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Abstract—Workflow scheduling to maximize I/O performance 

is one of the key issues in data-intensive, many-task computing. In 

our previous work, we proposed locality-aware workflow 

scheduling method using the Multi-Constraint Graph Partitioning. 

In this work, we focus on read performance of input files from the 

disk cache (buffer cache or page cache on main memory). In order 

to maximize the disk cache hit rate of input files, a LIFO-order 

scheduling is effective since created intermediate files may be read 

soon. However, LIFO policy has a disadvantage of so-called 

“trailing task problem." We propose a hybrid scheduling strategy 

of LIFO and HRF (Highest Rank First). In our strategy, one of two 

policies is applied depending on the number of highest-rank tasks 

in the queue to avoid the problem. In addition, scheduling for the 

overlap of computation and I/O is proposed. We implement our 

scheduling strategy for the Pwrake workflow system and the 

Gfarm distributed file system and evaluate it by executing data-

intensive workflows using a computer cluster.  Our scheduling 

strategy improves the performance of copyfile workflow by 30% 

due to increase in disk cache hit rate, and the performance of 

Montage workflow by 12% due to increase in core utilization. 

Keywords—workflow system; many task computing; task 

scheduling; distributed file system 

I. INTRODUCTION 

The increasing amount of science data generated by 
advanced instruments requires parallel processing on distributed 
computer resources. Among issues in parallel processing of 
science data are (1) learning cost in parallel programming such 
as MPI and (2) needs for legacy programs to process science data 
in long-used data formats. In view of such situations, one of 
useful approaches for parallel data processing is process-based 
parallelism, i.e., the parallel execution of a large number of 
sequential programs, each of which processes a part of data. 
However, there are issues in executing a large number of short 
time jobs such as task throughput. Raicu et al. discussed issues 
in Many Task Computing (MTC) where the number of tasks is 
103-106 [1]. 

 Pwrake 1  [2] is a system developed for MTC and data-
intensive workflows. Pwrake is an extension to Rake, a build 
tool written in Ruby. Rake is also a powerful workflow language 
to define many-task workflows. In order to achieve scalable file 

                                                           
1 http://masa16.github.io/pwrake/  

I/O performance, Pwrake is assumed to use the Gfarm 
distributed file system [3]. Gfarm file system has a feature to 
utilize the local storage of compute nodes. The local access to 
the storage of compute nodes is one of key issues for scalable 
parallel I/O performance. In our previous work, we proposed the 
workflow scheduling to minimize data movement using the 
Multi-Constraint Graph Partitioning (MCGP) [4]. 

In this paper, we focus on another issue in the I/O-aware task 
scheduling, i.e., the hit rate of disk cache (buffer cache or page 
cache on main memory) during workflow execution. This issue 
relates to the order of task execution. We propose task 
scheduling using a LIFO queue so that tasks whose prerequisite 
tasks completed later are executed earlier. The LIFO scheduling 
improves the cache hit rate of input files. However, The LIFO 
scheduling has a disadvantage in the CPU core utilization of 
tasks due to a problem known as the trailing task problem [5] 
that is mentioned in Section III.C. We propose the modification 
of the LIFO scheduling to reduce trailing tasks using information 
on a workflow DAG. In addition, we discuss scheduling for the 
overlap of computation and I/O. We evaluate our task scheduling 
by applying to a copyfile workflow and a Montage astronomy 
workflow using a computer cluster of 12 worker nodes with 96 
cores. 

The contributions of this paper are the followings: 

 New scheduling methods to improve the disk cache hit 
rate to avoid trailing task problem. 

 Implementation and evaluation of our scheduling 
algorithm by running scientific workflows on a computer 
cluster. 

The remainder of this paper is organized as follows. Section 
II describes the background of this work.  Section III describes 
the scheduling methods considering disk cache hit rate and CPU 
utilization. In Section IV, we apply the proposed methods to 
scientific workflow using a computer cluster. Section V 
describes related work and Section VI provides conclusion. 
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II. BACKGROUND 

A. Pwrake: Parallel Workflow extension for Rake 

Pwrake is a parallel and distributed workflow system 
developed for data-intensive, many-task computing on computer 
clusters. Pwrake is implemented as an extension for on Rake 
(Ruby Make). After the first report [2], we continued the 
development the Pwrake system and improved its performance, 
functionality, compatibility with Rake. We briefly introduce the 
overview of Pwrake here. 

Pwrake inherits a workflow language from Rake. Rake is a 
standard tool of Ruby and is widely used by Ruby users, and a 
powerful workflow language since it has various useful features 
such as mapper rules and capability to write scripts in the Ruby 
language. Pwrake inherits also the implementation of 
Rake::Task class (hereafter Task class) from Rake. The Task 
class holds information including the self-name of the task, a list 
of prerequisite tasks that must be completed before the start of 
itself, and a task action defined as a Ruby code block. The 
dependency information through prerequisite tasks forms a 
DAG (Directed Acyclic Graph). Rake::FileTask (hereafter 
FileTask) is a file generation task class defined as a subclass of 
the Task class. As for FileTask, the task name is regarded as an 
output file name, and the prerequisite task names can be regarded 
as input files. The action of FileTask is executed when the output 
file does not exist, or its timestamp is older than input files. This 
mechanism is useful to resume a workflow like UNIX Make.  

Fig. 1 is a schematic overview of the Pwrake design. Pwrake 
organizes compute nodes in the master-worker model. The 
Pwrake master has the same number of worker threads as the 
number of total cores of worker nodes. A task action is executed 
in a worker thread of the Pwrake master process. Every worker 
thread connects to remote worker nodes via SSH. Shell 
command lines are sent to a remote node and executed there.  

Instead of file staging, Pwrake relies on file sharing through 
the Gfarm file system. If resource allocation is required, Pwrake 
is run on resources acquired by batch system. Gfarm has a 
mechanism to exploit the performance of local I/O: (1) selection 
of a close replica when reading a file replicated to multiple nodes, 
and (2) selection of the local storage when creating a new file. 
However, the locality-aware task scheduling is an issue for the 
workflow system. 

Fig. 1. Schematic overview of Pwrake system (See text for details). 

Fig. 2. Schematic design of locality-aware TaskQueue. Candidate nodes are 

determined based on locality, tasks are queued into corresponding  NodeQueue. 

B. Pwrake Task Scheduling 

The task scheduling problem is to find the best assignment 
of tasks to computer resources. The objective of scheduling is to 
minimize the makespan. The makespan is defined as estimated 
time from the start of the first task until the completion of the 
last task. The task scheduling problem is NP-hard. Therefore, 
various heuristic scheduling algorithms have been proposed for 
heterogeneous environments such as HEFT (Heterogeneous 
Earliest Finish Time) [6]. Those algorithms normally assume 
that the execution time of tasks (task cost) is known in advance, 
and the schedule is decided before workflow execution. 

In the case of MTC workflows, however, it is difficult to 
predict task costs for thousands or millions of tasks. As for the 
task scheduling of Pwrake, we assume that knowledge on the 
cost of each task and the performance of nodes is not given in 
advance. Instead, we take an approach of TaskQueue-based 
dynamic scheduling. This is a pull-based approach to enable 
efficient balancing and fast dispatch of tasks. In this approach, 
the key issue of the task scheduling is the selection of a task 
retrieved by an idle worker from TaskQueue. 

The locality-aware design of the TaskQueue class in the 
Pwrake system is shown in Fig. 2. TaskQueue has “enq” 
(enqueue) and “deq” (dequeue) methods, and contains 
NodeQueue assigned to every worker node. The locality-aware 
scheduling of Pwrake is as follows.  

In the “enq” phase, the scheduler assigns candidate worker 
nodes where a task is to be executed. We implemented two 
algorithms for the selection of candidate nodes. The first 
algorithm is the “close to input files” scheme. The second 
algorithm is “Multi-Constraint Graph Partitioning (MCGP)” 
developed in our previous work [4]. The former scheme is to 
select worker nodes which store input files of a task. The latter 
algorithm can improve locality for workflows that deal with 
geometrically-partitioned data. After the determination of 
candidate nodes, the task is queued into the corresponding 
NodeQueue. 

The “deq” method is invoked by an idle worker to retrieve a 
task from TaskQueue. In this phase, the scheduler tries to 
retrieve a task from NodeQueue assigned to the worker nodes. If 
the NodeQueue contains no task, worker node retrieves tasks in 
the following order; (a) find a task whose input files are stored 
at other than compute node. If no task is found, then (b) “steal” 
a task assigned to other nodes. This mechanism enables load 
balancing among worker nodes. 

  

  

Pwrake process 

worker thread 

worker thread 

worker thread 

worker thread 

Worker nodes 

Task 
Queue 

Master node 

enq 
deq 

SSH 

Task Graph 

    
    

  
  
  
  

 

files process 

process 

process 

process 

files 

files 

files 

Gfarm 

TaskQueue 

  

  

      

      

  

Node 1 

Node 2 

Node 3 

deq enq 

NodeQueue 

  RemoteQueue 

Task 



III. CACHE-AWARE TASK SCHEDULING 

A. Performance of Reading a Local and Cached File 

TABLE I. shows the read performance of a Gfarm file at the 
Tohoku cluster (See Section IV.A).  The read performance of 
local and cache access is roughly 10 times as high as that of other 
cases. This table shows that local and cache access are important 
for I/O performance. In the previous section, we visited the 
Pwrake scheduling to improve the local access ratio. The main 
subject of this paper is cache-aware task scheduling. 

TABLE I.  I/O PERFORMANCE OF GFARM FILES (MEASURED USING 

CLUSTER SHOWN IN TABLE II. ) 

 Bandwidth 
(MiB/s) 

Read Local disk 70 

cache 592 
Remote disk 39 

cache 71 
Write Local disk 59 

 

B. LIFO as a Cache-Aware Scheduling 

In this paper, we do not step into the mechanism of disk 
cache. Instead, we assume that a later-saved file has a higher 
probability that an input file is cached in main memory. This 
assumption is applicable in situations where a file I/O-based 
workflow is executed on standard Linux computers. In this 
assumption, access time of input files is a good criterion. This is 
achieved by a priority queue based on file access time. However, 
the priority queue requires sorting costs. As a more simple 
approach, the Last-In-First-Out (LIFO) queue produces a similar 
result since task queuing time is an alternate indicator of creation 
time of input files.  

In the design of Pwrake TaskQueue, NodeQueue shown in 
Fig. 2 is implemented as a queue which defines the order of tasks 
such as LIFO. 

We here compare the LIFO and FIFO scheduling using an 
example workflow whose DAG is drawn in Fig. 3. In this 
example, a vertex represents a task and an edge represents a 
dependency through input/output files. This workflow consists 
of three steps of tasks; Ai, Bi, C where i = 1..n. Here the input 
file of task Bi is the output file of task Ai, and task C reads all 
the output files of Bi. For simplicity, we assume that all the tasks 
occupy single core and task costs are equal.  

Fig. 3. DAG of the example workflow. Vertex and edge represent task and 

dependency, respectively. 

Fig. 4. Schematic illustration of FIFO and LIFO queues for the Fig. 3 DAG on 
a two-core machine. Top: at the beginning, all the tasks A are queued, and A1 

and A2 are retrieved (FIFO), or An and An-1 are retrieved (LIFO). In the next 
step, Middle (FIFO): B1 and B2 are queued, and A4 and A3 are retrieved. 

Bottom (LIFO): Bn and Bn-1 are queued and retrieved. 

 Next, we consider the execution of this workflow on 
machine with two cores. Fig. 4 schematically shows the behavior 
of FIFO and LIFO queues. In both cases, all tasks Ai (i = 1..n) 
are queued at the beginning. When a task Ai is retrieved from 
the queue, it is executed. After the task Ai completes, a task Bi 
is queued. FIFO and LIFO have the following difference. In the 
FIFO order, all the tasks A are retrieved earlier than the tasks B. 
In the LIFO order, lately-queued tasks B are executed earlier. 

Fig. 5 shows the result of scheduling on machine with two 
cores, under four scheduling policies including FIFO and LIFO. 
In this figure, time advances from top to bottom and the only last 
task C is not shown. The LIFO scheduling (Fig. 5 (1)) maximize 
the disk cache hit rate since Bi task is invoked immediately after 
the task Ai. On the other hand, in the case of the FIFO scheduling 
(Fig. 5 (2)), the average interval of Ai and Bi is (execution time 
of one task) × (n/2). If the output file of Ai expires from the disk 
cache during this interval, the read performance becomes worse. 
(There is no problem in the arrows toward the other column since 
tasks are in the same node.) On the other hand, the LIFO 
scheduling has a disadvantage in core usage because of the 
“trailing task problem” [5] described in the next subsection. 

Fig. 5. Schematic diagram of the scheduling result of the Fig. 3 workflow on 

a two-core machine under four scheduling policies. Time advances from top to 
bottom. The task C is omitted. The gray arrows indicate task dependencies. 
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C. Trailing task problem and HRF 

The trailing task problem [5] is a problem in MTC. In the 
course of workflow execution, remaining tasks becomes fewer 
than workers, and some worker becomes idle. If many trailing 
tasks are left, the CPU utilization becomes worse. In the LIFO 
case (Fig. 5 (1)), the task An and Bn are trailing tasks and occupy 
only one core. Since our scheduling strategy does not assume 
prior information on task cost, it is impossible to predict CPU 
idle time caused by trailing tasks. Instead, we consider the 
probability of the number of trailing tasks. In the LIFO 
scheduling of Fig. 5 (1), the maximum time span of trailing task 
is the total execution time of An + Bn, since An and Bn cannot 
be executed in parallel. On the other hand, FIFO scheduling (Fig. 
5 (2)), the maximum time span of trailing task is only the 
execution time of Bn. This is because all the tasks A are invoked 
before the start of the tasks B. The difference between task A 
and B is the distance from the target task C. 

We here define the “rank” of a task as a distance from the 
last target task in a workflow DAG as follows. The target task is 
defined as rank 0. The prerequisite task of a rank i task is 
numbered as rank i+1. If a prerequisite task is followed by tasks 
having different ranks, the rank of the prerequisite task is 
obtained by adding one to the maximum rank of the subsequent 
tasks. In the example of Fig. 3, the tasks C is rank 0, the tasks B 
are rank 1, and the tasks A are rank 2.  

An effective way to mitigate the trailing task problem is 
earlier execution of higher rank tasks. We call this policy 
Highest Rank First (HRF). Similar policy can be seen in the 
static scheduling algorithms such as HEFT [6]. In the HEFT 
algorithm, it calculates a priority called “upward rank” for each 
task in the first phase, and tasks are assign tasks to workers 
starting with the highest priority in the second phase. 

Since LIFO and FIFO (same order as HRF) conflict with 
each other, only one of these schemes can be selected at the same 
time. If n is large, LIFO tends to be better since the interval of 
task Ai and Bi becomes large. If the number of worker cores is 
large, FIFO may be better due to the trailing task problem.  In 
the next subsection, we propose methods with advantages of 
both LIFO and FIFO in most of the situations. 

D. Proposed Methods 

To solve the problem of disk cache hit rate and CPU 
utilization simultaneously, we propose two algorithms to 
determine the order of task retrieval from NodeQueue.  

1) LIFO + HRF 
We call the first method LIFO+HRF, where the LIFO or 

HRF scheduling is applied according to the number of tasks in 
NodeQueue. We define NHR as the number of tasks with the 
highest rank in NodeQueue and Ncore as the number of cores of 
the corresponding node. The LIFO+HRF scheduling algorithm 
is: 

 If NHR  > Ncore, select the task in the order of LIFO 

 If NHR  ≤ Ncore, select the task in the order of HRF 

 

 

Fig. 6. Schematic illustration of the LIFO+HRF algorithm. 

Fig. 6 schematically shows the behavior of the LIFO+HRF 
algorithm. The result of LIFO+HRF scheduling for the DAG of 
Fig. 3 is shown in Fig. 5 (3). In the example, the LIFO+HRF 
algorithm selects tasks in the following policies: 

 Task Ai, Bi (i = 3..n) :  LIFO 

 Task A2, A1, B2, B1 :  HRF 

The tasks Ai and Bi (i = 3..n) is retrieved in the cache-aware 
LIFO policy. On the other hand, when only A2 and A1 remain 
in the queue, they are executed earlier under the HRF policy. 

2) Rank Equalization + HRF 
The second proposed method relates to the overlap of I/O 

and computation. In workflow patterns in Fig. 3, there may be a 
situation where the tasks A are computationally intensive, and 
the tasks B are I/O intensive. In such a situation, there is a chance 
to reduce execution time by overlapping the tasks A and B.  Fig. 
5 (4) (labeled as Rank+HRF) shows an example of overlap 
scheduling. Although the interval between the task Ai and Bi in 
Fig. 5 (4) is longer by one task than those of LIFO; it is much 
shorter than the interval of FIFO. This situation can be achieved 
by the rank equalization of the number of tasks running at any 
time. We call this policy Rank Equalization. The algorithm of 
Rank Equalization is as follows. 

 Get R, a set of ranks of queued tasks at scheduling time. 

 Calculate weights w[r] for each rank r in R. (see below) 

 Select a rank r in R randomly using weights w[r]. 

 Retrieve a task from tasks with the rank r under the LIFO 
policy. 

The weights of rank selection are not equal in the following 
reason. As is shown in Fig. 7, the number of task invocations is 
inversely proportional to task execution time. Therefore, the 
weight of rank selection is defined as the inverse of average task 
execution time, which is measured at run time.  However, at the 
beginning of the workflow, task execution time is not given. 
Therefore, equal weights are provided initially. After the first 
task completes, the average of the measured task execution time 
is used. 

Fig. 7. The relationship between task execution time and the number of task 

invocations in the same timespan. 
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The retrieval from the selected rank is the LIFO order. Since 
the trailing task problem still exists, the algorithm is changed to 
HRF when the number of tasks is less than the number of cores.  

IV. PERFORMANCE EVALUATION 

A. Evaluation environment 

The environment used for the evaluation is summarized in 
TABLE II.  The computer cluster is the Tohoku site of InTrigger 
platform [7]. We used up to 12 worker nodes. Gfarm File System 
Node (FSN) is located on each worker node. Another node is 
used for the Gfarm metadata server and the Pwrake master. In 
order for the Gfarm system to write a file to the local storage 
every time, the option schedule_idle_load_thresh in gfarm2.conf 
is set to be 100. 

TABLE II.  EVALUATION ENVIRONMENT 

Cluster InTrigger Tohoku site 

CPU Intel Xeon E5410 2.33GHz 

Main Memory 32 GiB 

# of cores / node 8 

Max # of compute node 12 

Network 1Gb Ethernet 

OS Debian 5.0.4 

Gfarm ver. 2.5.8.6 

Ruby ver. 2.1.1 

Pwrake ver. 0.9.9.1 

 

B. Copoyfile Workflow 

In this section, we investigate the effect of the LIFO 
scheduling using an I/O-only workflow. As a workflow task, we 
made a program named copyfile2 written in the C language.  The 
copyfile program loads an input file into main memory, after that 
it writes the data to an output file. (This behavior is similar to 
scientific data processing without calculation.) The DAG of this 
workflow is same as the DAG in Fig. 3. Both the tasks A and B 
are copyfile task, i.e., an input file is copied twice. Before the 
workflow execution, 100 input files with 3 GiB are created in 
the storage of ten worker nodes. Since each input file is copied 
twice, the total read and write size is 600 GiB, respectively.  

In this measurement, we used ten worker nodes of the 
InTrigger Tohoku cluster. Since the copyfile task is I/O-
intensive, only one core per node is used. Thus, ten processes 
run in parallel during workflow execution. Immediately after the 
creation of 3 GiB file, it is surely cached since the main memory 
size of compute nodes is 32 GiB. On the other hand, after reading 
100 input files, the first file is surely evicted from the disk cache. 
We evaluate only the LIFO and FIFO scheduling. HRF is not 
evaluated since it does not change the behavior in the situation 
here of one core per node. The elapsed time is measured three 
times.  The averaged result is shown on left blue bars in Fig. 8.  
It shows that the LIFO scheduling improved performance by 
30% from FIFO scheduling. 

We compare the experiment with the estimation of the 
workflow elapsed time from the I/O performance.  The elapsed 
time of the copyfile workflow is estimated as t = I / R + O / W, 
where I and O are the sizes of input and output files in bytes and  

                                                           
2 https://gist.github.com/masa16/5956881 

Fig. 8. Elapsed time of copyfile workflow. 

R and W is the read and write bandwidth in bytes/sec, 
respectively. The values of R and W are the I/O performance of 
Gfarm shown in TABLE I.  We assume the read bandwidth as 
follows: For FIFO, the tasks A and B read from local disk. For 
LIFO, the tasks A read from local disk and the tasks B read from 
the local cache. Thus, execution time is estimated and shown as 
red bars in Fig. 8. The estimation is consistent with the 
experiment since the elapsed time of the workflow includes 
other time than I/O. The result shows that the performance 
improvement by the LIFO scheduling is attributed to cache read.  

C. Montage workflow 

In this section, we evaluate the cache-aware scheduling using 
astronomical image processing software Montage [8] as a data-
intensive scientific workflow. Montage is a collection of 
programs for combining multiple shots of astronomical images 
and creating an image with a large sky area. We implemented a 
Montage workflow as Rakefile3. Fig. 9 shows an example DAG 
of Montage workflow. In the actual processing, the number of 
tasks is larger depending on the number of input files.  

TABLE III.  SIZES OF EXPERIMENT MONTAGE WORKFLOW 

Input file SDSS DR7 

# of input files 421 

Size of one input file 2.52 MB 

Size of total input files 1061 MB 

# of intermediary files 4720 

Size of intermediary files 63.5 GB 

# of tasks 2707 

 

Fig. 9. DAG of Montage workflow. Vertex and edge represent task and 

dependency, respectively. 

 

3 https://github.com/masa16/pwrake-demo 
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Fig. 10. Elapsed time of Montage workflow for scalability in a double 

logarithmic graph. The broken line indicates inverse proportion as a guide to 

scalability. 

As input files, we use the image of SDSS DR7 [9]. The file 
size and task size of the evaluated workflow are summarized in 
TABLE III.  

1) Scalability and Performance Enhancement with Cache 
In order to investigate the scalability, we measured elapsed 

time of Montage workflow using 1-12 nodes with data size fixed 
(i.e., strong scaling). The number of used cores is 8-96 (eight 
cores per node). We measured four scheduling methods; FIFO, 
LIFO, LIFO+HRF, and Rank+HRF. In all cases, we apply the 
locality scheduling with a node assignment algorithm using 
MCGP. We measured once for 1-3 nodes, three times for 4-8 
nodes, and five times for 10-12 nodes, selected better half 
experiments, and averaged them since there may be unexpected 
performance degradation due to OS noise, etc. The elapsed time 
of sequential tasks (mBGModel, last mAdd, mJPEG) are 
excluded from the results. Fig. 10 is the plot in all the range of 
8-96 cores in logarithmic scale, and Fig. 11 is the plot in the 
range of 32-96 cores in linear scale. In these plots, the broken 
line indicates inverse proportion between the number of cores 
and elapsed time as a guide to scalability.  

 In Fig. 10, the slopes of the measurement data are steeper 
than the broken line. This means that the performance is 
improved beyond the scalability. We consider that the reason is 
attributed to disk cache hit rate since the data size processed by 
a single node decreases as the number of nodes increases. In the 
range of 8-32 cores, the elapsed time of FIFO is significantly 
longer than that of the other scheduling. The speedup from FIFO 
to LIFO+HRF in the 8, 16, 24-core experiments is about 1.9 
times.  The result shows that the disk cache hit rate is a 
significant factor for performance when data size per node is 
large. 

In the range of 48-96 cores, the elapsed time of all the 
scheduling methods is close to each other. In the experiment 
using 12 nodes with 96 cores, the file size per node is about 1/12 
of the total size. For example, the total file size of mProjectPP 
output is about 20 GB, but the files size processed per node is 
about 1.7 GB. This size is small enough to load in the main 
memory of 32 GiB. Therefore, cache access is dominant even 

Fig. 11. Elapsed time of Montage workflow scalability (Same as Fig. 10 but 
shows only >32 cores, in linear axes). The broken line indicates inverse 

proportion. 

for the FIFO scheduling. Among the four scheduling methods, 
only the elapsed time of the LIFO scheduling is longer than other 
scheduling methods. On the other hand, the LIFO+HRF 
scheduling produces the best performance over the entire range 
of the number of cores. 

2) Improvement of Core Utilization with HRF 
In this subsection, we investigate the relationship between 

scheduling and core utilization. The elapsed time of the 
workflow using 12 nodes with 96 cores is plotted in Fig. 12. The 
result shows 12 % improvement by HRF. The result of FIFO is 
close to the LIFO+HRF and Rank+HRF since cache access is 
dominant in this experiment. 

Fig. 12. Elapsed time of  Montage workflow using 96 cores. 

Fig. 13. Core utilization during Montage workflow. 
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Fig. 14. The time transition of the number of tasks during Montage workflow. 

Scheduling: FIFO for task order, MCGP for locality. 

Fig. 15. The time transition of the number of tasks. Scheduling: LIFO, MCGP. 
The arrow indicates decrease in core utilization due to the trailing task problem. 

We define the core utilization as 
𝑡cum

𝑡elap𝑛cores
, where tcum is the 

cumulative execution time of tasks, telap is the elapsed time of the 
workflow, and ncores is the number of cores. The cumulative 
execution time tcum is derived as the summated elapsed time of 
all the tasks. The obtained core utilization is plotted in Fig. 13. 
The result shows that the core utilization of LIFO is about 84%, 
while that those of other methods are about 87-88%. The result 
shows that the major cause of lower performance of LIFO is core 
utilization. 

 In order to see in detail how the execution order affects the 
core utilization, we plot the time variation of the number of tasks 
during the workflow execution in Fig. 14 - Fig. 17. In these plots, 
red thick line shows the total number of tasks, and the other lines 
show the number of each kind of tasks. 

Fig. 14 is the result of the FIFO scheduling. The number of 
running tasks is close to 96 (same as the number of cores) almost 
all the time except the period of singly-executed tasks 
(mBgModel, last mAdd and mJPEG). Fig. 14 shows that tasks 
are invoked in the descending order of rank. For example, all the 
mProjectPP tasks are invoked at first, and then all the mDiff 
tasks are invoked. 

Fig. 15 is the result of the LIFO scheduling. It shows that the 
mProjectPP and mDiff tasks are invoked alternately. This 

Fig. 16. The time transition of the number of tasks. Scheduling: LIFO+HRF, 
MCGP. 

Fig. 17. The time transition of the number of tasks. Scheduling: Rank+HRF, 

close-to-file. 

execution order is intended to raise disk cache hit rate (In this 
experiment, however, it is not effective for disk cache hit rate 
since the data size is small.) On the other hand, the total number 
of tasks decreases around 60 sec at the position indicated by an 
arrow. This is because the number of the mProjectPP tasks that 
remain in the queue becomes less than the number of worker 
cores. This is the trailing task problem. 

Fig. 16 is the result of the LIFO+HRF scheduling. It shows 
alternate task invocation similar to LIFO. However, a decrease 
in the total number of tasks due to trailing tasks is not seen in the 
LIFO+HRF experiment. This result demonstrates that the 
proposed LIFO+HRF scheduling resolves the trailing task 
problem for the Montage workflow which is more complex than 
the example workflow shown in Fig. 3. 

3) Rank Equalization 
In Montage workflow, mProjectPP is compute-intensive and 

mDiff is I/O-intensive. Therefore, the overlap of mProjectPP and 
mDiff can improve performance. Fig. 17 show the number of 
tasks in the experiment of Rank Equalization with HRF 
(Rank+HRF). The result shows almost same behavior and 
performance as the Fig. 16 (LIFO+HRF). In this configuration 
of workflow, the rank equalization is failed to increase 
performance since the core utilization of mDiff tasks is almost 
always less than 50%. 

trailing tasks 



Fig. 18. The time transition of the number of tasks. Scheduling: LIFO+HRF, 

close-to-file for locality. 

We here demonstrate another experiment where the Rank 
Equalization is effective. This is achieved by changing the 
locality option from MCGP to the location of input files. This 
change degrades local access rate and makes mDiff execution 
time longer. The result of this experiment is shown in Fig. 18 
and Fig. 19. The plot of  LIFO+HRF (Fig. 18) shows that the 
number of mDiff tasks oscillates and exceeds 48 (50% 
utilization). On the other hand, the plot of Rank+HRF (Fig. 19) 
shows that the number of mDiff tasks is flat and less than 48 in 
the period of 20-60 sec. The elapsed time (excluding sequential 
tasks) is 134.4 sec for LIFO+HRF and 128.7 sec for Rank+HRF. 
Thus, Rank Equalization improves performance by 4.4%. This 
improvement is due to the overlap of mProjectPP (computation-
intensive task) and mDiff (I/O-intensive task). In conclusion, the 
scheduling to overlap computation and I/O can improve the 
performance of particular workflows. 

V. RELATED WORK 

A. Workflow System 

Pegasus [10] is a workflow system for grid computing. 
Kepler [11] is a workflow system for connecting Web services. 
These systems are not targeted at MTC since task throughput 
(tasks/sec) is not pursued. MapReduce [12] is a programming 
model for a large number of data-intensive parallel tasks. It is 
only applicable to specific patterns of workflows.  

Swift [13] + Falkon [14] + Data diffusion [15] is a 
combination of frameworks targeted at MTC on Grid systems. 
Swift is a workflow system which employs Swiftscript dedicated 
for scientific workflows. On the other hand, Pwrake is based on 
Rake, a powerful workflow language with scripting capability. 
Falkon is a framework for fast task dispatch as which reports 
1500 tasks/sec at the peak performance. It requires piggy-
backing and task bundling. Data diffusion is a mechanism for 
task scheduling and management of staged files to the execution 
node, in consideration of the locality. In the Pwrake system, 
explicit file staging is not required since we assume files are 
shared by the Gfarm file system. 

GXP make [16] is a system using the GNU make as a 
workflow definition language, built on the GXP system for 
distributed parallel execution. The mechanism of GXP make is 
that the “mksh” process traps command lines issued by GNU 

Fig. 19. The time transition of the number of tasks. Scheduling: Rank+HRF, 

close-to-file. 

make and dispatches to remote nodes. Therefore, the order of 
execution depends on GNU make implementation. In Pwrake, 
we implemented the scheduling to control the order of execution.  

B. Workflow Scheduling 

Yu et al. [17] surveyed various workflow scheduling 
algorithms for Grid systems. These algorithms are heuristic or 
meta-heuristic algorithms based on the prior information of tasks. 
On the other hand, our work is aimed at MTC workflows 
comprised of thousands or millions of tasks on computer clusters, 
not provided by prior information on task execution time. 

Locality-aware scheduling for data-intensive workflows has 
been studied by [18][19][20][21]. Shankar and DeWitt [22] 
studied DAG-based data-aware workflow scheduling for the 
Condor system. They focused on cached data on a local disk in 
order to avoid data movement. On the other hand, our study is 
aimed at the scheduling for cached data on memory. 

Armstrong et al. [5] discussed the trailing task problem that 
occurs in MTC and proposed the tail-chopping approach, where 
remaining tasks are run on a smaller allocation of compute 
resources. We study another approach HRF, which determines 
the order of task execution using the information of DAG. 

VI. CONCLUSION 

Pwrake is a workflow system developed for data-intensive 
and many-task computing and utilizes the Gfarm file system for 
file sharing among worker nodes instead of file staging. We 
discussed that the LIFO scheduling is effective to maximize the 
probability that input files are cached. We proposed two 
scheduling methods for improving the performance of every 
range of workflows. One is the hybrid scheduling of LIFO and 
HRF (Highest Rank First) in order to mitigate the “trailing task 
problem” which is a disadvantage of the LIFO scheduling.  The 
other is a hybrid of Rank Equalization and HRF, in quest of the 
overlap of computation and I/O. We evaluated the proposed 
scheduling using a computer cluster by executing data-intensive 
workflows. In the experiment of copyfile workflow, the LIFO 
scheduling improves the workflow performance by 30% from 
the FIFO scheduling. In the experiment of the Montage 
astronomy workflow with 96 cores, the HRF scheduling 
eliminates trailing tasks and improves by 12%. On the other 



hand, the Rank Equalization improves performance if 
computation and I/O are effectively overlapped. 
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