
CHEP 2001 - paper 10-019

Grid Data Farm for Atlas Simulation Data Challenges

Y.Morita1, O.Tatebe2, S.Matsuoka3, N.Soda4, H.Sato1, Y.Tanaka2,
S.Sekiguchi2, S.Kawabata1, Y.Watase1, M.Imori5, T.Kobayashi5

1 KEK, Tsukuba, Japan, 2 AIST, Tsukuba, Japan
3 Tokyo Institute of Technology, Tokyo, Japan

4 SRA Inc., Tokyo, Japan, 5 University of Tokyo/ICEPP, Tokyo, Japan

Abstract

Data-intensive computing and networking technology has become a vital part of
large-scale scientific research projects such as LHC/Atlas. Handling of
petascale data with PC clusters with thousands of nodes will impose a non-
trivial challenge on effective utilization of the CPU resources and the I/O
bandwidth.

Grid Data Farm is a middleware project to solve the petascale data-
intentive data analysis. It is based on Grid-based RPC, in particular an
extended variant of Ninf system, and also on other lower level Grid services
such as Globus.

Atlas will perform a series of world-wide Data Challenges as a part of
constructing and validating its software and hardware infrastructure. We
have studied the feasibility and the scalability of the Grid Data Farm
middleware by using Atlas simulation framework FADS/Goofy. Parallel I/O
capability of the Gfarm architecture is demonstrated.

Keywords: PC Cluster, PC Farm, Grid, Data Challenge, Gfarm

1. Introduction

In the Atlas and other three exiperiments in the Large Hadron Collider (LHC) project at
CERN, an order of Petabyte of raw data will be produced each year, from 2006.
Distributed nature of the participating researchers around the world requires a
distributed and reliable computing model for the data analysis [1].

KEK (High Energy Accelerator Research Organization) and ICEPP (International
Center for Particle Physics, the University of Tokyo) will jointly build a so called "Tier-1"
regional center for the Atlas in Japan. A large cluster of PC farm with several hundreds
or a thousand of CPUs, as well as an order of petabytes of mass storage system will be
employed in the regional center. This facility must cooperate with other participating
laboratories and universities world-wide with different use-policy and system
management disciplines. Grid technologies, especially the Globus package is expected
to play a major role in building the world-wide distributed LHC data analysis system
[2,3].

To build a computer system which is scalable in the data intensive computing of
thousands of CPU node, which is also be able to to a part of the world-wide distributed

CHEP 2001 - paper 10-019

computing resource of the experiment, we have developed a middleware project "Grid
Data Farm (Gfarm)".

2. Grid Data Farm

Major components of the Grid Data Farm are, Gfarm client, Gfarm server, and Gfarm file
system (Fig. 1). The Gfarm file system consists of Gfarm Meta Database and Gfarm
pool. Gfarm pool may consist of a thousands node PC cluster, each node may be
equipped with local disks and the files may be duplicated and distributed using Gfarm
and other Grid middleware.

Fig. 1 : Software architecture of the Grid Data Farm

A large-scale distributed file, called Gfarm file, is divided into several fragments and
distributed across the disks in the Gfarm filesystem. A Gfarm file, specified by the
Gfarm file name or the Gfarm URL such as gfarm :/ p a t h / n a m e, is a logical aggregation of
physical file fragments distributed across multiple CPU nodes. A job accessing a Gfarm
file uses the Gfarm parallel I/O library, and the job is processed at each node in parallel
where the physical file fragments reside. The Gfarm filesystem daemon (gfsd) runs on
each node to facilitate remote file operations with access control using a light-weight GFS
RPC. Metadata of the files such as the mapping between the logical Gfarm file name
and the physical path name of the file fragments is stored into the Gfarm Meta Database.
Flexible configuration of physical file fragments and the CPU and disk resources allows
efficient parallel I/O and dynamic load balancing of multiple jobs.

3. Gfarm with Atlas Detector Simulation

FADS/Goofy, is a software framework of Geant4-based full detector simulation written in
C++ [6]. We utilize this simulation framework to study the scalability issues and
functional requirements of the Gfarm. An abstract interface for the data I/O persistency
mechanism is provided in FADS/Goofy so that users can switch from one persistency
package to another. The simulated raw data will then stored into files or databases and

CHEP 2001 - paper 10-019

will be read by the analysis framework later.
This approach imposes a limit in utilization of object associations across multiple

database federations in object databases such as Objectivity/DB. However, by limiting
the object associations locally at the given data sample, one can process large amount of
multiple data sample independently on each node, from the reconstruction of the raw
data into event summary data (ESD), or into analysis object data (AOD) (Fig. 2).

Fig. 2 : Event Database Federation mapped on the Gfarm file system

At the end of analysis cycle, users will create a "TAG", a collection of "interesting" event
of their analysis, which contains the n-tuple physics quantities of the events and the
logical link to the analysis objects in the chain of the analysis package from calibration,
reconstruction and filtering.

Each database file in the same category is treated as a "file fragment" in the Gfarm
metadatabase, and aggregated as a single logical Gfarm "filename" as the set of database.
When a job is submitted into the Gfarm server, job is redistributed to the nodes which
contain the "fragment" database files. Event is iterated over within each fragment
database on each node. For a tag of the collection of "interesting" events across multiple
node, a thin wrapper layer in the FADS/Goofy application will locate the physical path of
the associated object and will returns the data member value across the network.

Since the data I/O is confined within each node in typical use case, I/O speed of the
Objectivity/DB transaction is identical to the standalone database operation in a single
node. Scalability issue arises when a common set of files, such as calibration data, job
executable files, and collecting or re-clustering the file fragments for load balancing
reconfiguration and in importing and exporting files from/to external file system.
Parallel processing of file replication and relocation helps the speed up of the process.

RAW

CPU

Event Selection

Application Layer Wrapper on
 Run#, Event#, Data Type, ...

Separate
Objectivity
Federation on
each node

event# 1~100 101~200 201~300 301~400 401~500

Collection of "interesting" events

ESD

AOD

TAG

CHEP 2001 - paper 10-019

Parallel network transfer is required in high-bandwidth, high-latency wide area
networks, which is suitable for the Gfarm parallel architecture.

4. Summary and Futer Plans

A data parallel job processing middleware Gfarm is developed. A preliminary study
indicates that the distributed jobs run at the same performance with a single job running
standalone on a local CPU and disks. Actual scalability is expected to depend on
distributing job execution files, parameters, common calibration data, and handling of
the common background events in case of the Monte Carlo simulation study. Scalability
test with the Atlas Full Detector Simulation based on FADS/Goofy and Geant4 up to
several hundred nodes are planed by the end of this year as a part of Atlas Data
Challenges.

Although Gfarm is designed to work on flat structure file for nominal I/O use case, it
has been demonstrated that more complicated I/O packages such as Objectivity/DB can
be fitted into the Gfarm file system seemlessly by posing a simple "local-association only"
rule into the object modelling. Performance study of thin-layer wrapper to access any
object accross the Gfarm pool nodes, which will provide a transparent and parallel seek of
the object in each node, are being investigated and will be published in near future.

Refrences

[1] MONARC Collaboration, Models of Networked Analysis at Regional Centres for
LHC experiments: Phase 2 report, Technical Report CERN/LCB-001, 2000.
http://www.cern.ch/MONARC/.

[2] Ian Foster and Carl Kesselman, Globus: A metacomputing infrastructure toolkit.
Intl J. Supercomputer Applications 11(2):115‐128, 1997.

[3] EU DataGrid, http://www.eu-datagrid.org/
PPDG: Particle Physics Data Grid, http://www.ppdg.net/
GriPhyN: Grid Physics Network, http://www.griphyn.org/

[4] O. Tatebe et al., Grid Data Farm for Petascale Data Intensive Computing,
Electrotechnical Laboratory, Techinical Report, TR-2001-4.
http://datafarm.apgrid.org/.

[5] T. Saeki and Y. Morita, HepMC_Contrib: Persistent interface package for HepMC,
submitted to this conference.

[6] A.DellAcqua et al., Development of the ATLAS Simulation Framework, submitted to
this conference.

