
Pwrake : A Parallel and Distributed Flexible Workflow Management

Tool for Wide-area Data Intensive Computing

SRCFITS = FileList["#{INPUT_DIR}/*.fits"]

file("pimages.tbl") do
OUTFITS = SRCFITS.map do |i|

o = i.sub(/^(.*?)([^¥/]+).fits/,'p/¥2.p.fits')
file(o => [i, HDR]) do |t|

t.rsh "mProjectPP #{i} #{o} #{HDR}"
end

o
end
pw_multitask("Proj" => OUTFITS).invoke
sh "mImgtbl p pimages.tbl"

end

ABSTRACT
This poster proposes Pwrake, a parallel and distributed flexible
workflow management tool based on Rake, a domain specific
language for building applications in the Ruby programming
language. Rake is a similar tool to make and ant. It uses a Rakefile
that is equivalent to a Makefile in make, but written in Ruby. Due
to a flexible and extensible language feature, Rake would be a
powerful workflow management language. The Pwrake extends
Rake to manage distributed and parallel workflow executions
that include remote job submission and management of parallel
executions. This paper discusses the design and implementation
of the Pwrake, and demonstrates its power of language and
extensibility of the system using a practical e-Science data-
intensive workflow in astronomical data analysis on the Gfarm
file system as a case study. Extending a scheduling algorithm to
be aware of file locations, 20% of speed up is observed using 8
nodes (32 cores) in a PC cluster. Using two PC clusters located in
different institutions, the file location aware scheduling shows
scalable speedup. The extensible Pwrake is a promising workflow
management tool even for wide-area data analysis.

Masahiro Tanaka and Osamu Tatebe (University of Tsukuba)

Local
Storage

Local
Storage

Local
Storage

File System
Nodes

file1 file2 file3

Local
Storagefile4

Job for
File 1

Job for
File 3

Job for
File 3

Slow

Fast

Rake syntax = Ruby syntax

file “prog” => [“a.o”, “b.o”] do

sh “cc –o prog a.o b.o”

end

Ruby method
defined in Rake

Ruby code block enclosed by do … end or {…}
executed as a task action.

Key-value argument to file method
task_name => prerequisites

site core nodes memory

Univ of Tsukuba quad 8 4GB

AIST dual 8 2GB

• Workflow

– Montage : a tool to combine
astronomical images

– http://montage.ipac.caltech.edu/

• Input data:

– 2MASS All sky survey

– 1,580 files (3.3 GB)

• Platform :

/

/subaru

/subaru/spcam

/akari
/archives

/akari/fis /archives/2mass

/labA

/labA/personB

…
… ……

data …
data …

Laboratory
A

data … data …

Seamless access to data files

in a Single Global Tree

NAOJ JAXA

Public Data

Analyzed Data
Access-protected

to Observer

Astronomy data archives
from observatories in the world

Standard protocols
for data access

Data Intensive Computing in e-Science

Storage

CPU CPU CPU

file1 file2 file3

Storage

CPU CPU CPU

Storage I/O is
bottleneck

due to access
congestion

StorageStorage

file1 file2 file3

Network File System Distributed File System

parallel
execution

Distributed
FS provides
efficient I/O

Data Intensive Computing requires
Distributed File System

Gfarm:
a Wide-area Distributed File System

What is Rake ?
 A build tool similar to make
Written in Ruby language
 Part of Ruby 1.9.x

Why Rake ?
 Widely used as a build tool
 Easy to write complicated

workflows using Ruby language
features such as parameter sweep

 Easy to extend behavior by
inheriting Task class

 Easy to define task dynamically

Requirement for Workflow Tool

PwMultitask class

Prerequisite
Tasks

SSH connection

Task1

Task2

Task3

Task Queue Thread Queue
for remote
executions

…

worker
thread1

worker
thread2

worker
thread3

remote
host1

remote
host2

remote
host3

enqueue dequeue

Task1

Task2

Task3

AffinityQueue

…

worker
thread1

worker
thread2

worker
thread3

push
with hostname

Queue for

host1

pop
with hostname

Queue for

host2

Queue for

host3

… …

Pwrake Implementation

mProjectPP task definition for Pwrake

mProjectPP

mDiff

mBgModel

mBackground

mAddmFitplane

m
1

= a'
1
x+b'

1
y+c'

1

m
2

= a'2x+b'
2
y+c'

2

a
1
x+b

1
y+c

1
=0 a

2
x+b

2
y+c

2
=0

Final image

Input images

Montage workflow

Two sites :
Gfarm (#5 and #6) with 48 cores
• Site: Univ. of Tsukuba and AIST
• Scheduling: Affinity scheduling (same as #3,4)
• Arrangement of input data :

#5: Each cluster has one file replica for each input file.
#6: See figure below.

• Performance :
#5→#6 : 41% speedup

• Scalable speedup is observed in comparison to one-site

Performance Evaluation

Position of image file

U. Tsukuba
(32 cores)

AIST
(16 cores)

Result of Performance Evaluation

20% 41%

el
ap

se
d
 t

im
e

(s
ec

)

One site :
• Site: Univ. of Tsukuba

NFS (plot #1):
• Elapsed time increases even as the

number of core increases.

Gfarm (plot #2-6):
#2 : Without Affinity scheduling
#3 : With Affinity scheduling
#4 : Same as #3 except input data

are distributed across compute
nodes

• All the cases show scalable speedup.
• Performance (32 cores) :

#2→#3 : 14 % speedup
#2→#4 : 20 % speedup

Pwrake = Rake + Parallel Workflow extension

CASE STUDY : Astronomy Workflow

BACKGROUND AND MOTIVATION

Task B

Dynamic Task Definition
Task A

Task B list

Task B target

Task B list is
defined in Task A

TASK_B_LIST = Array.new

task "A" do
TASK_B_LIST << ...

end

task "B" => "A" do
a = TASK_B_LIST.map do |b|
task b do
...

end
end
task("B-target" => a).invoke

end

GXP make
• A workflow management tool which exploits the GNU make and uses GXP, a

parallel shell tool written in Python, as the underlying distributed execution engine.
• Define workflows in Makefile.
• It has implicit and explicit rules to execute, variable values, and shell scripts.
• It is possible to reduce the length of a workflow description dramatically compared

to the DAG input file, and to generate a general workflow for applications. This
research is inspired by the GXP make.

Swift
• A scientific workflow system designed for loosely coupled computations.
• Define workflows in a statically typed language called SwifScript.
• Swift dispatches a workflow to another scheduler, such as Karajan, while it is not

intended for users to extend the scheduler. Such batch job submission needs
granularity of jobs for efficient execution.

RELATED WORKS
•Pwrake, a parallel and distributed flexible workflow management

tool, is proposed.

•Pwrake is extensible, and has flexible and powerful workflow
language to describe scientific workflow.

•We demonstrate a practical e-Science data-intensive workflow in
astronomical data analysis on Gfarm file system in wide area
environment.

•Extending a scheduling algorithm to be aware of file locations, 20%
of speed up was observed using 8 nodes (32 cores) in a PC cluster.

•Scalable speedup is observed in the measurement using two PC
clusters located at different sites, if each file is grouped by
coordinate and placed at an appropriate site based on the group.

CONCLUSION

• Exploit local I/O for scalable I/O performance
• Move and execute program instead of moving large-scale data
• So far there is no workflow tool with file affinity scheduling.

Local
Storage

Local
Storage

Local
Storage

Internet

Gfarm File System

/

/dir1

file1 file2

/dir2

file3 file4

Computer nodes

Local
Storage

Local
Storage

Local
Storage

• http://datafarm.apgrid.org/
• Global namespace to federate storage of compute nodes
• Designed for data intensive computing in wide area

Key issue for Scalable I/O performance:
File Affinity Task Scheduling

Extensibility :
Able to choose scheduling scheme, especially
affinity-aware scheduling.

Programmable :
Easy to define complicated workflows and
parameter sweep.

Rule-based :
Same definition for different set of data.
(DAG-based workflow is not re-usable.)

Dynamic Task Definition:
Define tasks based on the result of former tasks.

Performance :
Scalability in parallel execution.

ABSTRACT

Scalable speedup

Pwrake feature : Concurrent Workflow Execution
INFILES = FileList["?.c"]

OUTFILES = INFILES.map do |i|
o = i.sub(/.c$/, ".o")
file(o => i) do |t|

t.rsh "cc -o #{o} #{i}"
end.name

end

pw_multitask(“target" => OUTFILES)
do

sh “cc –o x #{OUTFILES.join(„ ‟)}”
end

Pwrake

Gfarm File System

/dir

a.c b.c c.c d.c

cc –o a.o a.c

INFILES = [“a.c”,“b.c”,“c.c”,“d.c”]

i = “a.c” o = “a.o”

Task class instance :

@name : “a.o”

@prerequisites : “a.c”

@action : proc{|t| t.rsh “cc –o a.o a.c”}

PwMultiTask class instance :

@name : “x”

@prerequisites : [“a.o”,”b.o”,..]

@action : proc{|t| sh “cc –o x a.o b.o ..”}

cc –o b.o b.c
cc –o c.o c.c

cc –o d.o d.c

a.c b.c c.c d.c

Parse Workflow
defined in Rakefile

Generate Task-class
instances

Remote Process Calls
via SSH

This workflow can
be defined as:

Arrangement for #6: Input files are assigned to sites by
celestial coordinate. It reduces file accesses between sites.

Mount Gfarm File System
during SSH connection

Implementation of
Affinity Scheduling

