
Workflow System for Data-intensive
Many-task Computing

Masahiro Tanaka and Osamu Tatebe

University of Tsukuba, JST/CREST

Japan Science and Technology Agency

Dec 4, 2014ISP2S2 1

Outline

 Background

 Pwrake Workflow System

 IO-aware Task Scheduling

◦ Locality-aware Task Scheduling using
Multi-Constraint Graph Partitioning
(MCGP)

◦ Disk cache-aware Tasks Scheduling

 Conclusion

Dec 4, 2014ISP2S2 2

 Many Scientific Fields

◦ Astronomy, Bioinformatics, Earth Science,
Particle Physics, …

 Data I/O > Computation

◦ Interaction through File System

 Handles huge amount of data

◦ HSC for Subaru Telescope generates
~300GB/night.

◦ Requires Parallel processing on Distributed
Computer Systems

Background: Data-intensive Science

Dec 4, 2014ISP2S2 3

Example of scientific workflow:
Montage (Astronomy image processing)

mProjectPP

mDiff+mFitplane

mBGModel

mBackground

mShrink

mAdd

mAdd

mJPEG

Output image

Workflow DAG

Input images…

Process

file

output

input

Task

Dec 4, 2014ISP2S2 4

Pwrake Workflow System

Dec 4, 2014ISP2S2 5

 Parallel Workflow extension to Rake

 Target: data-intensive and many-task
scientific workflow

 Pwrake is based on:

◦ Rake : Ruby version of UNIX Make

 Workflow definition language for Many-Task
Scientific Workflows

◦ Gfarm : Distributed File System

 Scalable I/O performance

 Use local storage of compute nodes

Pwrake Workflow System

Dec 4, 2014ISP2S2 6

 Task definition format

◦ e.g. DAX

◦ Need script to define many tasks.

 Design a new language

◦ e.g. Swift (Wilde et al. 2011)

◦ Learning cost, Niche community.

 Use an existing language

◦ e.g. GXP Make (Taura et al. 2013)

◦ Extension rule is not enough for scientific
workflows.

Workflow Definition Language

Dec 4, 2014ISP2S2 7

 Build tool written in Ruby

 Widely-used tool in the Ruby
community

 Rake is an internal DSL

◦ Ruby is an host language

 reduces learning cost

 able to use Ruby language features

Our solution: Rake – Ruby Make

Dec 4, 2014ISP2S2 8

 For-Loop

BASENAMES = Array of basenames

for i in BASENAMES
file "out/#{i}.fits" => "src/#{i}.fits" do |t|
sh "mProjectPP #{t.prerequisites[0]} #{t.name} region.hdr"

end
end

 Complex Rule using script

FILEMAP = Mapping input files to output files

rule /^d¥/.*¥.fits$/ => proc{|x| FILEMAP[x]} do |t|
p1,p2 = t.prerequisites
sh "mDiff #{p1} #{p2} #{t.name} region.hdr"

end

Useful features of Rake

Dec 4, 2014ISP2S2 9

 Inherit Rake

◦ Workflow (task) definition language

◦ File-based task dependency

 Resume/Restart

◦ Implementation, e.g., Task class, Application module

 Implement Pwrake extension

◦ remote process execution

◦ parallel task execution

◦ task queue (includes scheduling)

◦ find file location using Gfarm API

Design of Pwrake

Dec 4, 2014ISP2S2 10

Pwrake Archetecture

Pwrake process

Worker nodes

worker thread

worker thread

worker thread

worker thread

Master node

enq
deq

process

process

process

process

SSH

Task Graph

Task

Queue

Gfarm

files

files

files

files

Dec 4, 2014ISP2S2 11

Design of Task Queue

TaskQueue

Node 1

Node 2

Node 3

deqenq

NodeQueue

Other nodes

Task

worker thread

Dec 4, 2014ISP2S2 12

I/O-aware Task Scheduling

 Issues:

◦ File Locality

◦ Disk cache
 (buffer/page cache)

39
7071

592

0

100

200

300

400

500

600

Remote Local

M
B
/
s

Read performance of

Gfarm file (HDD, GbE)

disk

cache

Gfarm

disk

cache

file

file
disk

cache

file

file

process

Local Remote

Dec 4, 2014ISP2S2 13

Locality-aware Scheduling
based on MCGP

(Multi-Constraint Graph Partitioning)

(CCGrid 2012)

Dec 4, 2014ISP2S2 14

1. Naïve locality scheduling

◦ Assign a task to a node where its input file is
stored.

2. Method using MCGP (Multi-Constraint Graph
Partitioning)

◦ Our proposal (CCGrid 2012)

(Idle workers steal tasks)

Locality-aware Scheduling Methods

Dec 4, 2014ISP2S2 15

 Is Graph Partitioning also
applicable to Workflow
DAG?

◦ Vertex ⇔ Computation

◦ Edge ⇔ Communication

◦ Minimize:

 Edge-cut ⇔ Data movement

Graph Partitioning ⇔ Task Scheduling

Dec 4, 2014ISP2S2 16

Graph Partitioning on DAG

Standard Graph Partitioning Ideal Partitioning for Scheduling

Node-A Node-B Node-C Node-D

Former Tasks Latter Tasks

Standard GP is not aware of parallelizable tasks

Dec 4, 2014ISP2S2 17

Multi-Constraint Graph Partitioning
(MCGP)

Dec 4, 2014ISP2S2 18

Vertex Weight Vectors

611 
 BA Vj

j

Vi

i ww
　

(3,1,3)

(2,2,2)

(1,3,1)

(3,1,1)
(2,3,1)

(1,2,4) 622 
 BA Vj

j

Vi

i ww
　

633 
 BA Vj

j

Vi

i ww
　

1st dim:

2nd dim:

3rd dim:

 iiii www 321 ,,w

Balance the sum of Vertex Weights at each dimension

AV BV
BVAV

w1

w2

w3

w4

w5

w6

Proposed method: MCGP
(Multi-Constraint Graph Partitioning)

w1 = (1,0,0,0,0)

w2 = (0,1,0,0,0)

w3 = (0,0,0,0,0)

w4 = (0,0,1,0,0)

w5 = (0,0,0,1,0)

w6 = (0,0,0,0,1)

w7 = (0,0,0,0,0)

w1 w1 w1 w1

w2 w2 w2

w4 w4 w4 w4

w5 w5

w7

w3

w6 w6

Ntask ≧ Ngroup ：
• set 1 at ith dim
• set 0 at others

Ntask < Ngroup ：
• set 0 to all
dims

Dec 4, 2014ISP2S2 19

w1 = (1,0,0,0,0)

w2 = (0,1,0,0,0)

w3 = (0,0,0,0,0)

w4 = (0,0,1,0,0)

w5 = (0,0,0,1,0)

w6 = (0,0,0,0,1)

w7 = (0,0,0,0,0)

Result of MCGP

Uniform Distribution
in each phase

Node-A Node-B

Minimize Edge-cut
applied to Entire Graph

Dec 4, 2014ISP2S2 20

Image Position and Task Nodes

Naïve locality MCGP

(Initially, input files are stored in one node)

Dec 4, 2014ISP2S2 21

Data Movement between nodes

87.9

47.4

14.0

0

10

20

30

40

50

60

70

80

90

100

A（Unconcern） B（Naïve locality） C（MCGP）

D
a
ta

 S
iz

e
R

a
tio

 (%
)

Dec 4, 2014ISP2S2 22

Workflow Execution Time

0

20

40

60

80

100

120

140

160

180

200

A（Unconcern） B（Naïve locality） C（MCGP）

E
la

p
s
e
d
 T

im
e
 (s

e
c
)

31% down

22% down

Includes time
to solve MCGP

（30 ms）

Dec 4, 2014ISP2S2 23

Disk cache-aware
Task Scheduling

(Cluster 2014)

Dec 4, 2014ISP2S2 24

 LIFO queue:

◦ Intermediate files are read soon.

◦ High probability that the file is cached.

◦ Trailing task problem (Armstrong et al. MTAGS 2010)

Disk Cache-aware Task Scheduling

Workflow DAG

A3 A6

B1 B2 B3 B6

C

A4

B4

A5

B5

A1 A2 A6

LIFO queue

Last-in

First-in

B6

Execution
order

A6

A3

A4

A5

A1

A2

B6

tim
e
→

First-out

A5

B5

…

Dec 4, 2014ISP2S2 25

Proposed Scheduling methods

A1

A3

A2

A4

Bn-3

Bn-1

Bn-2

Bn

An-2

An

An-1

B1

B2 B3

idle

core

A1

B1

A3

B3

A2

B2

A4

B4

An-2

Bn-2

An

Bn

An-1

Bn-1

:

A1

B1

A3

B3

A2

B2

A4

B4

An-2

Bn-2

Bn-1

An-1

An

Bn

LIFO

HRF

:

A1

B1

B2

B3

A2

A3

A4

A5

An-1

Bn-1

Bn-2

An

Bn

Bn-3

Rank

Overlap

HRF

:
An-2

FIFO (HRF) LIFO LIFO+HRF Rank
Equalization+HRF

Disk Cache × ◎ ◎ ○

Trailing Task ○ × ○ ○

Task Overlap × × × ○

A1 A2 An

B1 B2 Bn

..

C

..

Workflow DAG

HRF: Highest Rank FirstTrailing tasks ↑

Dec 4, 2014ISP2S2 26

Core Utilization

mProjectPP mDiff

Sequential tasks

Trailing Task

No Trailing Task
mDiff overlaps mProjectPP

FIFO

LIFO+HRF

LIFO

Rank Eq+HRF (different setting)

Dec 4, 2014ISP2S2 27

Measurement of Strong Scaling
(1-12 nodes, Logarithmic)

1node

8cores

4nodes

32cores

∝ 1/ncores

Next Slide

x1.9 speedup

from FIFO

Dec 4, 2014ISP2S2 28

Measurement of Strong Scaling
(4-12 nodes, Linear)

4nodes

32cores

12nodes

96cores

∝ 1/ncores

12 %
speedup

from LIFO
(trailing task)

Dec 4, 2014ISP2S2 29

 We developed Pwrake workflow system
for data-intensive, many-task workflows.

 I/O-aware workflow scheduling:

◦ Locality-aware scheduling using MCGP

 remote file access: 88% ⇒ 14%

 workflow execution: 31% speedup

◦ Disk cache-aware scheduling

 LIFO: 1.9x speedup

 HRF: ~12% speedup

Conclusion

Dec 4, 2014ISP2S2 30

