MPI
(Message Passing Interface)

Mitsuhisa Sato
RIKEN R-CCS
and University of Tsukuba

(Original from Prof. Takahashi, University of Tsukuba and
Part of slides courtesy of Prof. Yuetsu Kodama, RIKEN)

Sep. 2021 Advanced Course in Massively Parallel Computing

How to make computer fast?

= Computer became faster and faster by

= Device
= Computer architecture

= Computer architecture 0 perform processing in

parallel at several levéls: _
= Inside of CPU (M

= Inside of Chip

= Between chips (+GPU) ——

= Between computel\ _

Advanced Course in Massively Parallel Computing

Shared memory multi-processor system

CPU

CPU

CPU

CPU

Advanced Course in Massively Parallel Computing

€ Multiple CPUs share
main memory

€ Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
IN main memory.

€®Enterprise Server
€ SMP Multi-core
Processors

Distributed memory multi-processor

€ System with several
computer of CPU and
memory, connected by
network.

CPU

Network € Thread executed in each
computer communicate
CPU / \ CPU with each other by
0 exchanging data

- (message) via network. 4

€ PC Cluster
€ AMP Multi-core processor

Advanced Course in Massively Parallel Computing 4

Very simple example of parallel computing for high performance
for(1=0;1<1000; 1++)

:) S += Al
Sequential computation L1]
1 . 3| |4]| seesssssssessssennsanss 1000
\
NN N N W N - S
Parallel computation
251 500 | | | 501 p====| 750 | || 751 t-een 1000

+

essor 2

\

+

\@roce

L

+

Processor 1 \K@W

Advanced Course in Massively Parallel Computing

Parallel programming model

= Message passing programming model

Parallel programming by exchange data (message) between processors
(nodes)

Mainly for distributed memory system (possible also for shared memory)
Program must control the data transfer explicitly.

Programming is sometimes difficult and time-consuming

Program may be scalable (when increasing number of Proc)

= Shared memory programming model

Parallel programming by accessing shared data in memory.

Mainly for shared memory system. (can be supported by software
distributed shared memory)

System moves shared data between nodes (by sharing)
Easy to program, based on sequential version
Scalability is limited. Medium scale multiprocessors.

Advanced Course in Massively Parallel Computing

Parallel programming models

Q There are numerous parallel programming models

Q The ones most well-known are: ﬁ*"’y
o Distributed Memory $; "?o:f' “,
v Sockets (standardized, low level) »a;,?p. f 6% E%
@ 1" &
-$*

v PVM - Parallel Virtual Machine (absafete) @g,
==l +~ MPI - Message Passing Interface (de-facto stf

e Shared Memory ;’*‘a—
T~ Posix Threads (standardized, fow level) 40 %

v Posix Threads (standardized, low level) ™, .:, (
==l ~ OpenMP (de-facto standard)
v Automatic Parallelization (compiler does it for yau)

Advanced Course in Massively Parallel Computing

Multithread(ed) programming

= Basic model for shared memory

= Thread of execution = abstraction of execution in processors.

= Different from process
= Procss = thread + memory space
= POSIX thread library = pthread

Many programs are
executed i1n parallel

=

Advanced Course in Massively Parallel Computing

POSIX thread library

#include <pthread.h>
= Create thread: thread create P

= Join threads: pthread_join

= Synchronization, lock main() {
pthread ttl ;

pthread t t2 ;

void funcl(int x); void func2(int x);

m in pthread_create(&t1, NULL,
?‘ (void *)funcl, (void *)1);
pthread_create(&t2, NULL,
pthread create —— (void *)func2, (void *)2);
l printf("main()¥n");
pthread create > pthread_join(t1, NULL);
J pthread_join(t2, NULL);
}
fUﬂCl void funcl(int x) {
inti;
! funCZ for(1=0;i<3; i++){
pthread_join printf("funcl(%d): %d ¥n"x, i);
| }
thread_joi < J
pthread_join - < void func2(int x) {
l printf(“func2(%d): %d ¥n",x);
} 9

Advanced Course in Massively Parallel Computing

Programming using POSIX thread

= Create threads = Divide and assign iterations of loop

= Synchronization for sum
Pthread, Solaris thread

int s; /* global */

int n_thd; /* number of threads */
int thd _main(int i1d)

¥ { Int c,b,e,1,ss;

thd _main(0); -1000/n thd-
For(t=1:; t<n_thd;t++) i T

pthread join(); e=ste-

for(t=1;t<n_thd;t++){
r=pthread_create(thd main,t)

ss=0;
for(i=b; i<e; 1++) ss += a[i];

Thread = pthread lock(Q);

. S += SS;
Execution of program pthread_unlock();

return s;

Advanced Course in Massively Parallel Computing 10

Message passing programming

= General programming paradigm for distributed memory system.
= Data exchange by “send” and “receive”

= Communication library, layer
= POSIX IPC, socket
= TIPC (Transparent Interprocess Communication)
= LINX (on Enea’s OSE Operating System)
= MCAPI (Multicore Communication API)

= MPI (Message Passing Interface) Send Receive

coret. >F

!

On-Chip

11

Advanced Course in Massively Parallel Computing

Simple example of Message Passing Programming

= Sum up 1000 element in array

int a[250]; /7* 250 elements are allocated In each node */

main(){ /* start main iIn each node */
int 1,s,Ss;
s=0;

for(1=0; 1<250;1++) s+= a[1]; /*compute local sum*/
iIf(myird == 0){ /* 1f processor 0 */
for(proc=1;proc<4; proc++){
recv(&ss,proc); /* receive data from others*/
S+=SsS; /*add local sum to sum*/
by
} else { /* 1f processor 1,2,3 */
send(s,0); /* send local sum to processor 0 */
by
+

Advanced Course in Massively Parallel Computing 12

Parallel programming using MPI

= MPI (Message Passing Interface)
= Mainly, for High performance scientific computing
= Standard library for message passing parallel programming in high-end
distributed memory systems.
= Required in case of system with
more than 100 nodes.

= Not easy and time-consuming work

= “assembly programming” in distributed Over-specs for
programming Embedded system

Programming?!
= Communication with message

= Send/Receive Send Receive
= Collective operations | >
= Reduce/Bcast /ﬁ)j
= Gather/Scatter I I
SV Rty

Advanced Course in Massively Parallel Computing 13

Programming in MPI

#include "mpi.h"
#include <stdio.h>
#define MY_TAG 100
double A[1000/N_PE];
int main(Int argc, char *argv[])
{
int n, myid, numprocs, 1;
double sum, Xx;
int namelen;
char processor name[MP1_MAX PROCESSOR_NAME];
MP1_Status status;

MPI _Init(&argc,&argv);
MPI_Comm_size(MP1_COMM_WORLD,&numprocs);
MPI_Comm_rank(MP1_COMM_WORLD,&myid);
MP1_Get_processor_name(processor_ name,&namelen);

fprintf(stderr,"Process %d on %s¥n'", myid, processor_name);

Advanced Course in Massively Parallel Computing

14

Programming in MPI

sum = 0.0;
for (i = 0; 1 < 1000/N_PE; 1++){
sum+ = A[i];

}

1T(myid == 0){
for(hi = 1; 1 < numprocs; 1++){
MP1_Recv(&t,1,MPI_DOUBLE,1,MY_TAG,MP1_COMM_WORLD, &status
sum += t;
+

} else

MP1_Send(&t,1,MP1_DOUBLE,O,MY_TAG,MP1_COMM_WORLD) ;
/* MP1_Reduce(&sum, &sum, 1, MPI_DOUBLE, MPI_SUM, O, MPI_COMM
MP1_Barrier(MP1_COMM_WORLD);

MPI_Finalize();

return O;

}

Advanced Course in Massively Parallel Computing 15

MPI parallel programming

MPI (Message Passing Interface) is a parallel
programming model for distributed memory systems.

MPI is not a new programming language, but a library for
message-passing called from C or Fortran.

MPI is proposed as a standard by a broadly based
committee of vendors, implementers, and users.

MPI2.1 is released in 2008, and MPI13.0 is released in 2012,
with additional features such as one-sided communication,
etc, but in this lecture features in MPI1.0 are introduced.

http://www.mpi-forum.org/

Sep. 2021 Advanced Course in Massively Parallel Computing 16

Parallel programming model

« Parallel programming model is categorized
to the following two models.
— SPMD (Single Program Multiple Data)
— MPMD (Multiple Program Multiple Data)

* In SPMD model, same programs are
executed in each node. (Ex. MPI)

e In MPMD model, different programs are
executed in each node (Ex. master/worker
pattern)

Sep. 2021 Advanced Course in Massively Parallel Computing 17

Execution model of MPI

e Same programs(processes) run on multiple processors

— A process does not synchronize to other processes without
communication.

e Each process has own ID (rank).

 Process communicates to other processes using MPI
functions.

Q'UM ’—?'UM ’—?'UM ’—?'UM
S8 138 |28 36
25 P 5P nSP wEgP

Interconnection Network

Sep. 2021 Advanced Course in Massively Parallel Computing 18

Structure of MPI program

#include “mpi.h”
#include <stdio.h>
#define N 1000

iInt main(int argc, char *argv[])

{
int myid, nprocs, sendbuf[N], recvbuf[N];
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_Send(sendbuf, N, MPI_INTEGER, (myid + 1) % nprocs, MPI_COMM_WORLD);,

MPI_Recv(recvbuf, N, MPI_INTEGER, (myid + 1) % nprocs, O,
MPI_COMM_WORLD, &status);

MPI_Finalize();
return O;

Sep. 2021 Advanced Course in Massively Parallel Computing 19

Steps of MPI programming

(1) Include a header file: #include “mpi.h”

(2) Call MPI_Init() to initialize the MPI runtime
environment

(3) Call MPI_Comm_size() to get the number of
processes

(4) Ca
(5 Ca

wit
(6) Ca

| M

| M
N Ot

| M

Pl Comm_rank() to get the self process ID

Pl _Send() and MPI_Recv() to communicate
ner processes.

Pl _Finalize() to complete the MPI runtime

environment

Sep. 2021

Advanced Course in Massively Parallel Computing 20

MPI functions

 There are more than one hundred of functions In
MPI, and classified to followings:
— Point-to-point communication
— Collective communication
— Groups, Contexts, Communicators
— Process Topologies
— Derived datatypes and MPI_Pack/Unpack
— MPI Environmental Management

* You can write a MPI program with about 20
MPI functions in usual.
— Frequently used functions are about 10.

Sep. 2021 Advanced Course in Massively Parallel Computing 21

Communicator

A communicator specifies the process group that
can send and receive messages to each other.

e A predefined communicator MPI_ COMM_WORLD
Is provided by MPI. It allows communication with
all processes that are accessible after MPI
initialization and processes are identified by their

rank in it. Usually using only MPI_COMM_WORLD
IS enough.

e Users may define new communicators if necessary.

Sep. 2021 Advanced Course in Massively Parallel Computing 22

Point-to-Point Communication

« Examples of point-to-point Communication

— Blocking Communication (MP1_Send, MPI_Recv)

 MPI_Send may block until the message is received by the
destination process.

« MPI_send/recv specifies the buffer area for communication,
and after MPI_send/recv returns, the buffer can be modified..

— Nonblocking Communication (MPI_Isend, MPI_lIrecyv,
MPI_Wait)

« they can improve performance by overlapping communication
and computation.

— Bi-directional Communication (MPI|_Sendrecv)
* |t prevent cyclic dependencies that may lead to deadlock.

Sep. 2021 Advanced Course in Massively Parallel Computing 23

Example of send/recv

deadlock
(Recv)
v v

Sep. 2021

Send

(Recv)

\4

Send

\ /

Recv

/

\4

Recv

Send

\ 4

Sendrecv

—

Advanced Course in Massively Parallel Computing

Sendrecv

24

Example of sendrecv

rankO rankl rank?2

Sendrecv(1) | Sendrecv(0) Sendrecv(1)

><

Sendrecv(2)
Sendrecv(2)

Sendrecv(0)

V
!

Sendrecv(l) | Sendrecv(2) Sendrecv(0)

|

dedgdlock

Sep. 2021 Advanced Course in Massively Parallel Computing

Example of Isend/Irecv

taskO taskO
Isend/ Isend/
Irecv Irecv
task task
Overlap with
taskl task1 communication
and computation
e N Mwait | Mwalt |
Send Send
recv recv Reduce the

execution time

S ————————————— ——— A T —— - - -

Sep. 2021 Advanced Course in Massively Parallel Computing 26

P2P Comm. functions

Int MP1_Send(void *buf, int count, MP|_Datatype datatype,
Int dest, int tag, MPI_Comm comm)

Int MP1_Recv(void *buf, int count, MP|_Datatype datatype,
Int source, int tag, MPl_Comm comm, MPI|_Status *status)

— blocking send/receive operation
 buf: initial address of send buffer
e count: number of elements in send buffer
» datatype: datatype of each send buffer element
e dest: rank of destination
e source: rank of source
* tag: message tag
e CcOmm: communicator
 status: status object (structure MPI_Status)

Sep. 2021 Advanced Course in Massively Parallel Computing 27

Sep. 2021

Predefined MPI datatypes

MPI datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short
MPI_INT signed int
MPI_LONG signed long int

MPI_UNSIGNED CHAR

unsigned char

MPI_UNSIGNED SHORT

unsigned short int

MPI_UNSIGNED

unsigned int

MPI_UNSIGNED LONG

unsigned long int

MPI1_FLOAT float
MPI1_DOUBLE double
MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

Advanced Course in Massively Parallel Computing

28

Message tag

* |nteger to distinguish different types of messages

— User can define message tag freely for each message
type in program.

— A message can be received If it matches the source,
tag and comm values specified by the receive operation.

* The receiver may specify a wildcard
MPI_ANY_ SOURCE and/or MPI_ANY_TAG

iIndicating that any source and/or tag are
acceptable.

Sep. 2021 Advanced Course in Massively Parallel Computing 29

The order of messages

« Between two nodes, the order of messages are kept.
« Among more than three, the order of messages may be

L

PO

Sep. 2021

changed.

\
\.

The order of
messages
are kept

P

L J

PO

Y

P1

~~< The order of
~ messages
~< dosen’t be kept

Receive should
specifies the
message source

P2
MPI_ANY_SOURCE __

Advanced Course in Massively Parallel Computing™

Non blocking send/receive

 MPI _Isend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI|_reqguest *request)

 MPI Irecv(void *buf, int count, MP|_Datatype
datatype, int source, int tag, MPl_Comm comm,
MPI|_reqguest *request)

« MPIl Wait(MPI_request *request, MPI_status
*status)

« MPI Test(MPI _request *request, int *flag,
MP| _status *status)

Sep. 2021 Advanced Course in Massively Parallel Computing 31

Collective Communication

* Collective communication is defined as
communication that involves a group of
processes.

e Usually includes more than two processes.

 Examples of collective communication
— Broadcast (MPI_Bcast)
— Gather (MP1_Gather, MPI_Allgather)
— Scatter (MP|_Scatter)
_ All-to-all (MPI_Alltoall)
— Reduction (MPI_Reduce, MPI_Allreduce)

Sep. 2021 Advanced Course in Massively Parallel Computing 32

Collective communication

PO P1 P2 P3
e Broadcast N
e Gather
« Allgather
= Gather + Broadcast
e Scatter || |

~J * “

Sep. 2021 Advanced Course in Massively Parallel Computing

33

Alltoall

e Transpose array of distributed by row

PO
P1
P2
P3

PO
P
P2

' P3

Sep. 2021 Advanced Course in Massively Parallel Computing

34

comm)

MPI_SUM
MPI_PROD
MPI_MAX
MPI_MIN
MPI_LAND
MPI_BAND

Sep. 2021

Reduction

« int MPI_Reduce(void *sndbuf, void *rcvbuf, int count, @
MPI|_Datatype datatype, MPI_Op operator, int root,
MPI_Comm comm)

e int MPI_Allreduce(void *sndbuf, void *rcvbuf, int count,
MPI|_Datatype datatype, MPI_Op operator, MPI_Comm

sum
product
maximum
minimum
logical and

bit-wise and

=TT
I e

PO P1 P2 P3 P4 P5 P6 P7

Advanced Course in Massively Parallel Computing 35

Communicator Management

e Int MPl_Comm_size(MPl_Comm comm, int *size)

— It indicates the number of processes involved in a
communicator.
e comm:. communicator
» size: number of processes in the group of comm

e Int MPl_Comm_rank(MPl_Comm comm, int *rank)

— It gives the rank of the process in the particular
communicator's group.
e comm:. communicator
 rank: rank of the calling process in group of comm

Both functions are local operations.

Sep. 2021 Advanced Course in Massively Parallel Computing 36

MPI Environmental Management

 Int MPI_Init(int *argc, char **argv)
— Initialize the MPI environment.

e argc: number of arguments of command line
e argv: arguments of command line

 Int MPI_Finalize(void)
— clean up all MPI state.

e double MPI_Wtime(void)

— returns a floating-point number of seconds,
representing elapsed wallclock time.

Sep. 2021 Advanced Course in Massively Parallel Computing 37

Example: Calculating the value of

#include “mpi.h”

#include <stdio.h>

#include <math.h>

double f(double a) { return (4.0 / (1.0 + a*a));}

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, X;
double startwtime, endwtime;
int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nhumprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Get_processor_name(processor_name, &namelen);
startwtime = MPI_Wtime();
if (myid == 0) n=atoi(argv[1]);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
h = 1.0/ (double) n;
sum = 0.0;
for (i = myid + 1; i <=n; i += numprocs) {

x = h* ((double) i - 0.5);

sum += f(x);
}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
endwtime = MPI_Wtime();
if (myid == 0) {

printf(“pi :%.16f, Error : %.16f n: %d, procs: %d, elaps:%.3f¥n”,
pi, fabs(pi - PI125DT), n, numprocs, endwtime - startwtime);
}
MPI_Finalize();
return O;
}

Sep. 2021 Advanced Course in Massively Parallel Computing

38

Main part of calculating pi

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
h=1.0/(double) n;
sum = 0.0;
for (I=myid + 1; i <=n; | += numprocs) {
X =h* ((double) i — 0.5);
sum += f(x);
}
mypi = h * sum;

MPI|_ Reduce(&mypi, &pi, 1, MPI_DOUBLE,
MPIl_SUM, 0, MPI_COMM WORLD)

Sep. 2021 Advanced Course in Massively Parallel Computing 39

Example of execution

$ mpicc pi.c -O -o pi

$ salloc -N 1 -p HPT -- mpirun --np 1 /home/COMP/daisuke/ahpc/mpi/pi 200000000

pi: 3.1415926535904264, Error: 0.0000000000006333 n: 100000000, procs: 1, elaps:2.004

$ salloc -N 1 -p HPT -- mpirun --np 2 /home/COMP/daisuke/ahpc/mpi/pi 200000000

pi: 3.1415926535900223, Error: 0.0000000000002292 n: 100000000, procs: 2, elaps:1.004

$ salloc -N 1 -p HPT -- mpirun --np 4 /home/COMP/daisuke/ahpc/mpi/pi 200000000

pi: 3.1415926535902168, Error: 0.0000000000004237 n: 100000000, procs: 4, elaps:0.503

$ salloc -N 1 -p HPT -- mpirun --np 8 /home/COMP/daisuke/ahpc/mpi/pi 2700000000

pi: 3.1415926535896137, Error: 0.0000000000001794 n: 100000000, procs: 8, elaps:0.255

$ salloc -N 1 -p HPT -- mpirun /home/COMP/daisuke/ahpc/mpi/pi 2700000000

pi: 3.1415926535897389, Error: 0.0000000000000542 n: 100000000, procs: 12, elaps:0.200
$ salloc -N 1 -p HPT -- mpirun /home/COMP/daisuke/ahpc/mpi/pi 27000000000

pi: 3.1415926535898397, Error: 0.0000000000000466 n: 1000000000, procs: 12, elaps:1.673
$ salloc -N 2 -p HPT -- mpirun /home/COMP/daisuke/ahpc/mpi/pi 27000000000

pi: 3.1415926535898517, Error: 0.0000000000000586 n: 1000000000, procs: 24, elaps:0.894
$salloc -N 2 -n 12 -p HPT -- mpirun /home/COMP/daisuke/ahpc/mpi/pi 27000000000

pi: 3.1415926535898397, Error: 0.0000000000000466 n: 1000000000, procs: 12, elaps:1.721

Sep. 2021 Advanced Course in Massively Parallel Computing

40

Summary of MPI

 MPI Is a parallel programming tool for distributed
memory system.

 MPI is a library for message-passing.

— Point to point communication
* blocking: MPI_Send()/Recv()
* Nonbloking: MPI_Isend()/Irecv()/Walit()

— Colective communication
 MPI_Bcast()/Gather()/Scatter()/AlltoAll/Reduce()
 MPI execution environment depends on the
system that you use, ask to the system
administrator.

Sep. 2021 Advanced Course in Massively Parallel Computing 41

	MPI �(Message Passing Interface)
	How to make computer fast?
	Shared memory multi-processor system
	Distributed memory multi-processor
	Very simple example of parallel computing for high performance
	Parallel programming model
	Parallel programming models
	Multithread(ed) programming
	POSIX thread library
	Programming using POSIX thread
	Message passing programming
	Simple example of Message Passing Programming
	Parallel programming using MPI
	Programming in MPI
	Programming in MPI
	MPI parallel programming
	Parallel programming model
	Execution model of MPI
	Structure of MPI program
	Steps of MPI programming
	MPI functions
	Communicator
	Point-to-Point Communication
	Example of send/recv
	Example of sendrecv
	Example of Isend/Irecv
	P2P Comm. functions
	Predefined MPI datatypes
	Message tag
	The order of messages
	Non blocking send/receive
	Collective Communication
	Collective communication
	Alltoall
	Reduction
	Communicator Management
	MPI Environmental Management
	Example: Calculating the value of π
	Main part of calculating pi
	Example of execution
	Summary of MPI

