
GPU Programming (1)

M. Sato

RIKEN R-CCS
and University of Tsukuba

Sep. 2021 Advanced Course in Massively Parallel Computing 1

Outline

 Why GPU is emerging?

 GPU programming environment (1)
− CUDA
− GPU by Libraries

 GPU programming environment (2)
− OpenCL, SYCL
− OpenMP/OpenACC

Sep. 2021 Advanced Course in Massively Parallel Computing 2

GPU Computing
 GPGPU - General-Purpose Graphic Processing Unit

− A technology to make use of GPU for general-purpose computing (scientific
applications)

 CUDA （Compute Unified Device Architecture）
− Co-designed Hardware and Software to exploit computing power of NVIDIA

GPU for GP computing.
− (In other words), in order to obtain full performance of GPGPU, a program

must be written in CUDA language.

 It is attracting many people’s interest since GPU enables great
performance much more than that of CPU (even multi-core) in some
scientific fields.

 Why GPGPU now?－－ price (cost-performance)!!!
Sep. 2021 Advanced Course in Massively Parallel Computing 3

Applications（From NVIDIA’s slides, 2010?）

Sep. 2021 Advanced Course in Massively Parallel Computing 4

CPU vs. GPU

CPU

memory

GPGPU

Graphic
memory

PCIe
Connected
via PCIexpress

Computing performance Memory bandwidth

Sep. 2021 Advanced Course in Massively Parallel Computing 5

NVIDIA GPGPU’s architecture
 Many multiprocessor in a chip

− eight Scalar Processor (SP) cores,
− two special function units for transcendentals
− a multithreaded instruction unit
− on-chip shared Memory

 SIMT (single-instruction, multiple-thread).
− The multiprocessor maps each thread to one scalar

processor core, and each scalar thread executes
independently with its own instruction address and
register state.

− creates, manages, schedules, and executes threads in
groups of 32 parallel threads called warps.

 Complex memory hierarchy
− Device Memory (Global Memory)
− Shared Memory
− Constant Cache
− Texture Cache

Sep. 2021 Advanced Course in Massively Parallel Computing 6

CUDA (Compute Unified Device Architecture)

 C programming language on GPUs
 Requires no knowledge of graphics APIs or GPU

programming
 Access to native instructions and memory
 Easy to get started and to get real performance benefit
 Designed and developed by NVIDIA
 Requires an NVIDIA GPU (GeForce 8xxx/Tesla, ….)
 Stable, available (for free), documented and supported
 For both Windows and Linux

Sep. 2021 Advanced Course in Massively Parallel Computing 7

CUDA Programming model (1/2)
 GPU is programmed as a compute device working as co-processor from

CPU(host).
− Codes for data-parallel, compute intensive part are offloaded as functions to

the device
− Offload hot-spot in the program which is frequently executed on the same data

 For example, data-parallel loop on the same data
− Call “kernel” a code of the function compiled as a function for the device
− Kernel is executed by multiple threads of device.

 Only one kernel is executed on the device at a time.

− Host (CPU) and device(GPU) has its owns memory, host memory and device
memory

− Data is copied between both memory.

CPU

memory

GPGPU

Graphic
memory

PCIe

Sep. 2021 Advanced Course in Massively Parallel Computing 8

CUDA Programming model (2/2)
 Computational Grid is composed of

multiple thread blocks
 Thread block includes multiple

threads
 Each thread executes kernel

− A function executed by each thread
called “kernel”

− Kernel can be thought as one
iteration in parallel loop

 Computational Grid and block can
have 1,2,3 dimension

 The reserved variable, blockID and
threadID have ID of threads.

Sep. 2021 Advanced Course in Massively Parallel Computing 9

Example: Element-wise Matrix Add
void add_matrix
(float* a, float* b, float* c, int N) {

int index;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {
index = i + j*N;
c[index] = a[index] + b[index];

}
}
int main() {
add_matrix(a, b, c, N);

}
__global__ add_matrix
(float* a, float* b, float* c, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j*N;
if (i < N && j < N)
c[index] = a[index] + b[index];

}
int main() {

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

CPU program

The nested for-
loops are
replaced with an
implicit grid

CUDA program

Sep. 2021 Advanced Course in Massively Parallel Computing 10

How Threads are executed
 SM (Streaming

Multiprocessor) execute
blocks in SIMD (single
instruction/multiple data)。

 SM consists of 8 processors

Sep. 2021 Advanced Course in Massively Parallel Computing 11

An example of GPGPU configuration

Sep. 2021 Advanced Course in Massively Parallel Computing 12

Tesla C1060
#core: 240 cores
Clock Frequency: 1.3GHz
memory capacity: 4GB
Performance (SP): 933GFlops (peak)
Performance (DP): 78GFlops (peak)
Memory Bandwidth: 102GB/sec
Standard Power Consumption: 187.8W
Floating Point Format: IEEE 754 SP/DP
Host Intf: PCI Express x16 (PCIe 2.0)

2008!

Sep. 2021 Advanced Course in Massively Parallel Computing 13

2018

Volta v100
#core: 5129 cores (80SM)
Clock Frequency: 1.455GHz (boost)
memory capacity: 16GB
Performance (SP): 15TFlops (peak)
Performance (DP): 7.5TFlops (peak)
Memory Bandwidth: 1TB/sec ???
Standard Power Consumption: ??? W
Floating Point Format: IEEE 754 SP/DP
Host Intf: PCI Express x16 (PCIe 3.0)Sep. 2021 Advanced Course in Massively Parallel Computing 14

Sep. 2021 Advanced Course in Massively Parallel Computing 15

Ampere 100

Ampere A100
#core: 6,912 cores
Clock Frequency: ????
memory capacity: 40 GB
Performance (SP): 19.5 TFlops (peak)
Performance (DP): 9.7 TFlops (peak)
Memory Bandwidth: 1.6 TB/sec
Standard Power Consumption: 400 W
Floating Point Format: IEEE 754 SP/DP
Host Intf: PCI Express x ?? (PCIe 4.0)Sep. 2021 Advanced Course in Massively Parallel Computing 16

Invoke (Launching) Kernel

 Host processor invoke the execution of kernel in this form
similar to function call:

kernel<<<dim3 grid, dim3 block, shmem_size>>>(…)

 Execution Configuation (“<<< >>>”)
− Dimension of computational grid : x and y
− Dimension of thread block: x、y、z

dim3 grid(16 16);
dim3 block(16,16);
kernel<<<grid, block>>>(...);
kernel<<<32, 512>>>(...);

Sep. 2021 Advanced Course in Massively Parallel Computing 17

CUDA kernel and thread

 Parallel part of applications are executed as a kernel of
CUDA on the device
− One kernel is executed at a time
− Many threads execute kernel function in parallel.

 Difference between CUDA thread and CPU thread
− CUDA thread is a very light-weight thread

 Overhead of thread creation is very small
 Thread switching is also very fast since it is supported by hardware.

− CUDA exploit its performance and efficient execution by a thousands
of threads.
 Conventional Multicore supports only a few threads (by software)

Sep. 2021 Advanced Course in Massively Parallel Computing 18

Execution of
CPU Code and
Kernel code by
Device

Sep. 2021 Advanced Course in Massively Parallel Computing 19

Grid, Block, thread and
Memory hierarchy

 Thread can access local
memory (per-thread)

 Thread can access “shared
memory” on chip, which is
attached for each thread
block (SM).

 Thread in Computational
Grid access and share a
global memory.

Sep. 2021 Advanced Course in Massively Parallel Computing 20

Memory management (1/2)

 CPU and GPU have different memory space.
 Hosts（CPU）manages device (GPU）memory

 Allocation and Deallocation of GPU memory
− cudaMalloc(void ** pointer, size_t nbytes)
− cudaMemset(void * pointer, int value, size_t count)
− cudaFree(void* pointer)

int n = 1024;
int nbytes = 1024*sizeof(int);
int *d_a = 0;
cudaMalloc((void**)&d_a nbytes);
cudaMemset(d_a, 0, nbytes);
cudaFree(d_a);

Sep. 2021 Advanced Course in Massively Parallel Computing 21

Memory management (2/2)

 Data copy operation between CPU and device
− cudaMemcpy(void *dst, void *src, size_t
nbytes, enum cudaMemcpyKind direction);
 Direction specifies how to copy from src to dst , see below
 Block a caller of CPU thread (execution) until the memory transfer

completes.
 Copy operation starts after previous CUDA calls.

− enum cudaMemcpyKind
 cudaMemcpyHostToDevice
 cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice

Sep. 2021 Advanced Course in Massively Parallel Computing 22

Executing Code on the GPU

 Kernels are C functions with some restrictions
− Can only access GPU memory
− Must have void return type
− No variable number of arguments (“varargs”)
− Not recursive
− No static variables
− Function arguments

 Function arguments automatically copied from CPU
to GPU memory

Sep. 2021 Advanced Course in Massively Parallel Computing 23

Function Qualifiers

 __global__ : invoked from within host (CPU) code,
cannot be called from device (GPU) code must return void

 __device__ : called from other GPU functions,
cannot be called from host (CPU) code

 __host__ : can only be executed by CPU, called from host

 __host__ and __device__ can be combined.
− Sample use: overloading operators
− Compiler will generate both CPU and GPU code

Sep. 2021 Advanced Course in Massively Parallel Computing 24

CUDA Built-in Device Variables

 __global__ and __device__ functions have access to
these automatically defined variables

− dim3 gridDim;
 Dimensions of the grid in blocks (at most 2D)

− dim3 blockDim;
 Dimensions of the block in threads

− dim3 blockIdx;
 Block index within the grid

− dim3 threadIdx;
 Thread index within the block

Sep. 2021 Advanced Course in Massively Parallel Computing 25

A simple example

__global__ void minimal(int* d_a)
{

*d_a = 13;
}

__global__ void assign(int* d_a, int value)
{

int idx = blockDim.x * blockIdx.x + threadIdx.x;
d_a[idx] = value;

}

Sep. 2021 Advanced Course in Massively Parallel Computing 26

A simple example

__global__ void assign2D(int* d_a, int w, int h, int value)
{

int iy = blockDim.y * blockIdx.y + threadIdx.y;
int ix = blockDim.x * blockIdx.x + threadIdx.x;
int idx = iy * w + ix;
d_a[idx] = value;

}
...
assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

Sep. 2021 Advanced Course in Massively Parallel Computing 27

Example code to increment array elements

void inc_cpu(int*a, intN)
{

int idx;
for (idx =0;idx<N;idx++)
a[idx]=a[idx] + 1;

}

voidmain()
{
...
inc_cpu(a, N);
}

__global__ void
inc_gpu(int*a_d, intN){
int idx = blockIdx.x* blockDim.x

+threadIdx.x;
if (idx < N)
a_d[idx] = a_d[idx] + 1;

}
void main()
{

…
dim3dimBlock (blocksize);
dim3dimGrid(ceil(N/

(float)blocksize));
inc_gpu<<<dimGrid,

dimBlock>>>(a_d, N);
}

CPU code CUDA codes

Sep. 2021 Advanced Course in Massively Parallel Computing 28

Example (host-side program)
// allocate host memory
int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
// float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// Copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// Execute kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy back data from device to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);Sep. 2021 Advanced Course in Massively Parallel Computing 29

int main() {
float *a = new float[N*N];
float *b = new float[N*N];
float *c = new float[N*N];

for (int i = 0; i < N*N; ++i) {
a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;
const int size = N*N*sizeof(float);
cudaMalloc((void**)&ad, size);
cudaMalloc((void**)&bd, size);
cudaMalloc((void**)&cd, size);

cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice);

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(ad, bd, cd, N);

cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);

cudaFree(ad); cudaFree(bd); cudaFree(cd);
delete[] a; delete[] b; delete[] c;
return EXIT_SUCCESS;

}
Sep. 2021 Advanced Course in Massively Parallel Computing 30

CUDA Qualifiers for variable
 __device__

− Allocated in device global memory（Large, high-latency, no cache）
− Allocated by cudaMallocで（__device__ is default）
− Access by every thread.
− extent: during execution of application

 __shared__
− Stored in on-chip “shared memory” (SRAM, low latency)
− Allocated by execution configuration or at compile time
− Accessible by all threads in the same thread block

 Unqualified variables
− Scalars and built-in vector types are stored in registers
− Arrays may be in registers or local memory (registers are not addressable)

Sep. 2021 Advanced Course in Massively Parallel Computing 31

How to use/specify shared memory

__global__ void kernel(…)
{
…
__shared__ float sData[256];
…
}
int main(void)
{
…
kernel<<<nBlocks,blockSize>>>(…);
}

__global__ void kernel(…)
{

…
extern __shared__ float sData[];
…

}

int main(void)
{

…
smBytes =
blockSize*sizeof(float);
kernel<<<nBlocks, blockSize,

smBytes>>>(…);
…

}

Compile time Invocation time

Sep. 2021 Advanced Course in Massively Parallel Computing 32

GPU Thread Synchronization
 void __syncthreads();

− Synchronizes all threads in a block
− Generates barrier synchronization instruction
− No thread can pass this barrier until all threads in the block reach it
− Used to avoid RAW / WAR / WAW hazards when accessing shared

memory

 Allowed in conditional code only if the conditional is uniform
across the entire thread block

 Synchronization between blocks is not supported
− Done by host-side

Sep. 2021 Advanced Course in Massively Parallel Computing 33

Compiler
 C Source program with CUDA is compiled

by nvcc.

 Nvcc is a comile-driver:
− Execute required tools and cudacc、g++、cl

 Nvcc generates following codes:
− C object code（CPU code）
− PTX code for GPU
− Glue code to call GPU from CPU

 Objects required to execute CUDA program
− CUDA core library（cuda）
− CUDA runtime library（cudart）

Sep. 2021 Advanced Course in Massively Parallel Computing 34

Optimization of GPU Programming

 Maximize parallel using GPGPU

 Optimize/ avoid memory access to global memory
− Rather than storing data, re-computation may be cheaper in some cases
− Coalescing memory access
− Use cache in recent NVIDIA GPGPU

 Optimize/avoid communication between CPU(host) and GPU
(Device)
− Communication through PCI Express is expensive
− Re-computing (redundant computing) may be cheaper than

communications.
Sep. 2021 Advanced Course in Massively Parallel Computing 35

Optimization of Memory access
 Coalescing global memory access

− Combine memory access to contiguous area

 Make use of shared memory
− Much faster than global memory (several x 100 times faster)

 On-chip Memory
 Low latency

− Threads in block share the memory.
− All threads can share the data computed by other threads.
− To load shared memory from global memory, coalesce the memory

and use them

 Use cache (shared memory) as in conventional CPU
− Recent GPGPU has a cache at the same level of shared memory

Sep. 2021 Advanced Course in Massively Parallel Computing 36

Optimization of Host-device communication

 The bandwidth between host and device is very narrow
compared with the bandwidth of device memory.
− Peak bandwidth 4GB/s （PCIe x16 1.0） vs. 76 GB/s （Tesla C870）

 Minimize the communication between host-device
− Intermediate results must be kept in device memory to avoid

communications

 Grouping communication
− Large chunk of communication is more efficient than several small chunk

of communications

 Asynchronous communication
− Make use of stream
− cudaMemcpyAsync(dst, src, size, direction, 0);Sep. 2021 Advanced Course in Massively Parallel Computing 37

Host Synchronization

 All kernel launches are asynchronous
− control returns to CPU immediately
− kernel executes after all previous CUDA calls have completed

 cudaMemcpy() is synchronous
− control returns to CPU after copy complete
− copy starts after all previous CUDA calls have completed

 cudaThreadSynchronize()
− blocks until all previous CUDA calls complete

Sep. 2021 Advanced Course in Massively Parallel Computing 38

GPU by Libraries

 NVIDIA Library
− CuFFT Fast Fourier transform
− CuBLAS Basic Liner Algebra Lib (Dense matrix)
− CuSPARSE Sparse Matrix lib
− CuSOLVER Matrix Solvers (Dense and Sparse)
− CuDNN Deep neural network
− CuRAND random number generator

Sep. 2021 Advanced Course in Massively Parallel Computing 39

APIs for GPU Libs

 1. Make handle
 2. Allocate device memory
 3. Transfer data to device from host
 4. Convert input data format in GPU
 5. Execute functions
 6. Convert output data format for host
 7. Transfer data from device to host
 8. Deallocate device memory
 9. Remove handle

Sep. 2021 Advanced Course in Massively Parallel Computing 40

float *hstA,*hstB,*hstC;
float *devA,*devB,*devC;

// 行列演算 C=αAB+βC のパラメータ
float alpha = 1.0f;
float beta = 0.0f;
// szie A B C
int num = 8192;
int n2 = num*num;
size_t memSz = n2 * sizeof(float);
// allocate host memory
hstA=(float*)malloc(msmSz);
hstB=(float*)malloc(msmSz);
hstC=(float*)malloc(msmSz);

// Initialize hstA,hstB
// allocate device memory
cudaMalloc((void **)&devA,memSz);
cudaMalloc((void **)&devB,memSz);
cudaMalloc((void **)&devC,memSz);

//device memcpy
cublasSetVector(n2, sizeof(float), hstA, 1, devA, 1);
cublasSetVector(n2, sizeof(float), hstB, 1, devB, 1);

// デバイス側ハンドル作成

Sep. 2021 Advanced Course in Massively Parallel Computing 41

APIs for GPU Libs

 1. Make handle
 2. Allocate device memory
 3. Transfer data to device from host
 4. Convert input data format in GPU
 5. Execute functions
 6. Convert output data format for host
 7. Transfer data from device to host
 8. Deallocate device memory
 9. Remove handle

Sep. 2021 Advanced Course in Massively Parallel Computing 42

// make handle
cublasHandle_t handle;
cublasCreate(&handle);
// call blas
cublasSgemm(

handle,
CUBLAS_OP_N, //行列A 転置有無
CUBLAS_OP_N, //行列B 転置有無
num, // #col of A
num, // #row of B
num, // #row of A (== #col of B)
&alpha, //
devA, // A
num, // #col of A
devB, // B
num, // #col of B
&beta, //
devC, // C
num // #col of C

);
status = cublasDestroy(handle);
// get result
cublasGetVector(n2, sizeof(float), devC, 1, hstC, 1)
// free
cudaFree(devA);
cudaFree(devB);
cudaFree(devC);

Sep. 2021 Advanced Course in Massively Parallel Computing 43

GPU for DL/AI
 cuDNN - GPU Library for Deep Learning

− Mainly for training
− Fast convolution (2D, 3D) for CNN (Convolution Neural

Network)
− Used by Caffe, PyTorch, …

convolution

Sep. 2021 Advanced Course in Massively Parallel Computing 44

Performance of cuDNN

 https://www.
slideshare.ne
t/NVIDIAJa
pan/1072-
cuda

Sep. 2021 Advanced Course in Massively Parallel Computing 45

Final remarks

 GPGPU is a good solution for apps which can be parallelized
for GPU.
− It can be very good esp. when the app fits into one GPU.
− If the apps needs more than one GPU, the cost of

communication may kill performance.

 Programming in CUDA is still difficult ...
− Performance tuning, memory layout ...
− OpenACC / OpenMP will help you!

Sep. 2021 Advanced Course in Massively Parallel Computing 46

	GPU Programming (1)
	Outline
	GPU Computing
	Applications（From NVIDIA’s slides, 2010?）
	CPU vs. GPU
	NVIDIA GPGPU’s architecture
	CUDA (Compute Unified Device Architecture)
	CUDA Programming model (1/2)
	CUDA Programming model (2/2)
	Example: Element-wise Matrix Add
	How Threads are executed
	An example of GPGPU configuration
	スライド番号 13
	スライド番号 14
	スライド番号 15
	Ampere 100
	Invoke (Launching) Kernel
	CUDA kernel and thread
	スライド番号 19
	Grid, Block, thread and �Memory hierarchy
	Memory management (1/2)
	Memory management (2/2)
	Executing Code on the GPU
	Function Qualifiers
	CUDA Built-in Device Variables
	A simple example
	A simple example
	Example code to increment array elements
	Example (host-side program)
	スライド番号 30
	CUDA Qualifiers for variable
	How to use/specify shared memory
	GPU Thread Synchronization
	Compiler
	Optimization of GPU Programming
	Optimization of Memory access
	Optimization of Host-device communication
	Host Synchronization
	GPU by Libraries
	APIs for GPU Libs
	スライド番号 41
	APIs for GPU Libs
	スライド番号 43
	GPU for DL/AI
	Performance of cuDNN
	Final remarks

