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Outline

 Why GPU is emerging?

 GPU programming environment (1)
− CUDA
− GPU by Libraries

 GPU programming environment (2)
− OpenCL, SYCL
− OpenMP/OpenACC
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GPU Computing
 GPGPU - General-Purpose Graphic Processing Unit

− A technology to make use of GPU for general-purpose computing (scientific 
applications)

 CUDA （Compute Unified Device Architecture）
− Co-designed Hardware and Software to exploit computing power of NVIDIA 

GPU for GP computing.
− (In other words), in order to obtain full performance of GPGPU,  a program 

must be written in CUDA language.

 It is attracting many people’s interest since GPU enables great 
performance much more than that of CPU (even multi-core) in some 
scientific fields. 

 Why GPGPU now?－－ price (cost-performance)!!!
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Applications（From NVIDIA’s slides, 2010?）
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CPU vs. GPU

CPU

memory

GPGPU

Graphic 
memory

PCIe
Connected 
via PCIexpress

Computing performance Memory bandwidth
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NVIDIA GPGPU’s architecture
 Many multiprocessor in a chip

− eight Scalar Processor (SP) cores,
− two special function units for transcendentals
− a multithreaded instruction unit
− on-chip shared Memory

 SIMT (single-instruction, multiple-thread). 
− The multiprocessor maps each thread to one scalar 

processor core, and each scalar thread executes 
independently with its own instruction address and 
register state.

− creates, manages, schedules, and executes threads in 
groups of 32 parallel threads called warps.

 Complex memory hierarchy
− Device Memory (Global Memory)
− Shared Memory
− Constant Cache
− Texture Cache
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CUDA (Compute Unified Device Architecture)

 C programming language on GPUs
 Requires no knowledge of graphics APIs or GPU 

programming
 Access to native instructions and memory
 Easy to get started and to get real performance benefit
 Designed and developed by NVIDIA
 Requires an NVIDIA GPU (GeForce 8xxx/Tesla, ….)
 Stable, available (for free), documented and supported
 For both Windows and Linux
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CUDA Programming model (1/2)
 GPU is programmed as a compute device working as co-processor from 

CPU(host).
− Codes  for data-parallel, compute intensive part are offloaded as functions to 

the device
− Offload hot-spot in the program which is frequently executed on the same data

 For example,  data-parallel loop on the same data
− Call “kernel” a code of the function compiled as a function for the device
− Kernel is executed by multiple threads of  device.

 Only one kernel is executed on the device at a time.

− Host (CPU) and device(GPU) has its owns memory, host memory and device 
memory

− Data is copied between both memory.

CPU

memory

GPGPU

Graphic 
memory

PCIe

Sep. 2021 Advanced Course in Massively Parallel Computing 8



CUDA Programming model (2/2)
 Computational Grid  is composed of 

multiple thread blocks
 Thread block includes multiple 

threads
 Each thread executes kernel

− A function executed by each thread 
called “kernel”

− Kernel  can be thought as one 
iteration in parallel loop

 Computational Grid and block can 
have 1,2,3 dimension

 The reserved variable, blockID and 
threadID have ID of threads.
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Example: Element-wise Matrix Add
void add_matrix
( float* a, float* b, float* c, int N ) {

int index;
for ( int i = 0; i < N; ++i )
for ( int j = 0; j < N; ++j ) {
index = i + j*N;
c[index] = a[index] + b[index];

}
}
int main() {
add_matrix( a, b, c, N );

}
__global__ add_matrix
( float* a, float* b, float* c, int N ) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j*N;
if ( i < N && j < N )
c[index] = a[index] + b[index];

}
int main() {

dim3 dimBlock( blocksize, blocksize );
dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );
add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N );

}

CPU program

The nested for-
loops are 
replaced with an 
implicit grid

CUDA program
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How Threads are executed
 SM (Streaming 

Multiprocessor) execute  
blocks in SIMD (single 
instruction/multiple data)。

 SM consists of 8 processors
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An example of GPGPU configuration
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Tesla C1060
#core: 240 cores
Clock Frequency: 1.3GHz
memory capacity: 4GB
Performance (SP): 933GFlops (peak)
Performance (DP): 78GFlops (peak)
Memory Bandwidth: 102GB/sec
Standard Power Consumption: 187.8W
Floating Point Format: IEEE 754 SP/DP
Host Intf: PCI Express x16 (PCIe 2.0)

2008!
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2018

Volta v100
#core: 5129 cores (80SM)
Clock Frequency: 1.455GHz (boost)
memory capacity: 16GB
Performance (SP): 15TFlops (peak)
Performance (DP): 7.5TFlops (peak)
Memory Bandwidth: 1TB/sec ???
Standard Power Consumption: ??? W
Floating Point Format: IEEE 754 SP/DP
Host Intf: PCI Express x16 (PCIe 3.0)Sep. 2021 Advanced Course in Massively Parallel Computing 14
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Ampere 100

Ampere A100
#core: 6,912 cores
Clock Frequency: ????
memory capacity: 40 GB
Performance (SP): 19.5 TFlops (peak)
Performance (DP): 9.7 TFlops (peak)
Memory Bandwidth: 1.6 TB/sec
Standard Power Consumption: 400 W
Floating Point Format: IEEE 754 SP/DP
Host Intf: PCI Express x ?? (PCIe 4.0)Sep. 2021 Advanced Course in Massively Parallel Computing 16



Invoke (Launching) Kernel

 Host processor invoke the execution of kernel in this form 
similar to function call:

kernel<<<dim3 grid, dim3 block, shmem_size>>>(…)

 Execution Configuation ( “<<< >>>”)
− Dimension of computational grid : x and y
− Dimension of thread block: x、y、z

dim3 grid(16 16);
dim3 block(16,16);
kernel<<<grid, block>>>(...);
kernel<<<32, 512>>>(...);

Sep. 2021 Advanced Course in Massively Parallel Computing 17



CUDA kernel and thread

 Parallel part of applications are executed as a kernel of 
CUDA on the device
− One kernel is executed at a time
− Many threads execute kernel  function  in parallel.

 Difference between CUDA thread and CPU thread
− CUDA thread is a very light-weight thread

 Overhead of thread creation is very small
 Thread switching is also very fast since it is supported by hardware.

− CUDA exploit its performance and efficient execution by a thousands 
of threads.
 Conventional Multicore supports only a few threads (by software)

Sep. 2021 Advanced Course in Massively Parallel Computing 18



Execution of 
CPU Code and 
Kernel code by 
Device
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Grid, Block, thread and 
Memory hierarchy

 Thread can access local 
memory (per-thread)

 Thread can access “shared 
memory” on chip, which is 
attached for each thread 
block (SM).

 Thread in Computational 
Grid access and share a 
global memory.
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Memory management (1/2)

 CPU and GPU have different memory space.
 Hosts（CPU）manages device (GPU）memory

 Allocation and Deallocation of GPU memory
− cudaMalloc(void ** pointer, size_t nbytes)
− cudaMemset(void * pointer, int value, size_t count)
− cudaFree(void* pointer)

int n = 1024;
int nbytes = 1024*sizeof(int);
int *d_a = 0;
cudaMalloc( (void**)&d_a nbytes );
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);
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Memory management (2/2)

 Data copy operation between CPU and device
− cudaMemcpy(void *dst, void *src, size_t
nbytes, enum cudaMemcpyKind direction);
 Direction specifies how to copy from src to dst , see below
 Block  a caller of CPU thread (execution) until the memory transfer 

completes. 
 Copy operation starts after previous CUDA calls.

− enum cudaMemcpyKind
 cudaMemcpyHostToDevice
 cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice
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Executing Code on the GPU

 Kernels are C functions with some restrictions
− Can only access GPU memory
− Must have void return type
− No variable number of arguments (“varargs”)
− Not recursive
− No static variables
− Function arguments

 Function arguments automatically copied from CPU 
to GPU memory
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Function Qualifiers

 __global__ : invoked from within host (CPU) code, 
cannot be called from device (GPU) code must return void

 __device__ : called from other GPU functions, 
cannot be called from host (CPU) code

 __host__ : can only be executed by CPU, called from host

 __host__ and __device__ can be combined.
− Sample use: overloading operators
− Compiler will generate both CPU and GPU code
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CUDA Built-in Device Variables

 __global__ and __device__ functions have access to 
these automatically defined variables

− dim3 gridDim;
 Dimensions of the grid in blocks (at most 2D)

− dim3 blockDim;
 Dimensions of the block in threads

− dim3 blockIdx;
 Block index within the grid

− dim3 threadIdx;
 Thread index within the block
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A simple example

__global__ void minimal( int* d_a)
{

*d_a = 13;
}

__global__ void assign( int* d_a, int value)
{

int idx = blockDim.x * blockIdx.x + threadIdx.x;
d_a[idx] = value;

}
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A simple example

__global__ void assign2D(int* d_a, int w, int h, int value)
{

int iy = blockDim.y * blockIdx.y + threadIdx.y;
int ix = blockDim.x * blockIdx.x + threadIdx.x;
int idx = iy * w + ix;
d_a[idx] = value;

}
...
assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);
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Example code to increment array elements

void inc_cpu(int*a, intN)
{

int idx; 
for (idx =0;idx<N;idx++) 
a[idx]=a[idx] + 1;

}

voidmain()
{
...
inc_cpu(a, N);
}

__global__ void
inc_gpu(int*a_d, intN){
int idx = blockIdx.x* blockDim.x

+threadIdx.x;
if (idx < N)
a_d[idx] = a_d[idx] + 1;

}
void main()
{

…
dim3dimBlock (blocksize);
dim3dimGrid(ceil(N/

(float)blocksize));
inc_gpu<<<dimGrid,

dimBlock>>>(a_d, N);
}

CPU code CUDA codes
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Example (host-side program)
// allocate host memory
int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
// float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// Copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// Execute kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy back data from device to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);Sep. 2021 Advanced Course in Massively Parallel Computing 29



int main() {
float *a = new float[N*N];
float *b = new float[N*N];
float *c = new float[N*N];

for ( int i = 0; i < N*N; ++i ) {
a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;
const int size = N*N*sizeof(float);
cudaMalloc( (void**)&ad, size );
cudaMalloc( (void**)&bd, size );
cudaMalloc( (void**)&cd, size );

cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice );
cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice );

dim3 dimBlock( blocksize, blocksize );
dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );
add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N );

cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );

cudaFree( ad ); cudaFree( bd ); cudaFree( cd );
delete[] a; delete[] b; delete[] c;
return EXIT_SUCCESS;

}
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CUDA Qualifiers for variable 
 __device__

− Allocated in device global memory（Large, high-latency, no cache）
− Allocated by cudaMallocで（__device__ is default）
− Access by every thread.
− extent: during execution of application

 __shared__
− Stored in on-chip “shared memory” (SRAM, low latency)
− Allocated by execution configuration or at compile time
− Accessible by all threads in the same thread block

 Unqualified variables
− Scalars and built-in vector types are stored in registers
− Arrays may be in registers or local memory (registers are not addressable)
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How to use/specify shared memory

__global__ void kernel(…)
{
…
__shared__ float sData[256];
…
}
int main(void)
{
…
kernel<<<nBlocks,blockSize>>>(…);
}

__global__ void kernel(…)
{

…
extern __shared__ float sData[];
…

}

int main(void)
{

…
smBytes =
blockSize*sizeof(float);
kernel<<<nBlocks, blockSize,

smBytes>>>(…);
…

}

Compile time Invocation time
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GPU Thread Synchronization
 void __syncthreads();

− Synchronizes all threads in a block
− Generates barrier synchronization instruction
− No thread can pass this barrier until all threads in the block reach it
− Used to avoid RAW / WAR / WAW hazards when accessing shared 

memory

 Allowed in conditional code only if the conditional is uniform 
across the entire thread block

 Synchronization between blocks is not supported
− Done by host-side
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Compiler
 C Source program with CUDA is compiled 

by nvcc.

 Nvcc is a comile-driver:
− Execute required tools and  cudacc、g++、cl

 Nvcc generates following codes:
− C object code（CPU code）
− PTX code for GPU
− Glue code to call GPU from CPU

 Objects required to execute CUDA program
− CUDA core library（cuda）
− CUDA runtime library（cudart）
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Optimization of GPU Programming

 Maximize parallel using GPGPU

 Optimize/ avoid memory access to global memory
− Rather than storing data, re-computation may be cheaper in some cases
− Coalescing memory access
− Use cache in recent NVIDIA GPGPU

 Optimize/avoid communication between CPU(host) and GPU 
(Device)
− Communication through PCI Express is expensive
− Re-computing (redundant computing) may be cheaper than 

communications.
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Optimization of Memory access
 Coalescing global memory access

− Combine memory access to contiguous area

 Make use of shared memory
− Much faster than global memory (several x 100 times faster)

 On-chip Memory
 Low latency

− Threads in block share the memory.
− All threads can share the data computed by other threads.
− To load shared memory from global memory, coalesce the memory 

and use them

 Use cache (shared memory) as in conventional CPU
− Recent GPGPU has a cache at the same level of shared memory
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Optimization of Host-device communication

 The bandwidth between host and device is very narrow 
compared with the bandwidth of device memory.
− Peak bandwidth 4GB/s （PCIe x16 1.0） vs. 76 GB/s （Tesla C870）

 Minimize the communication between host-device
− Intermediate results must be kept in device memory to avoid 

communications

 Grouping communication 
− Large chunk of communication is more efficient than several small chunk 

of communications

 Asynchronous communication
− Make use of stream
− cudaMemcpyAsync(dst, src, size, direction, 0);Sep. 2021 Advanced Course in Massively Parallel Computing 37



Host Synchronization

 All kernel launches are asynchronous
− control returns to CPU immediately
− kernel executes after all previous CUDA calls have completed

 cudaMemcpy() is synchronous
− control returns to CPU after copy complete
− copy starts after all previous CUDA calls have completed

 cudaThreadSynchronize()
− blocks until all previous CUDA calls complete
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GPU by Libraries

 NVIDIA Library
− CuFFT Fast Fourier transform
− CuBLAS Basic Liner Algebra Lib (Dense matrix)
− CuSPARSE Sparse Matrix lib
− CuSOLVER Matrix Solvers (Dense and Sparse)
− CuDNN Deep neural network
− CuRAND random number generator
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APIs for GPU Libs

 1. Make handle
 2. Allocate device memory
 3. Transfer data to device from host
 4. Convert input data format in GPU
 5. Execute functions
 6. Convert output data format for host
 7. Transfer data from device to host
 8. Deallocate device memory
 9. Remove handle
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float *hstA,*hstB,*hstC;
float *devA,*devB,*devC;

// 行列演算 C=αAB+βC のパラメータ
float alpha = 1.0f;
float beta = 0.0f;
// szie A B C
int num = 8192; 
int n2 = num*num;
size_t memSz = n2 * sizeof(float);
// allocate host memory
hstA=(float*)malloc(msmSz);
hstB=(float*)malloc(msmSz);
hstC=(float*)malloc(msmSz);

// Initialize hstA,hstB
// allocate device memory
cudaMalloc((void **)&devA,memSz);
cudaMalloc((void **)&devB,memSz);
cudaMalloc((void **)&devC,memSz);

//device memcpy
cublasSetVector(n2, sizeof(float), hstA, 1, devA, 1);
cublasSetVector(n2, sizeof(float), hstB, 1, devB, 1);

// デバイス側ハンドル作成
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APIs for GPU Libs

 1. Make handle
 2. Allocate device memory
 3. Transfer data to device from host
 4. Convert input data format in GPU
 5. Execute functions
 6. Convert output data format for host
 7. Transfer data from device to host
 8. Deallocate device memory
 9. Remove handle
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// make handle
cublasHandle_t handle; 
cublasCreate(&handle);
// call blas
cublasSgemm(    

handle,
CUBLAS_OP_N, //行列A 転置有無
CUBLAS_OP_N, //行列B 転置有無
num,    // #col of A
num,    // #row of B
num,    // #row of A (== #col of B)
&alpha, // 
devA,   // A
num,    // #col of A
devB,   // B
num,    // #col of B
&beta,  // 
devC,   // C
num // #col of C

);
status = cublasDestroy(handle);
// get result
cublasGetVector(n2, sizeof(float), devC, 1, hstC, 1)
// free
cudaFree(devA);
cudaFree(devB);
cudaFree(devC);
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GPU for DL/AI
 cuDNN - GPU Library for Deep Learning

− Mainly for training
− Fast convolution (2D, 3D) for CNN (Convolution Neural 

Network)
− Used by Caffe, PyTorch, …

convolution
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Performance of cuDNN

 https://www.
slideshare.ne
t/NVIDIAJa
pan/1072-
cuda
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Final remarks

 GPGPU is a good solution for apps which can be parallelized 
for GPU.
− It can be very good esp. when the app fits into one GPU.
− If the apps needs more than one GPU, the cost of 

communication may kill performance.

 Programming in CUDA is still difficult ...
− Performance tuning, memory layout ...
− OpenACC / OpenMP will help you!
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