
Disk Cache-Aware Task Scheduling

For Data-Intensive and Many-Task Workflow

Masahiro Tanaka†

Center for Computational Sciences,

University of Tsukuba

Tsukuba, Japan

tanaka@hpcs.cs.tsukuba.ac.jp

Osamu Tatebe†

Faculty of Engineering, Information Systems,

University of Tsukuba

Tsukuba, Japan

tatebe@cs.tsukuba.ac.jp

Abstract—Workflow scheduling to maximize I/O performance

is one of the key issues in data-intensive, many-task computing. In

our previous work, we proposed locality-aware workflow

scheduling method using the Multi-Constraint Graph Partitioning.

In this work, we focus on read performance of input files from the

disk cache (buffer cache or page cache on main memory). In order

to maximize the disk cache hit rate of input files, a LIFO-order

scheduling is effective since created intermediate files may be read

soon. However, LIFO policy has a disadvantage of so-called

“trailing task problem." We propose a hybrid scheduling strategy

of LIFO and HRF (Highest Rank First). In our strategy, one of two

policies is applied depending on the number of highest-rank tasks

in the queue to avoid the problem. In addition, scheduling for the

overlap of computation and I/O is proposed. We implement our

scheduling strategy for the Pwrake workflow system and the

Gfarm distributed file system and evaluate it by executing data-

intensive workflows using a computer cluster. Our scheduling

strategy improves the performance of copyfile workflow by 30%

due to increase in disk cache hit rate, and the performance of

Montage workflow by 12% due to increase in core utilization.

Keywords—workflow system; many task computing; task

scheduling; distributed file system

I. INTRODUCTION

The increasing amount of science data generated by
advanced instruments requires parallel processing on distributed
computer resources. Among issues in parallel processing of
science data are (1) learning cost in parallel programming such
as MPI and (2) needs for legacy programs to process science data
in long-used data formats. In view of such situations, one of
useful approaches for parallel data processing is process-based
parallelism, i.e., the parallel execution of a large number of
sequential programs, each of which processes a part of data.
However, there are issues in executing a large number of short
time jobs such as task throughput. Raicu et al. discussed issues
in Many Task Computing (MTC) where the number of tasks is
103-106 [1].

 Pwrake 1 [2] is a system developed for MTC and data-
intensive workflows. Pwrake is an extension to Rake, a build
tool written in Ruby. Rake is also a powerful workflow language
to define many-task workflows. In order to achieve scalable file

1 http://masa16.github.io/pwrake/

I/O performance, Pwrake is assumed to use the Gfarm
distributed file system [3]. Gfarm file system has a feature to
utilize the local storage of compute nodes. The local access to
the storage of compute nodes is one of key issues for scalable
parallel I/O performance. In our previous work, we proposed the
workflow scheduling to minimize data movement using the
Multi-Constraint Graph Partitioning (MCGP) [4].

In this paper, we focus on another issue in the I/O-aware task
scheduling, i.e., the hit rate of disk cache (buffer cache or page
cache on main memory) during workflow execution. This issue
relates to the order of task execution. We propose task
scheduling using a LIFO queue so that tasks whose prerequisite
tasks completed later are executed earlier. The LIFO scheduling
improves the cache hit rate of input files. However, The LIFO
scheduling has a disadvantage in the CPU core utilization of
tasks due to a problem known as the trailing task problem [5]
that is mentioned in Section III.C. We propose the modification
of the LIFO scheduling to reduce trailing tasks using information
on a workflow DAG. In addition, we discuss scheduling for the
overlap of computation and I/O. We evaluate our task scheduling
by applying to a copyfile workflow and a Montage astronomy
workflow using a computer cluster of 12 worker nodes with 96
cores.

The contributions of this paper are the followings:

 New scheduling methods to improve the disk cache hit
rate to avoid trailing task problem.

 Implementation and evaluation of our scheduling
algorithm by running scientific workflows on a computer
cluster.

The remainder of this paper is organized as follows. Section
II describes the background of this work. Section III describes
the scheduling methods considering disk cache hit rate and CPU
utilization. In Section IV, we apply the proposed methods to
scientific workflow using a computer cluster. Section V
describes related work and Section VI provides conclusion.

† The Japan Science and Technology Agency (JST) / CREST.

II. BACKGROUND

A. Pwrake: Parallel Workflow extension for Rake

Pwrake is a parallel and distributed workflow system
developed for data-intensive, many-task computing on computer
clusters. Pwrake is implemented as an extension for on Rake
(Ruby Make). After the first report [2], we continued the
development the Pwrake system and improved its performance,
functionality, compatibility with Rake. We briefly introduce the
overview of Pwrake here.

Pwrake inherits a workflow language from Rake. Rake is a
standard tool of Ruby and is widely used by Ruby users, and a
powerful workflow language since it has various useful features
such as mapper rules and capability to write scripts in the Ruby
language. Pwrake inherits also the implementation of
Rake::Task class (hereafter Task class) from Rake. The Task
class holds information including the self-name of the task, a list
of prerequisite tasks that must be completed before the start of
itself, and a task action defined as a Ruby code block. The
dependency information through prerequisite tasks forms a
DAG (Directed Acyclic Graph). Rake::FileTask (hereafter
FileTask) is a file generation task class defined as a subclass of
the Task class. As for FileTask, the task name is regarded as an
output file name, and the prerequisite task names can be regarded
as input files. The action of FileTask is executed when the output
file does not exist, or its timestamp is older than input files. This
mechanism is useful to resume a workflow like UNIX Make.

Fig. 1 is a schematic overview of the Pwrake design. Pwrake
organizes compute nodes in the master-worker model. The
Pwrake master has the same number of worker threads as the
number of total cores of worker nodes. A task action is executed
in a worker thread of the Pwrake master process. Every worker
thread connects to remote worker nodes via SSH. Shell
command lines are sent to a remote node and executed there.

Instead of file staging, Pwrake relies on file sharing through
the Gfarm file system. If resource allocation is required, Pwrake
is run on resources acquired by batch system. Gfarm has a
mechanism to exploit the performance of local I/O: (1) selection
of a close replica when reading a file replicated to multiple nodes,
and (2) selection of the local storage when creating a new file.
However, the locality-aware task scheduling is an issue for the
workflow system.

Fig. 1. Schematic overview of Pwrake system (See text for details).

Fig. 2. Schematic design of locality-aware TaskQueue. Candidate nodes are

determined based on locality, tasks are queued into corresponding NodeQueue.

B. Pwrake Task Scheduling

The task scheduling problem is to find the best assignment
of tasks to computer resources. The objective of scheduling is to
minimize the makespan. The makespan is defined as estimated
time from the start of the first task until the completion of the
last task. The task scheduling problem is NP-hard. Therefore,
various heuristic scheduling algorithms have been proposed for
heterogeneous environments such as HEFT (Heterogeneous
Earliest Finish Time) [6]. Those algorithms normally assume
that the execution time of tasks (task cost) is known in advance,
and the schedule is decided before workflow execution.

In the case of MTC workflows, however, it is difficult to
predict task costs for thousands or millions of tasks. As for the
task scheduling of Pwrake, we assume that knowledge on the
cost of each task and the performance of nodes is not given in
advance. Instead, we take an approach of TaskQueue-based
dynamic scheduling. This is a pull-based approach to enable
efficient balancing and fast dispatch of tasks. In this approach,
the key issue of the task scheduling is the selection of a task
retrieved by an idle worker from TaskQueue.

The locality-aware design of the TaskQueue class in the
Pwrake system is shown in Fig. 2. TaskQueue has “enq”
(enqueue) and “deq” (dequeue) methods, and contains
NodeQueue assigned to every worker node. The locality-aware
scheduling of Pwrake is as follows.

In the “enq” phase, the scheduler assigns candidate worker
nodes where a task is to be executed. We implemented two
algorithms for the selection of candidate nodes. The first
algorithm is the “close to input files” scheme. The second
algorithm is “Multi-Constraint Graph Partitioning (MCGP)”
developed in our previous work [4]. The former scheme is to
select worker nodes which store input files of a task. The latter
algorithm can improve locality for workflows that deal with
geometrically-partitioned data. After the determination of
candidate nodes, the task is queued into the corresponding
NodeQueue.

The “deq” method is invoked by an idle worker to retrieve a
task from TaskQueue. In this phase, the scheduler tries to
retrieve a task from NodeQueue assigned to the worker nodes. If
the NodeQueue contains no task, worker node retrieves tasks in
the following order; (a) find a task whose input files are stored
at other than compute node. If no task is found, then (b) “steal”
a task assigned to other nodes. This mechanism enables load
balancing among worker nodes.

Pwrake process

worker thread

worker thread

worker thread

worker thread

Worker nodes

Task
Queue

Master node

enq
deq

SSH

Task Graph

files process

process

process

process

files

files

files

Gfarm

TaskQueue

Node 1

Node 2

Node 3

deq enq

NodeQueue

 RemoteQueue

Task

III. CACHE-AWARE TASK SCHEDULING

A. Performance of Reading a Local and Cached File

TABLE I. shows the read performance of a Gfarm file at the
Tohoku cluster (See Section IV.A). The read performance of
local and cache access is roughly 10 times as high as that of other
cases. This table shows that local and cache access are important
for I/O performance. In the previous section, we visited the
Pwrake scheduling to improve the local access ratio. The main
subject of this paper is cache-aware task scheduling.

TABLE I. I/O PERFORMANCE OF GFARM FILES (MEASURED USING

CLUSTER SHOWN IN TABLE II.)

 Bandwidth
(MiB/s)

Read Local disk 70

cache 592
Remote disk 39

cache 71
Write Local disk 59

B. LIFO as a Cache-Aware Scheduling

In this paper, we do not step into the mechanism of disk
cache. Instead, we assume that a later-saved file has a higher
probability that an input file is cached in main memory. This
assumption is applicable in situations where a file I/O-based
workflow is executed on standard Linux computers. In this
assumption, access time of input files is a good criterion. This is
achieved by a priority queue based on file access time. However,
the priority queue requires sorting costs. As a more simple
approach, the Last-In-First-Out (LIFO) queue produces a similar
result since task queuing time is an alternate indicator of creation
time of input files.

In the design of Pwrake TaskQueue, NodeQueue shown in
Fig. 2 is implemented as a queue which defines the order of tasks
such as LIFO.

We here compare the LIFO and FIFO scheduling using an
example workflow whose DAG is drawn in Fig. 3. In this
example, a vertex represents a task and an edge represents a
dependency through input/output files. This workflow consists
of three steps of tasks; Ai, Bi, C where i = 1..n. Here the input
file of task Bi is the output file of task Ai, and task C reads all
the output files of Bi. For simplicity, we assume that all the tasks
occupy single core and task costs are equal.

Fig. 3. DAG of the example workflow. Vertex and edge represent task and

dependency, respectively.

Fig. 4. Schematic illustration of FIFO and LIFO queues for the Fig. 3 DAG on
a two-core machine. Top: at the beginning, all the tasks A are queued, and A1

and A2 are retrieved (FIFO), or An and An-1 are retrieved (LIFO). In the next
step, Middle (FIFO): B1 and B2 are queued, and A4 and A3 are retrieved.

Bottom (LIFO): Bn and Bn-1 are queued and retrieved.

 Next, we consider the execution of this workflow on
machine with two cores. Fig. 4 schematically shows the behavior
of FIFO and LIFO queues. In both cases, all tasks Ai (i = 1..n)
are queued at the beginning. When a task Ai is retrieved from
the queue, it is executed. After the task Ai completes, a task Bi
is queued. FIFO and LIFO have the following difference. In the
FIFO order, all the tasks A are retrieved earlier than the tasks B.
In the LIFO order, lately-queued tasks B are executed earlier.

Fig. 5 shows the result of scheduling on machine with two
cores, under four scheduling policies including FIFO and LIFO.
In this figure, time advances from top to bottom and the only last
task C is not shown. The LIFO scheduling (Fig. 5 (1)) maximize
the disk cache hit rate since Bi task is invoked immediately after
the task Ai. On the other hand, in the case of the FIFO scheduling
(Fig. 5 (2)), the average interval of Ai and Bi is (execution time
of one task) × (n/2). If the output file of Ai expires from the disk
cache during this interval, the read performance becomes worse.
(There is no problem in the arrows toward the other column since
tasks are in the same node.) On the other hand, the LIFO
scheduling has a disadvantage in core usage because of the
“trailing task problem” [5] described in the next subsection.

Fig. 5. Schematic diagram of the scheduling result of the Fig. 3 workflow on

a two-core machine under four scheduling policies. Time advances from top to
bottom. The task C is omitted. The gray arrows indicate task dependencies.

A1 A2 A3 An

B1 B2 B3 Bn

..

C

..

Rank 0

Rank 1

Rank 2

Bn-1 Bn

A1 A2 An-3 An-2 Bn-1 Bn …

LIFO:

A3 A4 An An-1 B1 B2

B1 B2
FIFO:

…

FIFO deq
LIFO deq

enq
NodeQueue

A1 A3 A2 An-2 An An-1 …

…

A1 A2
An-1 An

A3 A4

Bn-1 Bn

First time:

idle

core

An

Bn

An-2

Bn-2

An-1
Bn-1
An-3
Bn-3

A3
B3
A1
B1

A2
B2

A1
A3

A2
A4

Bn-3
Bn-1

Bn-2
Bn

An-2
An

An-1
B1

B2 B3

An
Bn

An-2
Bn-2

An-1
Bn-1
An-3
Bn-3

A3
B3
B2

A2
A1
B1

LIFO

 HRF

An
Bn

Bn-1
Bn-2

An-1
An-2
An-3
An-4

A2
B2
B3

A1
B1
B4

Rank

Eqlz.

 HRF

(1) LIFO (2) FIFO(HRF) (4) Rank+HRF (3) LIFO+HRF

: : :
A3

time

C. Trailing task problem and HRF

The trailing task problem [5] is a problem in MTC. In the
course of workflow execution, remaining tasks becomes fewer
than workers, and some worker becomes idle. If many trailing
tasks are left, the CPU utilization becomes worse. In the LIFO
case (Fig. 5 (1)), the task An and Bn are trailing tasks and occupy
only one core. Since our scheduling strategy does not assume
prior information on task cost, it is impossible to predict CPU
idle time caused by trailing tasks. Instead, we consider the
probability of the number of trailing tasks. In the LIFO
scheduling of Fig. 5 (1), the maximum time span of trailing task
is the total execution time of An + Bn, since An and Bn cannot
be executed in parallel. On the other hand, FIFO scheduling (Fig.
5 (2)), the maximum time span of trailing task is only the
execution time of Bn. This is because all the tasks A are invoked
before the start of the tasks B. The difference between task A
and B is the distance from the target task C.

We here define the “rank” of a task as a distance from the
last target task in a workflow DAG as follows. The target task is
defined as rank 0. The prerequisite task of a rank i task is
numbered as rank i+1. If a prerequisite task is followed by tasks
having different ranks, the rank of the prerequisite task is
obtained by adding one to the maximum rank of the subsequent
tasks. In the example of Fig. 3, the tasks C is rank 0, the tasks B
are rank 1, and the tasks A are rank 2.

An effective way to mitigate the trailing task problem is
earlier execution of higher rank tasks. We call this policy
Highest Rank First (HRF). Similar policy can be seen in the
static scheduling algorithms such as HEFT [6]. In the HEFT
algorithm, it calculates a priority called “upward rank” for each
task in the first phase, and tasks are assign tasks to workers
starting with the highest priority in the second phase.

Since LIFO and FIFO (same order as HRF) conflict with
each other, only one of these schemes can be selected at the same
time. If n is large, LIFO tends to be better since the interval of
task Ai and Bi becomes large. If the number of worker cores is
large, FIFO may be better due to the trailing task problem. In
the next subsection, we propose methods with advantages of
both LIFO and FIFO in most of the situations.

D. Proposed Methods

To solve the problem of disk cache hit rate and CPU
utilization simultaneously, we propose two algorithms to
determine the order of task retrieval from NodeQueue.

1) LIFO + HRF
We call the first method LIFO+HRF, where the LIFO or

HRF scheduling is applied according to the number of tasks in
NodeQueue. We define NHR as the number of tasks with the
highest rank in NodeQueue and Ncore as the number of cores of
the corresponding node. The LIFO+HRF scheduling algorithm
is:

 If NHR > Ncore, select the task in the order of LIFO

 If NHR ≤ Ncore, select the task in the order of HRF

Fig. 6. Schematic illustration of the LIFO+HRF algorithm.

Fig. 6 schematically shows the behavior of the LIFO+HRF
algorithm. The result of LIFO+HRF scheduling for the DAG of
Fig. 3 is shown in Fig. 5 (3). In the example, the LIFO+HRF
algorithm selects tasks in the following policies:

 Task Ai, Bi (i = 3..n) : LIFO

 Task A2, A1, B2, B1 : HRF

The tasks Ai and Bi (i = 3..n) is retrieved in the cache-aware
LIFO policy. On the other hand, when only A2 and A1 remain
in the queue, they are executed earlier under the HRF policy.

2) Rank Equalization + HRF
The second proposed method relates to the overlap of I/O

and computation. In workflow patterns in Fig. 3, there may be a
situation where the tasks A are computationally intensive, and
the tasks B are I/O intensive. In such a situation, there is a chance
to reduce execution time by overlapping the tasks A and B. Fig.
5 (4) (labeled as Rank+HRF) shows an example of overlap
scheduling. Although the interval between the task Ai and Bi in
Fig. 5 (4) is longer by one task than those of LIFO; it is much
shorter than the interval of FIFO. This situation can be achieved
by the rank equalization of the number of tasks running at any
time. We call this policy Rank Equalization. The algorithm of
Rank Equalization is as follows.

 Get R, a set of ranks of queued tasks at scheduling time.

 Calculate weights w[r] for each rank r in R. (see below)

 Select a rank r in R randomly using weights w[r].

 Retrieve a task from tasks with the rank r under the LIFO
policy.

The weights of rank selection are not equal in the following
reason. As is shown in Fig. 7, the number of task invocations is
inversely proportional to task execution time. Therefore, the
weight of rank selection is defined as the inverse of average task
execution time, which is measured at run time. However, at the
beginning of the workflow, task execution time is not given.
Therefore, equal weights are provided initially. After the first
task completes, the average of the measured task execution time
is used.

Fig. 7. The relationship between task execution time and the number of task

invocations in the same timespan.

A1 A2 B3 B4

LIFO+HRF:

B4
A2

enq

NHR

If NHR ≤ Ncore
If NHR > Ncore

LIFO
HRF

Task B

Task A

Task A

Task A

t
1

t
2

1/t
1

1/t
2

of tasks/sec

…

…
Rank 1

Rank 2

time →

Task B Task B Task B

The retrieval from the selected rank is the LIFO order. Since
the trailing task problem still exists, the algorithm is changed to
HRF when the number of tasks is less than the number of cores.

IV. PERFORMANCE EVALUATION

A. Evaluation environment

The environment used for the evaluation is summarized in
TABLE II. The computer cluster is the Tohoku site of InTrigger
platform [7]. We used up to 12 worker nodes. Gfarm File System
Node (FSN) is located on each worker node. Another node is
used for the Gfarm metadata server and the Pwrake master. In
order for the Gfarm system to write a file to the local storage
every time, the option schedule_idle_load_thresh in gfarm2.conf
is set to be 100.

TABLE II. EVALUATION ENVIRONMENT

Cluster InTrigger Tohoku site

CPU Intel Xeon E5410 2.33GHz

Main Memory 32 GiB

of cores / node 8

Max # of compute node 12

Network 1Gb Ethernet

OS Debian 5.0.4

Gfarm ver. 2.5.8.6

Ruby ver. 2.1.1

Pwrake ver. 0.9.9.1

B. Copoyfile Workflow

In this section, we investigate the effect of the LIFO
scheduling using an I/O-only workflow. As a workflow task, we
made a program named copyfile2 written in the C language. The
copyfile program loads an input file into main memory, after that
it writes the data to an output file. (This behavior is similar to
scientific data processing without calculation.) The DAG of this
workflow is same as the DAG in Fig. 3. Both the tasks A and B
are copyfile task, i.e., an input file is copied twice. Before the
workflow execution, 100 input files with 3 GiB are created in
the storage of ten worker nodes. Since each input file is copied
twice, the total read and write size is 600 GiB, respectively.

In this measurement, we used ten worker nodes of the
InTrigger Tohoku cluster. Since the copyfile task is I/O-
intensive, only one core per node is used. Thus, ten processes
run in parallel during workflow execution. Immediately after the
creation of 3 GiB file, it is surely cached since the main memory
size of compute nodes is 32 GiB. On the other hand, after reading
100 input files, the first file is surely evicted from the disk cache.
We evaluate only the LIFO and FIFO scheduling. HRF is not
evaluated since it does not change the behavior in the situation
here of one core per node. The elapsed time is measured three
times. The averaged result is shown on left blue bars in Fig. 8.
It shows that the LIFO scheduling improved performance by
30% from FIFO scheduling.

We compare the experiment with the estimation of the
workflow elapsed time from the I/O performance. The elapsed
time of the copyfile workflow is estimated as t = I / R + O / W,
where I and O are the sizes of input and output files in bytes and

2 https://gist.github.com/masa16/5956881

Fig. 8. Elapsed time of copyfile workflow.

R and W is the read and write bandwidth in bytes/sec,
respectively. The values of R and W are the I/O performance of
Gfarm shown in TABLE I. We assume the read bandwidth as
follows: For FIFO, the tasks A and B read from local disk. For
LIFO, the tasks A read from local disk and the tasks B read from
the local cache. Thus, execution time is estimated and shown as
red bars in Fig. 8. The estimation is consistent with the
experiment since the elapsed time of the workflow includes
other time than I/O. The result shows that the performance
improvement by the LIFO scheduling is attributed to cache read.

C. Montage workflow

In this section, we evaluate the cache-aware scheduling using
astronomical image processing software Montage [8] as a data-
intensive scientific workflow. Montage is a collection of
programs for combining multiple shots of astronomical images
and creating an image with a large sky area. We implemented a
Montage workflow as Rakefile3. Fig. 9 shows an example DAG
of Montage workflow. In the actual processing, the number of
tasks is larger depending on the number of input files.

TABLE III. SIZES OF EXPERIMENT MONTAGE WORKFLOW

Input file SDSS DR7

of input files 421

Size of one input file 2.52 MB

Size of total input files 1061 MB

of intermediary files 4720

Size of intermediary files 63.5 GB

of tasks 2707

Fig. 9. DAG of Montage workflow. Vertex and edge represent task and

dependency, respectively.

3 https://github.com/masa16/pwrake-demo

0

500

1000

1500

2000

2500

FIFO LIFO

E
la

p
se

d
 T

im
e
 (

se
c)

measured

estimated

mProjectPP

mDiff+mFitplane

mBGModel

mBackground

mShrink

mAdd

mAdd

mJPEG

rank

high

low

Fig. 10. Elapsed time of Montage workflow for scalability in a double

logarithmic graph. The broken line indicates inverse proportion as a guide to

scalability.

As input files, we use the image of SDSS DR7 [9]. The file
size and task size of the evaluated workflow are summarized in
TABLE III.

1) Scalability and Performance Enhancement with Cache
In order to investigate the scalability, we measured elapsed

time of Montage workflow using 1-12 nodes with data size fixed
(i.e., strong scaling). The number of used cores is 8-96 (eight
cores per node). We measured four scheduling methods; FIFO,
LIFO, LIFO+HRF, and Rank+HRF. In all cases, we apply the
locality scheduling with a node assignment algorithm using
MCGP. We measured once for 1-3 nodes, three times for 4-8
nodes, and five times for 10-12 nodes, selected better half
experiments, and averaged them since there may be unexpected
performance degradation due to OS noise, etc. The elapsed time
of sequential tasks (mBGModel, last mAdd, mJPEG) are
excluded from the results. Fig. 10 is the plot in all the range of
8-96 cores in logarithmic scale, and Fig. 11 is the plot in the
range of 32-96 cores in linear scale. In these plots, the broken
line indicates inverse proportion between the number of cores
and elapsed time as a guide to scalability.

 In Fig. 10, the slopes of the measurement data are steeper
than the broken line. This means that the performance is
improved beyond the scalability. We consider that the reason is
attributed to disk cache hit rate since the data size processed by
a single node decreases as the number of nodes increases. In the
range of 8-32 cores, the elapsed time of FIFO is significantly
longer than that of the other scheduling. The speedup from FIFO
to LIFO+HRF in the 8, 16, 24-core experiments is about 1.9
times. The result shows that the disk cache hit rate is a
significant factor for performance when data size per node is
large.

In the range of 48-96 cores, the elapsed time of all the
scheduling methods is close to each other. In the experiment
using 12 nodes with 96 cores, the file size per node is about 1/12
of the total size. For example, the total file size of mProjectPP
output is about 20 GB, but the files size processed per node is
about 1.7 GB. This size is small enough to load in the main
memory of 32 GiB. Therefore, cache access is dominant even

Fig. 11. Elapsed time of Montage workflow scalability (Same as Fig. 10 but
shows only >32 cores, in linear axes). The broken line indicates inverse

proportion.

for the FIFO scheduling. Among the four scheduling methods,
only the elapsed time of the LIFO scheduling is longer than other
scheduling methods. On the other hand, the LIFO+HRF
scheduling produces the best performance over the entire range
of the number of cores.

2) Improvement of Core Utilization with HRF
In this subsection, we investigate the relationship between

scheduling and core utilization. The elapsed time of the
workflow using 12 nodes with 96 cores is plotted in Fig. 12. The
result shows 12 % improvement by HRF. The result of FIFO is
close to the LIFO+HRF and Rank+HRF since cache access is
dominant in this experiment.

Fig. 12. Elapsed time of Montage workflow using 96 cores.

Fig. 13. Core utilization during Montage workflow.

8 cores

16

24
32

64
48

80
96

32

cores

48
64

80
96

94.3
104.3

93.3 93.6

0

20

40

60

80

100

120

FIFO LIFO LIFO+HRF Rank+HRF

E
la

p
se

d
 t

im
e
 (

se
c)

87.1% 84.0% 87.6% 87.8%

0%

20%

40%

60%

80%

100%

FIFO LIFO LIFO+HRF Rank+HRF

C
o
re

 u
ti

li
z
a
ti

o
n

Fig. 14. The time transition of the number of tasks during Montage workflow.

Scheduling: FIFO for task order, MCGP for locality.

Fig. 15. The time transition of the number of tasks. Scheduling: LIFO, MCGP.
The arrow indicates decrease in core utilization due to the trailing task problem.

We define the core utilization as
𝑡cum

𝑡elap𝑛cores
, where tcum is the

cumulative execution time of tasks, telap is the elapsed time of the
workflow, and ncores is the number of cores. The cumulative
execution time tcum is derived as the summated elapsed time of
all the tasks. The obtained core utilization is plotted in Fig. 13.
The result shows that the core utilization of LIFO is about 84%,
while that those of other methods are about 87-88%. The result
shows that the major cause of lower performance of LIFO is core
utilization.

 In order to see in detail how the execution order affects the
core utilization, we plot the time variation of the number of tasks
during the workflow execution in Fig. 14 - Fig. 17. In these plots,
red thick line shows the total number of tasks, and the other lines
show the number of each kind of tasks.

Fig. 14 is the result of the FIFO scheduling. The number of
running tasks is close to 96 (same as the number of cores) almost
all the time except the period of singly-executed tasks
(mBgModel, last mAdd and mJPEG). Fig. 14 shows that tasks
are invoked in the descending order of rank. For example, all the
mProjectPP tasks are invoked at first, and then all the mDiff
tasks are invoked.

Fig. 15 is the result of the LIFO scheduling. It shows that the
mProjectPP and mDiff tasks are invoked alternately. This

Fig. 16. The time transition of the number of tasks. Scheduling: LIFO+HRF,
MCGP.

Fig. 17. The time transition of the number of tasks. Scheduling: Rank+HRF,

close-to-file.

execution order is intended to raise disk cache hit rate (In this
experiment, however, it is not effective for disk cache hit rate
since the data size is small.) On the other hand, the total number
of tasks decreases around 60 sec at the position indicated by an
arrow. This is because the number of the mProjectPP tasks that
remain in the queue becomes less than the number of worker
cores. This is the trailing task problem.

Fig. 16 is the result of the LIFO+HRF scheduling. It shows
alternate task invocation similar to LIFO. However, a decrease
in the total number of tasks due to trailing tasks is not seen in the
LIFO+HRF experiment. This result demonstrates that the
proposed LIFO+HRF scheduling resolves the trailing task
problem for the Montage workflow which is more complex than
the example workflow shown in Fig. 3.

3) Rank Equalization
In Montage workflow, mProjectPP is compute-intensive and

mDiff is I/O-intensive. Therefore, the overlap of mProjectPP and
mDiff can improve performance. Fig. 17 show the number of
tasks in the experiment of Rank Equalization with HRF
(Rank+HRF). The result shows almost same behavior and
performance as the Fig. 16 (LIFO+HRF). In this configuration
of workflow, the rank equalization is failed to increase
performance since the core utilization of mDiff tasks is almost
always less than 50%.

trailing tasks

Fig. 18. The time transition of the number of tasks. Scheduling: LIFO+HRF,

close-to-file for locality.

We here demonstrate another experiment where the Rank
Equalization is effective. This is achieved by changing the
locality option from MCGP to the location of input files. This
change degrades local access rate and makes mDiff execution
time longer. The result of this experiment is shown in Fig. 18
and Fig. 19. The plot of LIFO+HRF (Fig. 18) shows that the
number of mDiff tasks oscillates and exceeds 48 (50%
utilization). On the other hand, the plot of Rank+HRF (Fig. 19)
shows that the number of mDiff tasks is flat and less than 48 in
the period of 20-60 sec. The elapsed time (excluding sequential
tasks) is 134.4 sec for LIFO+HRF and 128.7 sec for Rank+HRF.
Thus, Rank Equalization improves performance by 4.4%. This
improvement is due to the overlap of mProjectPP (computation-
intensive task) and mDiff (I/O-intensive task). In conclusion, the
scheduling to overlap computation and I/O can improve the
performance of particular workflows.

V. RELATED WORK

A. Workflow System

Pegasus [10] is a workflow system for grid computing.
Kepler [11] is a workflow system for connecting Web services.
These systems are not targeted at MTC since task throughput
(tasks/sec) is not pursued. MapReduce [12] is a programming
model for a large number of data-intensive parallel tasks. It is
only applicable to specific patterns of workflows.

Swift [13] + Falkon [14] + Data diffusion [15] is a
combination of frameworks targeted at MTC on Grid systems.
Swift is a workflow system which employs Swiftscript dedicated
for scientific workflows. On the other hand, Pwrake is based on
Rake, a powerful workflow language with scripting capability.
Falkon is a framework for fast task dispatch as which reports
1500 tasks/sec at the peak performance. It requires piggy-
backing and task bundling. Data diffusion is a mechanism for
task scheduling and management of staged files to the execution
node, in consideration of the locality. In the Pwrake system,
explicit file staging is not required since we assume files are
shared by the Gfarm file system.

GXP make [16] is a system using the GNU make as a
workflow definition language, built on the GXP system for
distributed parallel execution. The mechanism of GXP make is
that the “mksh” process traps command lines issued by GNU

Fig. 19. The time transition of the number of tasks. Scheduling: Rank+HRF,

close-to-file.

make and dispatches to remote nodes. Therefore, the order of
execution depends on GNU make implementation. In Pwrake,
we implemented the scheduling to control the order of execution.

B. Workflow Scheduling

Yu et al. [17] surveyed various workflow scheduling
algorithms for Grid systems. These algorithms are heuristic or
meta-heuristic algorithms based on the prior information of tasks.
On the other hand, our work is aimed at MTC workflows
comprised of thousands or millions of tasks on computer clusters,
not provided by prior information on task execution time.

Locality-aware scheduling for data-intensive workflows has
been studied by [18][19][20][21]. Shankar and DeWitt [22]
studied DAG-based data-aware workflow scheduling for the
Condor system. They focused on cached data on a local disk in
order to avoid data movement. On the other hand, our study is
aimed at the scheduling for cached data on memory.

Armstrong et al. [5] discussed the trailing task problem that
occurs in MTC and proposed the tail-chopping approach, where
remaining tasks are run on a smaller allocation of compute
resources. We study another approach HRF, which determines
the order of task execution using the information of DAG.

VI. CONCLUSION

Pwrake is a workflow system developed for data-intensive
and many-task computing and utilizes the Gfarm file system for
file sharing among worker nodes instead of file staging. We
discussed that the LIFO scheduling is effective to maximize the
probability that input files are cached. We proposed two
scheduling methods for improving the performance of every
range of workflows. One is the hybrid scheduling of LIFO and
HRF (Highest Rank First) in order to mitigate the “trailing task
problem” which is a disadvantage of the LIFO scheduling. The
other is a hybrid of Rank Equalization and HRF, in quest of the
overlap of computation and I/O. We evaluated the proposed
scheduling using a computer cluster by executing data-intensive
workflows. In the experiment of copyfile workflow, the LIFO
scheduling improves the workflow performance by 30% from
the FIFO scheduling. In the experiment of the Montage
astronomy workflow with 96 cores, the HRF scheduling
eliminates trailing tasks and improves by 12%. On the other

hand, the Rank Equalization improves performance if
computation and I/O are effectively overlapped.

ACKNOWLEDGMENT

This work is supported by JST CREST “System Software for
Post Petascale Data Intensive Science” and JST CREST
“Extreme Big Data (EBD) Next Generation Big Data
Infrastructure Technologies Towards Yottabyte/Year”

REFERENCES

[1] I. Raicu, I. T. Foster, and Y. Zhao, “Many-task computing for grids and
supercomputers,” in Workshop on Many-Task Computing on Grids and
Supercomputers, 2008 (MTAGS 2008), 2008, pp. 1–11.

[2] M. Tanaka and O. Tatebe, “Pwrake: A parallel and distributed flexible
workflow management tool for wide-area data intensive computing,” in
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing (HPDC ’10), 2010, pp. 356–359.

[3] O. Tatebe, K. Hiraga, and N. Soda, “Gfarm Grid File System,” New Gener.
Comput., vol. 28, no. 3, pp. 257–275, Aug. 2010.

[4] M. Tanaka and O. Tatebe, “Workflow Scheduling to Minimize Data
Movement Using Multi-constraint Graph Partitioning,” in 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), 2012, pp. 65–72.

[5] T. G. Armstrong, Z. Zhang, D. S. Katz, M. Wilde, and I. T. Foster,
“Scheduling many-task workloads on supercomputers: Dealing with
trailing tasks,” in 2010 3rd Workshop on Many-Task Computing on Grids
and Supercomputers, 2010, pp. 1–10.

[6] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[7] H. Saito, Y. Kamoshida, S. Sawai, K. Hironaka, K. Takahashi, T. Sekiya,
N. Dun, T. Shibata, D. Yokoyama, and K. Taura, “InTrigger: A Multi-Site
Distributed Computing Environment Supporting Flexible Configuration
Changes,” IPSJ SIG Tech. Rep. 2007-HPC-111, vol. 2007, no. 80, pp.
237–242, 2007.

[8] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity, E.
Deelman, C. Kesselman, G. Singh, M.-H. Su, T. A. Prince, and R.
Williams, “Montage: a grid portal and software toolkit for science-grade
astronomical image mosaicking,” Int. J. Comput. Sci. Eng., vol. 4, no. 2,
pp. 73–87, Jul. 2009.

[9] K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam,
C. A. Prieto, D. An, K. S. J. Anderson, S. F. Anderson, J. Annis, N. A.
Bahcall et al., “The Seventh Data Release of the Sloan Digital Sky Survey,”
Astrophys. J. Suppl. Ser., vol. 182, no. 2, pp. 543–558, Jun. 2009.

[10] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S.
Katz, “Pegasus: A framework for mapping complex scientific workflows

onto distributed systems,” Sci. Program., vol. 13, no. 3, pp. 219–237,
2005.

[11] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.
A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
Kepler system,” Concurr. Comput. Pract. Exp., vol. 18, no. 10, pp. 1039–
1065, Aug. 2006.

[12] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[13] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, and M. Wilde,
“Realizing Fast, Scalable and Reliable Scientific Computations in Grid
Environments,” in Grid Computing Research Progress, Nova Publisher,
2008.

[14] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a Fast
and Light-weight tasK executiON framework,” in Proceedings of the
2007 ACM/IEEE conference on Supercomputing, 2007, pp. 43:1–43:12.

[15] I. Raicu, Y. Zhao, I. T. Foster, and A. Szalay, “Accelerating large-scale
data exploration through data diffusion,” in Proceedings of the 2008
international workshop on Data-aware distributed computing -
DADC ’08, 2008, pp. 9–18.

[16] K. Taura, T. Matsuzaki, M. Miwa, Y. Kamoshida, D. Yokoyama, N. Dun,
T. Shibata, C. S. Jun, and J. Tsujii, “Design and implementation of GXP
make — A workflow system based on make,” Futur. Gener. Comput. Syst.,
vol. 29, no. 2, pp. 662–672, Feb. 2013.

[17] J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow scheduling
algorithms for grid computing,” in Metaheuristics for Scheduling in
Distributed Computing Environments, vol. 146, Fatos Xhafa and A.
Abraham, Eds. Springer Berlin Heidelberg, 2008, pp. 173–214.

[18] W. Xiaohui, W. W. Li, O. Tatebe, X. Gaochao, H. Liang, and J. Jiubin,
“Implementing data aware scheduling in Gfarm using LSF scheduler
plugin mechanism,” Int. Conf. GRID Comput. Appl. (GCA’05, pp. 3 – 10,
2005.

[19] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi,
K. Blackburn, D. Meyers, and M. Samidi, “Scheduling Data-Intensive
Workflows onto Storage-Constrained Distributed Resources,” in Seventh
IEEE International Symposium on Cluster Computing and the Grid
(CCGrid ’07), 2007, pp. 401–409.

[20] Z. Ding, X. Wei, Y. Zhu, Y. Yuan, W. W. Li, and O. Tatebe,
“Implementation of the Grid Workflow Scheduling for Data Intensive
Applications as Scheduling Plug-ins,” in 2008 Second International
Conference on Future Generation Communication and Networking
Symposia, 2008, vol. 5, pp. 14–20.

[21] I. Raicu, I. T. Foster, Y. Zhao, P. Little, C. M. Moretti, A. Chaudhary, and
D. Thain, “The quest for scalable support of data-intensive workloads in
distributed systems,” in Proceedings of the 18th ACM international
symposium on High performance distributed computing - HPDC ’09,
2009, p. 207.

[22] S. Shankar and D. J. DeWitt, “Data driven workflow planning in cluster
management systems,” in Proceedings of the 16th international
symposium on High performance distributed computing - HPDC ’07,
2007, p. 127.

