0) | Block (2, 0)

block (SM).
Block (0, 1) | Block (1,1) | Block (2, 1)
o0 Thread in Computational aad1 N
Grid access and share a Block (0,0) | Block (1, 0)
global memory. S
Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

Sep. 2021 Advanced Course in Massively Para putingggggg 20

Memory management (1/2)

o CPU and GPU have different memory space.
o0 Hosts (CPU) manages device (GPU) memory

0 Allocation and Deallocation of GPU memory
— cudaMalloc(void ** pointer, size t nbytes)
— cudaMemset(void * pointer, iInt value, size t count)
— cudaFree(void* pointer)

int n = 1024,

INt nbytes = 1024*sizeof(int);

int *d a = 0O;

cudaMalloc((void**)&d a nbytes);
cudaMemset(d _a, 0, nbytes);

cudaFree(d _a);
Sep. 2021 Advanced Course in Massively Parallel Computing 21

Memory management (2/2)

0 Data copy operation between CPU and device

— cudaMemcpy(void *dst, void *src, size t
nbytes, enum cudaMemcpyKind direction);

= Direction specifies how to copy from src to dst , see below

= Block a caller of CPU thread (execution) until the memory transfer
completes.
= Copy operation starts after previous CUDA calls.

— enum cudaMemcpyKind
» cudaMemcpyHostToDevice
» cudaMemcpyDeviceToHost
» cudaMemcpyDeviceToDevice

Sep. 2021 Advanced Course in Massively Parallel Computing 22

Executing Code on the GPU

0 Kernels are C functions with some restrictions
— Can only access GPU memory
— Must have void return type
— No variable number of arguments (“varargs”)
— Not recursive
— No static variables
— Function arguments

0 Function arguments automatically copied from CPU
to GPU memory

Sep. 2021 Advanced Course in Massively Parallel Computing 23

Function Qualifiers

o _ global :invoked from within host (CPU) code,

cannot be called from device (GPU) code must return void
o0 _ device :called from other GPU functions,

cannot be called from host (CPU) code
0 _ host__ :canonly be executed by CPU, called from host

o0 host and_device can be combined.

— Sample use: overloading operators
— Compiler will generate both CPU and GPU code

Sep. 2021 Advanced Course in Massively Parallel Computing 24

CUDA Built-in Device Variables

o global and _ device functions have access to
these automatically defined variables

— dim3 gridDim;
= Dimensions of the grid in blocks (at most 2D)

—dim3 blockDiIm;

= Dimensions of the block in threads

—dim3 blockldx;
» Block index within the grid

—dim3 threadldx;
= Thread index within the block

Sep. 2021 Advanced Course in Massively Parallel Computing 25

A simple example

__global __ void minimal(Int* d_a)

1
}

*d a = 13;

__global ___ void assign(Int* d _a, i1nt value)

INt 1dx = blockDim.x * blockldx.x + threadldx.x;
d aJi1dx] = value;

Sep. 2021 Advanced Course in Massively Parallel Computing 26

A simple example

__global __ void assign2D(int* d_a, Int w, Int h, iInt value)

{
int 1y = blockDim.y * blockldx.y + threadldx.y;
InNt 1X = blockDim.x * blockldx.x + threadldx.Xx;
int 1dx = 1y * w + 1IXx;
d a[i1dx] = value;

ks

assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

Sep. 2021 Advanced Course in Massively Parallel Computing 27

Example code to increment array elements

CPU code CUDA codes

- o __global __ void
\{/Old inc_cpu(int*a, intN) inc_gpu(int*a d, intN){

int idx: int 1dx = blockldx.x* blockDim.Xx

for (idx =0;idx<N;idx++) +threadldx.x;

a[idx]=a[idx] + 1; It (1dx < N)

} a d[1dx] = a d[1dx] + 1;

. }
voidmain() void main()
{ {

ir-u-:_cpu(a, N); " } _
) dim3dimBlock (blocksize);

dim3dimGrid(cer L (N/
(float)blocksize));

Inc_gpu<<<dimGrid,
dimBlock>>>(a_d, N);

}

Sep. 2021 Advanced Course in Massively Parallel Computing 28

Example (host-side program)

// allocate host memory
iInt numBytes = N * sizeof(float)
float* h_ A = (float*) malloc(numBytes);

// allocate device memory
// float* d A = O;
cudaMalloc((vord**)&d A, numbytes);

// Copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// Execute kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy back data from device to host
cudaMemcpy(h_A, d A, numBytes, cudaMemcpyDeviceToHost);

74, bhee devICe Memory surse in Massively Parallel Computi 2
€ vance ourse In viassive araliel Computin
SHAFree(d A):; y SR

Sep. 2021

int main() {

}

float *a = new Float[N*N];

float *b = new Float[N*N];

float *c = new Float[N*N];

for Cint 1 = 0; 1 < N*N; ++1) {
a[i] = 1.0f: bLi] = 3.5F; 3

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);
cudaMalloc((void**)&ad, size);
cudaMalloc((void**)&bd, size);
cudaMalloc((void**)&cd, size);

cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice);

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);

add_matrix<<<dimGrid, dimBlock>>>(ad, bd, cd, N);

cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);

cudaFree(ad); cudaFree(bd); cudaFree(cd);
delete[] a; delete[] b; delete[] c;

return EAlJansld&ok=Rein Massively Parallel Computing

30

CUDA Qualifiers for variable

o0 _ device
— Allocated in device global memory (Large, high-latency, no cache)
— Allocated by cudaMalloc (__device _is default)
— Access by every thread.
— extent: during execution of application

o0 _ shared

— Stored in on-chip “shared memory” (SRAM, low latency)
— Allocated by execution configuration or at compile time
— Accessible by all threads in the same thread block

o0 Unqualified variables
— Scalars and built-in vector types are stored in registers
— Arrays may be in registers or local memory (registers are not addressable)

Sep. 2021 Advanced Course in Massively Parallel Computing 31

How to use/specify shared memory

Compile time Invocation time

__global __ void kernel(.) __global __ void kernel(.)

{ {

__shared _ float sData[256]; extern _ shared float sData[];
+ +

int main(void)

{ int main(void)

{
kernel<<<nBlocks,blockSize>>>(..);

} smBytes =

blockSize*sizeof(float);
kernel<<<nBlocks, blockSize,
smBytes>>>(..);

Sep. 2021 Advanced Course in Massiv}ly Parallel Computing 32

GPU Thread Synchronization

o0 void _ syncthreads();
— Synchronizes all threads in a block
— Generates barrier synchronization instruction

— No thread can pass this barrier until all threads in the block reach it

— Used to avoid RAW / WAR / WAW hazards when accessing shared
memory

o0 Allowed in conditional code only if the conditional is uniform
across the entire thread block

0 Synchronization between blocks is not supported
— Done by host-side

Sep. 2021 Advanced Course in Massively Parallel Computing 33

Compiler

C Source program with CUDA is compiled
by nvcc.

Nvcc is a comile-driver:

— Execute required tools and cudacc, g++, cl

Nvcc generates following codes:
— C object code (CPU code)
— PTX code for GPU
— Glue code to call GPU from CPU

Objects required to execute CUDA program
— CUDA core library (cuda)
— CUDA runtime library (cudart)

Sep. 2021 Advanced Course in Massively Parallel Computing 34

Optimization of GPU Programming

o0 Maximize parallel using GPGPU

o0 Optimize/ avoid memory access to global memory
— Rather than storing data, re-computation may be cheaper in some cases

— Coalescing memory access
— Use cache in recent NVIDIA GPGPU

o0 Optimize/avoid communication between CPU(host) and GPU
(Device)
— Communication through PCI Express is expensive

— Re-computing (redundant computing) may be cheaper than
communications.

Sep. 2021 Advanced Course in Massively Parallel Computing 35

Optimization of Memory access

o0 Coalescing global memory access
— Combine memory access to contiguous area

o0 Make use of shared memory

— Much faster than global memory (several x 100 times faster)
= On-chip Memory
= Low latency

— Threads in block share the memory.
— All threads can share the data computed by other threads.

— To load shared memory from global memory, coalesce the memory
and use them

o0 Use cache (shared memory) as in conventional CPU
— Recent GPGPU has a cache at the same level of shared memory

Sep. 2021 Advanced Course in Massively Parallel Computing 36

Optimization of Host-device communication

o0 The bandwidth between host and device Is very narrow
compared with the bandwidth of device memory.
— Peak bandwidth 4GB/s (PCle x16 1.0) vs. 76 GB/s (Tesla C870)

o0 Minimize the communication between host-device

— Intermediate results must be kept in device memory to avoid
communications

o0 Grouping communication

— Large chunk of communication is more efficient than several small chunk
of communications

0 Asynchronous communication

— Make use of stream
S—ep'éﬁ%}aMemcpyA§§9Y?€(?ﬂ’s‘f?‘§i‘eci,”Mﬁ?f"&‘hp@éﬂﬂr‘?,o95‘“”9 37

Host Synchronization

o0 All kernel launches are asynchronous
— control returns to CPU immediately
— Kkernel executes after all previous CUDA calls have completed

o0 cudaMemcpy () is synchronous

— control returns to CPU after copy complete
— copy starts after all previous CUDA calls have completed

0 cudaThreadSynchronize()
— blocks until all previous CUDA calls complete

Sep. 2021 Advanced Course in Massively Parallel Computing

38

GPU by Libraries

0 NVIDIA Library
— CUFFT Fast Fourier transform
— CuBLAS Basic Liner Algebra Lib (Dense matrix)
— CUuSPARSE Sparse Matrix lib
— CuSOLVER Matrix Solvers (Dense and Sparse)
— CuDNN Deep neural network
— CURAND random number generator

Sep. 2021 Advanced Course in Massively Parallel Computing

39

APIs for GPU Libs

O O O O O 0O O O 04

. Make handle

. Allocate device memory

. Transfer data to device from host

. Convert input data format in GPU

. Execute functions

. Convert output data format for host
. Transfer data from device to host

. Deallocate device memory

. Remove handle

O© 00O N O O1T & W0 DN B

Sep. 2021 Advanced Course in Massively Parallel Computing 40

float *hstA,*hstB,*hstC;
float *devA, *devB, *devC;

= // {TH;RE C=aAB+BC MD/\TA—4
float alpha = 1.0F;
float beta = 0.0T;
// szie A B C
int num = 8192;
INt N2 = num*num;
size_t memSz = n2 * sizeof(float);
// allocate host memory
hstA=(float*)malloc(msmSz) ;
hstB=(float*)malloc(msmSz) ;
hstC=(float*)malloc(msmSz) ;

// Initialize hstA,hstB

// allocate device memory
cudaMalloc((void **)&devA,memSz);
cudaMalloc((void **)&devB,memSz);
cudaMalloc((void **)&devC,memSz);

//device memcpy
cublasSetVector(n2, sizeof(float), hstA, 1, devA, 1);

cublasSetVector(n2, sizeof(float), hstB, 1, devB, 1);
Sep. 2021 Advanced Course in Massively Parallel Computing

/77 = IA 28I\ /RN ILAEEE

41

APIs for GPU Libs

O O O O O 0O O O 04

. Make handle

. Allocate device memory

. Transfer data to device from host

. Convert input data format in GPU

. Execute functions

. Convert output data format for host
. Transfer data from device to host

. Deallocate device memory

. Remove handle

O© 00O N O O1T & W0 DN B

Sep. 2021 Advanced Course in Massively Parallel Computing 42

// make handle
cublasHandle t handle;
cublasCreate(&handle);
// call blas
cublasSgemm(
handle,
CUBLAS OP_N, //115IA ScBHHE
CUBLAS OP_N, //11%IB ScBH
num, // #col of A
num, // #row of B
num, // #row of A (== #col of B)
&alpha, //
devA, // A
num, // #col of A
devB, // B
num, // #col of B
&beta, 7/
devC, // C
num // #col of C
);
status = cublasDestroy(handle);
// get result
cublasGetVector(n2, sizeof(float), devC, 1, hstC, 1)
// free

CUdaFreZe devA); Ad dC in Massively Parallel C ti
Cuda“lqg?"eg HevB) ; vanced Course in Massively Parallel Computing

~riAdaEvraal Ao/ -

43

GPU for DL/AI

0 cuDNN - GPU Library for Deep Learning
— Mainly for training

— Fast convolution (2D, 3D) for CNN (Convolution Neural
Network)

— Used by Caffe, PyTorch, ...

Convolution Layer - Forward DEVIEW

fffff

(=1}
iy (1) ' Al A=1)
¥, B+ Y KijnY
j=1

Filter
(3: Lmaps

54: f.maps

(1: Feature Maps 16210610 1@5x5
B 8x28

' 6@14x14 o

C5: Layer

n P et
!‘F ¥ L_l'l N W -J"ﬁ
I A ¥a ' ' oy]
1 A B - b :Ii W .‘-L5+ "’4‘*&
2 G — W '.|+1b'1_\'5 M'j.l'.I‘ “"-i'ris
X6 L ; 2 ¥ 4=WI ""ﬁ+“Ij‘xﬁ+w3'tx 'H",.tl]
}%_ [| — convolution

Connections
Convolutions Subsampling Convolutions Subsampling Full .
Sep. 2021 dvanced Course in MassivelyParallelitzomputing 44

Connection

Performance of cuDNN

0 https://www.
slideshare.ne

t/NVIDIAJa T
AlexMet [A. Hrizhewky et al., 21012)

pan/1072-

cuda Images Trained Per Day (Caffe AlexNet)

L
=

43M

)
>

)
o

P
o

:
£
5
LA
5
E

=)

0
Sep. 2021 A 16 Core CPU GTX Titan Titan Black Titan X
» cuDNN w1 cuDNN v2

Final remarks

0 GPGPU is a good solution for apps which can be parallelized
for GPU.

— It can be very good esp. when the app fits into one GPU.

— If the apps needs more than one GPU, the cost of
communication may kill performance.

0 Programming in CUDA is still difficult ...

— Performance tuning, memory layout ...
— OpenACC / OpenMP will help you!

Sep. 2021 Advanced Course in Massively Parallel Computing 46

	GPU Programming (1)
	Outline
	GPU Computing
	Applications（From NVIDIA’s slides, 2010?）
	CPU vs. GPU
	NVIDIA GPGPU’s architecture
	CUDA (Compute Unified Device Architecture)
	CUDA Programming model (1/2)
	CUDA Programming model (2/2)
	Example: Element-wise Matrix Add
	How Threads are executed
	An example of GPGPU configuration
	スライド番号 13
	スライド番号 14
	スライド番号 15
	Ampere 100
	Invoke (Launching) Kernel
	CUDA kernel and thread
	スライド番号 19
	Grid, Block, thread and �Memory hierarchy
	Memory management (1/2)
	Memory management (2/2)
	Executing Code on the GPU
	Function Qualifiers
	CUDA Built-in Device Variables
	A simple example
	A simple example
	Example code to increment array elements
	Example (host-side program)
	スライド番号 30
	CUDA Qualifiers for variable
	How to use/specify shared memory
	GPU Thread Synchronization
	Compiler
	Optimization of GPU Programming
	Optimization of Memory access
	Optimization of Host-device communication
	Host Synchronization
	GPU by Libraries
	APIs for GPU Libs
	スライド番号 41
	APIs for GPU Libs
	スライド番号 43
	GPU for DL/AI
	Performance of cuDNN
	Final remarks

