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ABSTRACT

A multigrid preconditioned conjugated gradient (MGCG) method, which is an iterative method

to solve a large sparse matrix, is proposed. The MGCG method is a conjugate gradient method

preconditioned by the multigrid method. First, sufficient conditions for a valid multigrid precondi-

tioner are given. Next, the rate of convergence of the MGCG method is investigated for the Poisson

equation with constant diffusion coefficient. Local modes of Fourier analysis are useful to analyze

all eigenvalues of the multigrid preconditioned matrix, which give an upper bound of the rate of

convergence by Chebyshev polynomials. Consequently, the rate of convergence is quite good and

independent of the problem size for the two-dimensional Poisson equation. For strongly discon-

tinuous coefficients, the efficient convergence property and robustness of the MGCG method are

shown by numerical eigenvalue analysis. This thesis, moreover, studies the parallel MGCG method

and its efficient implementation on distributed memory machines. Though there is a trade-off be-

tween parallel efficiency and the rate of convergence, it is shown that the parallel MGCG method

has both much better rate of convergence and higher parallel efficiency than other methods by

evaluating it on stock multicomputers.

論 文 要 旨

大規模疎行列の反復解法であるマルチグリッド前処理付き共役勾配法 (MGCG 法) の提案を行う.

MGCG 法はマルチグリッド法 (MG 法)により前処理を行う共役勾配法である. まず MG 法が共役

勾配法の前処理としての条件を満たすための十分条件を与える. 次に, 拡散係数が一定のポアソン方

程式に対して MG 前処理後の行列の固有値解析を行い, MGCG 法の収束率の解析を行う. それぞれ

のグリッドにおけるフーリエ解析のローカルモードを用いることにより,前処理後の行列の全ての固

有値を解析的に求めることに成功し, チェビシェフ多項式を用いて MGCG 法の平均収束率, 漸近収

束率の上限を求めた. この結果, 2 次元のポアソン方程式では MGCG 法の収束率は極めて良く, しか

も問題サイズによらないことが分かった. また非連続な拡散係数を持つポアソン方程式に対しては数

値的に固有値解析を行うことにより, MGCG 法はそれらの問題に対しても良い収束性を持ち,ロバス

トな解法であることが分かった. さらに MGCG 法の並列化, 分散メモリ型並列計算機上への効率的

な実装の研究を行い, 並列効率と収束性は互いにトレードオフの関係にあるが, 実機で並列 MGCG

法の評価を行うことにより, トレードオフの点では他の解法に比べ, 高い並列効率と良い収束率を合

わせ持つ優れた解法となることが分かった.
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Chapter 1

INTRODUCTION

1.1 Overview

The advent of parallel machines in the last decade has brought huge computational power and

provided possibilities of genuine large-scale numerical simulations. However, because of commu-

nication overhead and load imbalance it is difficult to gain its peak performance, thus it is quite

important to develop parallel algorithms that can be implemented efficiently on distributed memory

machines.

In general, there is a trade-off between high parallelism and efficient algorithm; for example, the

Jacobi method for the solution of a large sparse matrix has quite high parallelism, however it has

poor convergence factor, while the ICCG method or robust multigrid method converges efficiently

but has poor parallelism, thus it is desirable that new algorithm has adequate parallelism and

suitable efficiency.

1.2 Iterative Methods for Large Sparse Matrix

Most computation of numerous large-scale simulations is spent in the solution of a large sparse

matrix that arises after discretization of partial differential equations. Typical numerical methods

for the sparse matrix are the conjugate gradient (CG) method [26] and the multigrid (MG) method

[15]. The CG method came into widespread use from the early 1970s because of its optimality

over the solution space, fast convergence using preconditioners, small memory size and acceptable

rounding-off error properties. Recently, generalization of the CG method for nonsymmetric and/or

indefinite matrix with these remarkable properties is a hot research area [48, 55, 19, 63]. The MG

method was realized to be quite an efficient method with a broad area of application from the mid-

seventies because of its mesh-independent and fast convergence, and the number of publications

1



has grown rapidly.

This thesis proposes the multigrid preconditioned conjugate gradient (MGCG) method that is

a CG method preconditioned by the MG method, and shows a sufficient condition of the MG

preconditioner. Several numerical examples show that this method is quite efficient for the Pois-

son equation with uniform or strongly discontinuous diffusion coefficient [52]. Recently, many

researchers use and study the MGCG method, and numerical results of actual applications are

obtained. For stretched grids and convection diffusion problems, it is reported the MGCG method

with an alternating line Gauss-Seidel smoother is robust [58], and for numerical simulations of

groundwater flow, it is also reported that the MGCG method with semicoarsening is quite efficient

[3].

This thesis investigates the rate of convergence of the MGCG method for the Poisson equation.

There are several studies in the rate of convergence of the MG method by estimating the minimal

eigenvalue of the iteration matrix [21, 8, 59]. Moreover, to predict a practical convergence factor,

a smoothing factor that is a contraction number of the smoothing method with respect to rough

components has been researched [59, 61]. For a sharp estimation of the rate of convergence of the

MGCG method, the distribution of eigenvalues of the preconditioned matrix is necessary, since

the rate of convergence of the CG method strongly depends on the distribution [7]. This thesis

studies the distribution of eigenvalues of the MG preconditioned matrix using Fourier components

on each grid level, which are quite a useful tool for obtaining the smoothing factor. Exploiting

Fourier components on each grid level, all the eigenvalues of the MG preconditioned matrix can

be analytically obtained. This thesis investigates the eigenvalues of the two-grid preconditioned

matrix with the damped Jacobi smoother or the Red-Black Gauss-Seidel (RB-GS) smoother for 1-

and 2-dimensional Poisson equations. Consequently, in one dimension, we show all the eigenvalues

of the MG preconditioned matrix with RB-GS smoother lie at unity, that is, the MG preconditioner

is an exact solver. In two dimensions, the eigenvalues of the two-grid preconditioned matrix exist

between 3
4 and 1 and its asymptotic rate of convergence is 1.14 independently of the mesh size.

This thesis also investigates the rate of convergence for the Poisson equation with severe co-

efficient jumps. For such problem, no theoretical result has been obtained, however, there is a

special case whose MG preconditioned matrix has the same spectrum, i. e. the same eigenvalue

distribution, as that for the Poisson equation with constant diffusion coefficient. First, the special

case is considered and its proof is given, and then more complex problems are numerically studied.

From the numerical results, the spectrum of the MG preconditioned matrix is nearly the same as

that for uniform diffusion constant problem, unless the problem cannot be discretized or approxi-

mated correctly on the coarsest grid. Otherwise, the MG preconditioned matrix has a few isolated

2



eigenvalues, and the number of isolated eigenvalues is expected to depend on the mesh size of the

coarsest grid that can approximate the problem correctly.

1.3 Parallelization of Iterative Methods

For fast convergence, the CG method generally uses a ILU preconditioner. However, the ILU

preconditioner has poor parallelism and it has been reported that the ILU preconditioned CG

method is slower than the SCG method, which has high parallelism and cheap rate of convergence,

on vector machines [23].

The MG method converges quite fast and independently of the mesh size, however, for ro-

bustness it should use a strong smoother; line relaxation, plain relaxation or ILU [1, 11]. Since

the strong smoother has poor parallelism, the MG method does not gain high parallel efficiency.

In fact, Hempel [25] reported that a parallel efficiency of the multigrid method with the robust

smoother gains only about 60%.

This thesis studies a parallelization of the MGCG method and efficient implementation on

distributed memory machines [53]. Investigating the rate of convergence of the MGCG method,

the MGCG method with highly parallel relaxation; RB-GS, four color GS and so on, has quite

a good rate of convergence and mesh-independent convergence property, therefore, basically the

MGCG method has ample data-parallelism, however on quite coarse grids, the network latency

is not hidden by overlapping computation and communication, and the ratio of communication

becomes high, so the communication overhead is critical. Moreover, when the number of data-

parallelism is smaller than the number of processors, there are idle processors, thus, in order that

the parallel MGCG method achieves high performance, the optimal MG schedule is considered a

trade-off between the convergence rate and parallel efficiency of a target architecture.

1.4 Organization

This thesis is organized as follows. Chapter 2 briefly describes mathematical preliminary including

vector/matrix norm, matrix properties; positive definite matrix, M -matrix and Stieltjes matrix,

and Krylov subspace.

In Chapter 3, basic iterative methods and their convergence theorems are explained. Basic

iterative methods are usually used as smoothers of MG methods. This chapter also explains the

rate of convergence and convergent splitting.

The CG method and the preconditioned CG (PCG) method are explained in Chapter 4. This

chapter intends to explain the CG method intuitively relating its optimality over the Krylov sub-

3



space. The rate of convergence of the CG method is also explained.

Chapter 5 explains the MG method. In this chapter, the mesh-independent convergence prop-

erty and a smoothing factor that shows a practical convergence factor are also explained.

In Chapter 6, the MGCG method is formulated. Sufficient conditions for two-grid precondi-

tioners are given in Section 6.1 and they are extended to the MG preconditioner.

In Chapter 7, exploiting Fourier components on each grid level, all the eigenvalues of the MG

preconditioned matrix are analytically obtained, and it is proved that the MGCG method is robust

and has quite a fast rate of convergence.

Chapter 8 investigates the rate of convergence of the MGCG method for the Poisson equation

with severe coefficient jumps. First, a special case whose MG preconditioned matrix has the same

spectrum as that for the Poisson equation with constant diffusion coefficient is considered, and

then more complex case is numerically analyzed by eigenvalue analysis.

Chapter 9 studies a parallelization of the MGCG method and its efficient implementation on

distributed memory machines. On quite coarse grids, parallel efficiency is low due to the commu-

nication overhead and load imbalance, while the computation on these coarse grids is necessary to

have the mesh-independent convergence property, thus the optimal MG schedule depends on a tar-

get architecture. In this chapter, it is evaluated on Fujitsu multicomputer AP1000 and AP1000+,

and the parallel efficiency is also evaluated.

The main conclusions and future research are summarized in Chapter 10.
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Chapter 2

MATHEMATICAL PRELIMINARY

2.1 Norms

Definition 2.1.1 (Norm) ‖ · ‖ is called norm if and only if

1. ‖x‖ > 0 for ∀x �= 0 and ‖x‖ = 0 for x = 0

2. ‖αx‖ = α‖x‖

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖

Definition 2.1.2 ‖x‖ = (xHx)
1
2 is called the Euclidean norm.

Definition 2.1.3 (Spectral radius) Let A be an n × n complex matrix,

ρ(A) = max{|λ| | λ ∈ S(A)}, (2.1)

is called the spectral radius of A, where

S(A) = {λ | λ is an eigenvalue of A}, (2.2)

is the spectrum of A.

Definition 2.1.4 (Spectral norm) Let A be a n × n complex matrix,

‖A‖ ≡ sup
x�=0

‖Ax‖
‖x‖ (2.3)

is called the spectral norm of A, where ‖ · ‖ is the Euclidean norm.

Corollary 2.1.1 For any n × n complex matrix ,

‖A‖ ≥ ρ(A). (2.4)
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If A is normal, i. e. AHA = AAH , or hermitian,

‖A‖ = ρ(A). (2.5)

Proof. See Varga [56].

2.2 Matrix Properties

Definition 2.2.1 (Positive Definite) A real matrix A is called positive(semi-positive or non-

negative/negative/semi-negative or non-positive) definite if xT Ax > 0(≥ 0/ < 0/ ≤ 0) for ∀x �= 0.

The order relation used in the following definition is the usual component-wise order; with A = [aij ]

and B = [bij ], then A ≤ B if aij ≤ bij .

Definition 2.2.2 The real n × n matrix A = [aij ] is

1. Diagonally dominant if

|aii| ≥
∑
j �=i

|aij |, i = 1, 2, . . . , n (2.6)

and strictly diagonally dominant if strict inequality holds in Eq. (2.6) for all i.

2. Reducible if there is a permutation matrix P such that

PAPT =

[
B11 B12

0 B22

]
(2.7)

and irreducible if it is not reducible.

3. Irreducibly diagonally dominant if it is diagonally dominant, irreducible, and strict inequality

holds in Eq. (2.6) for at least one i.

Definition 2.2.3 A real matrix A is called monotone if Ax ≥ 0 implies x ≥ 0.

Definition 2.2.4 (M-matrix) A real square matrix A = [aij ] is called a (nonsingular) M -matrix

if aij ≤ 0 for i �= j and if it is monotone, that is, if A−1 ≥ 0.

Definition 2.2.5 (Stieltjes matrix) Let a real square matrix A = [aij ] be positive definite. If

aij ≤ 0 for i �= j, the matrix is called the Stieltjes matrix.

2.3 Krylov Subspace

Definition 2.3.1 (Krylov subspace) Kn(A, r) = Span{r, Ar, . . . , An−1r} is called the Krylov

subspace associated with A and r [14].
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Chapter 3

BASIC ITERATIVE METHODS

This chapter explains basic iterative methods for solving linear systems. Basic iterative methods

are popularly used for smoothers of multigrid methods. There are many good references; for

examples, Varga [56] and Young [62].

3.1 Basic Iterative Methods

Consider a system of linear equations

Ax = b, (3.1)

where A is a n by n nonsingular matrix. Basic iterative methods split the matrix A into P − Q

and update the kth approximate solution by

Pxk = Qxk−1 + b (3.2)

with x0 as an initial approximation. P is a nonsingular matrix sometimes called the preconditioning

matrix, and Q is called the defect matrix. A = P −Q is called a splitting of A. Note that if P = A,

then Q = 0, and the exact solution x̂ = A−1b is obtained after one step of this method. Since the

iteration of Eq. (3.2) needs a linear solution with P at each step, P is chosen such that the linear

equation can be solved with reasonable cost, while P should be chosen nearly A for a faster rate

of convergence that is described later.

From Eq. (3.2), the kth approximation xk is written using the initial approximation x0:

xk = (P−1Q)kx0 +
k−1∑
i=0

(P−1Q)iP−1b. (3.3)

If we let the initial approximation be the exact solution, all approximations are equal to the

exact solution from Eq. (3.2), which means the exact solution is a fixed point of Eq. (3.2). Then

Eq. (3.2) is said to be consistent with Eq. (3.1).
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3.2 Convergence Factor and Rate of Convergence

To study convergence condition of iterative methods, the following lemma is necessary.

Lemma 3.2.1 For an arbitrary square matrix A,

1. limk→∞ Ak = 0 ⇐⇒ ρ(A) < 1.

2. If ρ(A) < 1, (I − A)−1 = (I + A + A2 + · · ·) is convergent.

Let the error ek = x̂− xk of the kth iteration, where x̂ is the solution. Eq. (3.2) gives

ek+1 = P−1Qek, (3.4)

hence

‖ek+1‖ = ‖P−1Qek‖ ≤ ‖P−1Q‖ ‖ek‖. (3.5)

P−1Q is called the iteration matrix , and ‖P−1Q‖ is called the contraction number .

Definition 3.2.1 (The convergence factor) ‖ek‖
‖e0‖ is called the convergence factor for k steps,

and Rk =
(

‖ek‖
‖e0‖

) 1
k

is called the average convergence factor . R∞ = limk→∞ Rk is called the

asymptotic convergence factor .

Definition 3.2.2 (The rate of convergence) rk = − log10 Rk is called the average rate of con-

vergence, and r = − limk→∞ log10 Rk is called the (asymptotic) rate of convergence.

Note that rk and r are estimates of the number of new correct decimals per iteration. From

Eq. (3.4),

‖ek‖ = ‖(P−1Q)ke0‖ ≤ ‖(P−1Q)k‖ ‖e0‖. (3.6)

Thus the convergence factor of the iterative method can be estimated by ‖(P−1Q)k‖. By

Lemma 3.2.1, this method converges if and only if ρ(P−1Q) < 1. For the convergence factor,

the following theorem holds.

Theorem 3.2.2 Let H be an n × n complex matrix ,

lim
k→∞

‖Hk‖ 1
k = ρ(H), (3.7)

where ‖ · ‖ is a matrix norm.

Proof. See Varga [56].

From Theorem 3.2.2, the asymptotic convergence factor is obtained by ρ(P−1Q).
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3.3 Convergent Splitting

Eq. (3.2) converges if and only if the splitting is a convergent splitting.

Definition 3.3.1 (Convergent splitting) If ρ(P−1Q) < 1, this splitting is called the convergent

splitting.

First, we consider a symmetric and positive definite matrix. The following splitting is useful.

Definition 3.3.2 (P -regular splitting) If P is nonsingular and (the symmetric part of) P + Q

is positive definite, this splitting is called the P -regular splitting, where the symmetric part of C

is (C + CT )/2.

To prove that a P -regular splitting for a symmetric and positive definite matrix is convergent, the

Stein’s theorem [49] is necessary. For a proof, see, for example, Ortega [41].

Theorem 3.3.1 (Stein 1952) If B is an n × n complex matrix , then ρ(B) < 1 if and only if

there is a hermitian positive definite matrix A such that A − BHAB is positive definite.

Theorem 3.3.2 (P -regular splitting theorem) If A is symmetric and positive definite, and if

A = P − Q is a P -regular splitting, then ρ(P−1Q) < 1.

Proof. Let H = P−1Q and C = A − HT AH . Then, since P−1Q = I − P−1A, we have

C = A − (I − P−1A)T A(I − P−1A)

= (P−1A)T (PT + Q)(P−1A). (3.8)

Since P +Q is positive definite, so that PT +Q is also positive definite. Thus, since C is congruent

to PT +Q, it is positive definite. Because A is positive definite, the proof is complete using Stein’s

Theorem 3.3.1

From Theorem 3.3.2, P -regular splitting is also a convergent splitting if A is symmetric. There

are two different converses associated with Theorem 3.3.2. These proofs are given by, for example,

Ortega [42].

Theorem 3.3.3 (First converse of P -regular splitting) Assume that A is symmetric and

nonsingular, A = P − Q is a P -regular splitting, and ρ(P−1Q) < 1. Then A is positive defi-

nite.

Theorem 3.3.4 (Second converse of P -regular splitting) Assume that A = P − Q is sym-

metric and nonsingular, P is symmetric positive definite, and ρ(P−1Q) < 1. Then A and P + Q

are positive definite.
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When A is a diagonally dominant matrix or an M -matrix, the following splitting is considered.

Definition 3.3.3 (Weak regular splitting and regular splitting) A = P − Q is a weak reg-

ular splitting [43] if P is nonsingular, P−1 ≥ 0 and P−1Q ≥ 0. It is a regular splitting [56] if

P−1 ≥ 0 and Q ≥ 0.

Clearly a regular splitting is a weak regular splitting. The following convergence theorem holds.

For a proof, see [42] or [7].

Theorem 3.3.5 (Weak regular splitting theorem) If A = P − Q is a weak regular splitting,

then the splitting is convergent if and only if A is monotone.

3.4 Richardson Method

The Richardson method is quite a simple method. Let A = I − Q, where I is the identity matrix,

the Richardson method iterates

xk+1 = (I − A)xk + b

= xk + rk, (3.9)

where rk = b− Axk. Thus, the residual r is added to the approximation at each iteration. From

Eq. (3.9),

xk+1 = x0 +
k∑

l=0

rl (3.10)

Without loss of generality, we assume x0 = 0, since if we let y = x− x0 for any initial vector x0,

the iterative method is equal to that with zero initial vector y0 for the linear transformed linear

equation Ay = b− Ax0 = b̃. From Eq. (3.10),

xk+1 =
k∑

l=0

rl =
k∑

l=0

(I − A)lr0 = Qk(A)r0 ∈ Kk+1(A, r0), (3.11)

where Qk(A) is a polynomial of degree k. Kk+1(A, r0) is the Krylov subspace which is the space

spanned by r0, Ar0, . . . , Akr0. Since b = r0,

rk+1 = b− AQk(A)r0

= Pk+1(A)r0,

where Pk+1(A) is a polynomial of degree (k + 1). Note that Pk+1(0) = 1. The polynomial

Pk+1(A) = (I −A)k+1 is called the residual polynomial , which characterizes the Richardson itera-

tion.
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Theorem 3.4.1 The Richardson method converges if and only if ρ(I − A) < 1.

Proof. The iteration matrix of the Richardson method is I − A, thus the theorem holds.

If A has real eigenvalues, the Richardson iterations converge if and only if 0 < λ < 2, where λ

is an eigenvalue of A. The asymptotic convergence factor is

max(|1 − λmax|, |1 − λmin|). (3.12)

The Richardson method is modified by relaxation parameter ω, and this method is called the

damped Richardson method in this thesis. In this case, the splitting is A = 1
ω I − ( 1

ω I − A). The

residual polynomial and convergence condition can be similarly analyzed. The residual polynomial

is Pk+1(A) = (I−ωA)k+1. The damped Richardson method is convergent if and only if ρ(I−ωA) <

1. The asymptotic convergence factor is max(|1 − ωλmax|, |1 − ωλmin|).

3.5 Damped Jacobi Method

Let A = D − Q, where D is the diagonal part of A, the Jacobi method for Ax = b iterates

Dxk = Qxk−1 + b, (3.13)

with x0 an initial approximation. The following two convergence theorems hold.

Theorem 3.5.1 If A = D − Q is symmetric and positive definite, then the Jacobi iterations

converge for any x0 if and only if D + Q is positive definite.

Proof. If D + Q is positive definite, then A = D − Q is a P -regular splitting, thus the Jacobi

method converges. Conversely, if the Jacobi method converges, D + Q is positive definite, since A

and D are symmetric and positive definite.

Theorem 3.5.2 If A is strictly or irreducibly diagonally dominant, or if A is an M -matrix , then

the Jacobi iterations converge for any x0.

Proof. A = D − Q is clearly a regular splitting, thus the Jacobi iterations converge by Theo-

rem 3.3.5.

Using a relaxation parameter ω, the damped Jacobi method for Ax = b iterates

1
ω

Dxk =
( 1

ω
D − A

)
xk−1 + b (3.14)

or

Dxk = ((1 − ω)D + ωQ)xk−1 + ωb, (3.15)

where D is the diagonal part of A and Q = D − A. The following theorem holds.
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1 1 2 2 3

6 6 7 7 8

11 11 12 12 13

3 4 4 5 5

8 9 9 10 10

Figure 3.1: Red-Black ordering

Theorem 3.5.3 If the Jacobi method converges, the damped Jacobi method converges if and only

if 0 < ω ≤ 1.

Damping is introduced to satisfy the smoothing property described in Chapter 5, thus the damped

Jacobi method is only used as a smoother of the multigrid method.

3.6 Red-Black Gauss-Seidel Method

Let A = D − L − U , where D is diagonal, L is strictly lower triangular and U is strictly upper

triangular matrix, the Gauss-Seidel method for Ax = b iterates

(D − L)xk = Uxk−1 + b (3.16)

with x0 an initial approximation. The convergence theorem of the Gauss-Seidel method has been

given.

Theorem 3.6.1 If A is strictly or irreducibly diagonally dominant, or if A is an M -matrix , then

the Gauss-Seidel iterations converge for any x0 to the unique solution.

The Gauss-Seidel method requires solving the lower triangular matrix (D − L) in each iteration,

thus it has poor parallelism. However, when A has property A, the Gauss-Seidel method can be

parallelized by reordering.

Definition 3.6.1 (Property A) (Young 1950) If there is a permutation matrix P such that

PAPT =

[
D1 U

L D2

]
(3.17)

where D1 and D2 are diagonal matrices, A is said to have property A.

A typical example of matrices with property A occurs for second-order elliptic differential equations

when we use the standard five-point difference approximation. The canonical form for the matrix

12



is obtained when we use a so-called red-black (or white-black as on a chessboard) ordering of the

mesh points depicted by Figure 3.1. The Gauss-Seidel method with red-black ordering is called

the Red-Black Gauss-Seidel (RB-GS) method.
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Chapter 4

CONJUGATE GRADIENT METHOD

M. R. Hestenes and E. Stiefel [26] proposed the conjugate gradient (CG) method in 1952. The

CG method is usually introduced by minimizing the quadratic function using conjugate directions,

however this chapter intends to explain the CG method intuitively relating its optimality over the

Krylov subspace.

4.1 Conjugate Gradient Method

Consider a system of linear equations:

Ax = b, (4.1)

where A is an N ×N symmetric and positive definite (s.p.d.) matrix. The CG method minimizes

the quadratic function

Q(xi) =
1
2
xT

i Axi − bTxi (4.2)

over x0 + Ki(A, r0) at the ith iteration to solve the linear equation, where r0 = b − Ax0 is the

residual for an initial approximation x0. Without loss of generality we assume x0 = 0, so that the

CG method minimizes Q(x) over Krylov subspace Ki(A, r0). Equality of minimization of Q(x)

and the solution of the linear equation can be readily shown as follows. Because A is s.p.d., the

following relations hold:

‖y‖2
A = (y,y)A = (y, Ay) ≥ 0, equality holds iff y = 0 (4.3)

and

(y, z)A = (z,y)A. (4.4)

From Eq. (4.3) and (4.4), Eq. (4.2) is rewritten as

Q(xi) =
1
2
‖x̂− xi‖2

A + C ≥ C, (4.5)
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Figure 4.1: Conjugate direction

where x̂ is the solution and C = 1
2b

T x̂ is constant, thus Q(x) has a minimum value at x = x̂.

From Eq. (4.5), it can be shown the error of the ith iteration has the A-orthogonal (conjugate)

condition:

x̂− xi ⊥A Ki(A, r0), (4.6)

which means (x̂−xi,y)A = 0 for ∀y ∈ Ki(A, r0). This is understandable as follows. Let x̂−xi ⊥A

Ki(A, r0) and ∀y ∈ Ki(A, r0),

‖x̂− y‖2
A = ‖(x̂− xi) − (y − xi)‖2

A = ‖x̂− xi‖2
A + ‖y − xi‖2

A ≥ ‖x̂− xi‖2
A, (4.7)

since x̂−xi ⊥A y−xi, thus Q(x) has a minimum value at y = xi. Eq. (4.6) follows the following

orthogonal condition with respect to r

ri ⊥ Ki(A, r0), (4.8)

because

(x̂− xi,y)A = (A(x̂− xi),y) = (ri,y) = 0 (4.9)

for ∀y ∈ Ki(A, r0). Since xi ∈ x0 + Ki(A, r0),

ri ∈ Ki+1(A, r0), (4.10)

hence

ri+1 − ri ⊥ Ki(A, r0), (4.11)

which is illustrated by Fig. 4.1. Note that {r0, r1, . . . , ri} is an orthogonal base of Krylov subspace

Ki+1(A, r0). Let −αiApi = ri+1 − ri, ri+1 is updated using Api such that Api ∈ AKi+1(A, r0)

and Api ⊥ Ki(A, r0).

ri+1 = ri − αiApi. (4.12)
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This is also means

xi+1 = xi + αipi (4.13)

such that

pi ∈ Ki+1(A, r0) and pi ⊥A Ki(A, r0), (4.14)

thus the (i + 1)th approximate xi+1 is updated by the previous approximate xi and pi. If pi is

given, αi is determined by minimization of Q(x). From Eq. (4.2) and (4.13),

Q(xi + αipi) =
1
2
(xi + αipi)

T A(xi + αipi) − bT (xi + αipi)

=
1
2
pT

i Apiα
2
i − pT

i riαi + const.,

where ri = b− Axi. Thus, the function Q(x) is minimized at

αi =
pT

i ri

pT
i Api

. (4.15)

Or, αi is also determined by the A-orthogonal condition of Eq. (4.6).

(x̂− xi+1,pi)A = (x̂− xi − αipi,pi)A = (ri,pi) − αi(pi, Api) = 0. (4.16)

Hence αi = (pi,ri)

(pi,Api)
. Note that x̂− xi+1 = {(x̂− xi) − αipi} ⊥A pj , j < i.

From now on, consider how to generate pi. First, since p0 ∈ K1(A, r0) = Span{r0}, then

p0 = r0. Next, assume {p0, p1, . . . , pi} to be an A-orthogonal base of Ki+1(A, r0). From

Eq. (4.8), (4.10) and (4.14), pi+1 is determined using ri+1

pi+1 = ri+1 − β0p0 − · · · − βipi. (4.17)

βj is obtained by the A-orthogonal condition: (pi+1, Apj) = 0, j ≤ i, hence

βj =
(ri+1, Apj)
(pj , Apj)

. (4.18)

Since Apj ∈ Kj+1(A, r0), for j + 1 < i + 1

(ri+1, Apj) = 0, (4.19)

thus Eq. (4.17) follows the recurrence

pi+1 = ri+1 − βipi. (4.20)

Now {p0, p1, . . . , pi+1} is an A-orthogonal base of Ki+2(A, r0). Using Eq. (4.12) and (4.20),

A-orthogonal base {p0, p1, . . . , pN−1} of KN (A, r0) can be iteratively constructed.

Consequently, the CG algorithm for the solution of Ax = b can be represented by Figure 4.2.

The iteration stops if xi is accurate enough. Since the solution is not given, this is tested by the
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i = 0;

Let xi be an initial approximation.

pi = ri = b− Axi;

while (1) {
αi = (pi, ri)/(pi, Api);

xi+1 = xi + αipi;

ri+1 = ri − αiApi;

if (convergent) break;

βi = (ri+1, Api)/(pi, Api);

pi+1 = ri+1 + βipi;

i++;

}

Figure 4.2: The CG method (1)

norm of the residual ‖ri‖ = ‖b− Axi‖. The following stopping criteria,

‖ri‖
‖r0‖ ≤ ε (4.21)

is usually used, where ε � 10−16 in IEEE double precision computation.

4.1.1 The finite termination property

The CG method minimizes Q(x) = 1
2‖x̂− x‖2

A + C over x0 + Ki(A, r0), thus it is optimal. From

Eq. (4.5), if x̂ ∈ x0+Ki(A, r0), the iteration of the CG method terminates at most after i iterations.

Since A is nonsingular, it solves the linear equation Ax = b exactly at most after N iterations. In

fact, it is originally proposed as a direct solution by Hestenes and Stiefel [26], unfortunately, this

discussion is only true in exact arithmetic since the orthogonal condition does not exactly hold

because of rounding-off error.

4.1.2 Computational consideration

Using the A-orthogonal property and the orthogonal property, computational cost of αi and βi

can be reduced.

Since ri+1 ⊥ Ki(A, r0) and pi ∈ Ki(A, r0),

(ri+1,pi) = 0. (4.22)
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Let x be an initial approximation.

p = r = b− Ax;

r0 = (r, r);

while (1) {
q = Ap;

α = r0/(p, q);

x = x+ αp;

r = r − αq;

if (convergent) break;

r1 = (r, r);

β = r1/r0;

p = r + βp;

r0 = r1;

}

Figure 4.3: The CG method (2)

From Eq. (4.12),

(pi+1, ri+1) = (ri+1, ri+1). (4.23)

Thus

αi =
(pi, ri)

(pi, Api)
=

(ri, ri)
(pi, Api)

(4.24)

From Eq. (4.12) and (4.24),

(ri+1, ri+1) = −αi(Api, ri+1)

= −αi(Api,pi+1) + αiβi(Api,pi)

= βi(ri, ri)

Thus,

βi =
(ri+1, ri+1)

(ri, ri)
(4.25)

In consequence, the CG algorithm saving computational cost is represented by Figure 4.3.

Updating vectors xi, pi and ri needs only the previous vectors, so these vectors can be overwritten.
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4.1.3 Three-term recurrence and Lanczos polynomial

As described in Section 4.1, the iteration of the CG method constructs an orthogonal base

{r0, r1, . . . , ri} (4.26)

of Ki(A, r0). From Eq. (4.12) and (4.20), the following recurrence

r1 = r0 − α0Ar0 (4.27)

ri+2 =
(

1 +
αi+1

αi
βi

)
ri+1 − αi+1

αi
βiri − αi+1Ari+1 (i ≥ 0) (4.28)

is obtained. It follows

ri = Pi(A)r0, (4.29)

where Pi(A) called the Lanczos polynomial [35] is a polynomial of degree i. Note that Pi(0) = 1.

This residual polynomial characterizes the CG method. Let ei = x̂− xi,

ei = Pi(A)e0 (4.30)

also holds, since ri = Aei.

From the optimality of the CG method, this polynomial minimizes Q(xi) = 1
2‖x̂−xi‖A +C =

1
2‖ei‖A + C where xi ∈ x0 + Ki(A, r0) and C is a constant. This means

‖ei‖A = ‖Pi(A)e0‖A

= min
Ri∈π1

i

‖Ri(A)e0‖A, (4.31)

where π1
i is the set of polynomials of degree i normalized such that Ri(0) = 1.

4.2 Rate of Convergence of the CG Method

As described in the previous section, the error of the CG method ek = Pk(A)e0 of the kth iteration

is decided such that

‖ek‖A = min
Pk∈π1

k

‖Pk(A)e0‖A, (4.32)

where π1
k is the set of polynomials of degree k normalized such that Pk(0) = 1. Let νi be eigenvector

of A and λi be the corresponding eigenvalue,

min
Pk∈π1

k

‖Pk(A)e0‖A = min
Pk∈π1

k

‖
N−1∑
i=0

Pk(λi)ciνi‖A

≤ min
Pk∈π1

k

max
λ∈S(A),λ�=0

|Pk(λ)| ‖e0‖A, (4.33)
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where e0 =
∑N−1

i=0 ciνi and S(A) is the spectrum of the matrix A. Convergence factor is given as

‖ek‖A

‖e0‖A
≤ min

Pk∈π1
k

max
λ∈S(A),λ�=0

|Pk(λ)|.

Even if S(A) is exactly given, it is necessary for estimating the convergence factor to solve the

best approximation problem on the discrete set of points, which is quite troublesome. Thus this

problem is replaced with the best approximation problem with the interval. When there are not

isolated eigenvalues, this approximation gives a quite good estimate of the convergence factor.

min
Pk∈π1

k

max
λ∈S(A),λ�=0

|Pk(λ)| ≤ min
Pk∈π1

k

max
λmin≤λ≤λmax

|Pk(λ)| (4.34)

Here, let a = λmin and b = λmax. Pk is represented with Tk the Chebyshev polynomial,

min
Pk∈π1

k

max
a≤λ≤b

|Pk(λ)| = max
|Tk

(
b+a−2x

b−a

)|
Tk

(
b+a
b−a

) , (4.35)

where

Tk(x) =
1
2

{
(x +

√
x2 − 1)k + (x −

√
x2 − 1)k

}
. (4.36)

Since max |Tk

(
b+a−2x

b−a

)| = 1,

min
Pk∈π1

k

max
a≤λ≤b

|Pk(λ)| =
2ck

1 + c2k
, (4.37)

where c =
√

σ−1√
σ+1

and σ = b
a is the condition number of A. Thus

‖ek‖A

‖e0‖A
≤ 2ck

1 + c2k
. (4.38)

Therefore the average convergence factor is estimated by c
(

2
1+c2k

) 1
k and the factor approaches to

c as k → ∞. Asymptotic rate of convergence is also estimated by (− log10 c).

When stopping condition is
‖ek‖A

‖e0‖A
≤ ε, (4.39)

let k be the number of iterations until convergence,

2ck

1 + c2k
≤ ε. (4.40)

Thus

k ≥ log 1
c

1 +
√

1 − ε2

ε
. (4.41)

4.3 Preconditioned CG Method

As described in the previous section, the convergence factor of the CG method strongly depends

on the distribution of eigenvalues of A. When there are not isolated eigenvalues, the asymptotic
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i = 0;

Let x̃i be an initial approximation.

p̃i = r̃i = b̃− Ãx̃i;

while (1) {
αi = (r̃i, r̃i)/(p̃i, Ãp̃i);

x̃i+1 = x̃i + αip̃i;

r̃i+1 = r̃i − αiÃp̃i;

if (convergent) break;

βi = (r̃i+1, r̃i+1)/(r̃i, r̃i);

p̃i+1 = r̃i+1 + βip̃i;

i++;

}

Figure 4.4: The PCG method (1)

convergence factor of the CG method is estimated by
√

σ − 1√
σ + 1

, (4.42)

where σ is the condition number of A. To improve the convergence factor, preconditioning tech-

nique is quite useful. Let U be a nonsingular matrix, the linear equation Ax = b is transformed

into Ãx̃ = b̃, where Ã = UAUT , x̃ = U−Tx and b̃ = Ub. From Eq. (4.42), the convergence factor

is improved as σ → 1. In the extremely case Ã = I,

UT U = A−1. (4.43)

Hence, when UT U � A−1, the convergence factor is improved. The CG algorithm for Ãx̃ = b̃,

which is called the preconditioned CG (PCG) method, is represented by Figure 4.4. To implement

the algorithm of Figure 4.4, the matrix-vector multiplication of the preconditioned matrix Ã is

necessary, however it is costly. Fortunately this multiplication can be avoided.

r̃ = b̃− Ãx̃

= Ub− UAUT U−Tx = Ur (4.44)

From Eq. (4.44),

(r̃, r̃) = (Ur, Ur) = (UT Ur, r), (4.45)

and since r̃i+1 = r̃i − αiÃp̃i,

ri+1 = ri − αiAUT p̃i. (4.46)
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i = 0;

Let xi be an initial approximation.

ri = b− Axi;

p̄i = r̄i = Mri;

while (1) {
q̄i = Ap̄i;

αi = (r̄i, ri)/(p̄i, q̄i);

xi+1 = xi + αip̄i;

ri+1 = ri − αiq̄i;

if (convergent) break;

r̄i+1 = Mri+1;

βi = (r̄i+1, ri+1)/(r̄i, ri);

p̄i+1 = r̄i+1 + βip̄i;

i++;

}

Figure 4.5: The PCG method (2)

Furthermore,

(p̃, Ãp̃) = (p̃, UAUT p̃) = (UT p̃, AUT p̃), (4.47)

and

UT p̃i+1 = UT Uri + βiU
T p̃i. (4.48)

Thus let M = UT U , r̄i = Mri and p̄i = UT p̃i, the PCG method without matrix-vector multipli-

cation of the preconditioned matrix is represented by Figure 4.5. Because the same matrix-vector

multiplication Ap̄i is necessary twice, it is replaced by q̄i = Ap̄i. To keep the readability, there

are two (r̄i, ri) and (r̄i+1, ri+1) in Figure 4.5, of course, it is enough to compute (r̄i+1, ri+1) at

the ith iteration, since (r̄i, ri) has already computed at the previous (i− 1)th iteration. It is to be

noted that even though the PCG method of Figure 4.5 does not explicitly utilize Ã, r̃ and x̃, this

algorithm minimizes Q(x̃i) = 1
2 x̃

T
i Ãx̃i − b̃T

x̃i in Krylov subspace Ki(Ã, r̃0). Moreover, because

M = UT U , M should be symmetric and positive definite.
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for (i = 0; i < n; i ++) {

for (j = 0; j < i; j ++)

if ((i, j) in S) {

L[i][j] = A[i][j];

for (k = 0; k < j; k ++)

L[i][j] -= L[i][k] * L[k][k] * L[j][k];

L[i][j] /= L[j][j];

}

else

L[i][j] = 0;

L[i][i] = A[i][i];

for (k = 0; k < i; k ++)

L[i][i] -= L[i][k] * L[i][k] * L[k][k];

}

Figure 4.6: Incomplete Cholesky decomposition

4.3.1 ICCG method

Let A = [aij ] be an s.p.d. matrix, the decomposition A = LLT is called the Cholesky decomposition,

where L is a lower triangular matrix, however L may be dense even if A is sparse. The idea of

incomplete factorization methods is to reject those fill-in entries outside a priori or adaptively

(dynamically) chosen sparsity pattern. An incomplete factorization A = LLT − R is called the

incomplete Cholesky decomposition, whose existence and uniqueness has been proved for M -matrix

by Meijerink and van der Vorst [37].

Because LLT is s.p.d., (LLT )−1 is also s.p.d., thus the incomplete Cholesky factorization can

be used as the preconditioner of the CG method. The CG method with the incomplete Cholesky

decomposition preconditioner is called the ICCG method [37, 31].

When a sparsity pattern S is given a priori, the incomplete Cholesky decomposition A =

LLT − R, which is called factorization by position, is described by Figure 4.6. If (i, j) ∈ S, the

fill-in entry is accepted. On the other hand, the sparsity set can be given dynamically during

the factorization, which is called factorization by value [6]. In this case, fill-in entries that are

sufficiently small to satisfy

|a(r+1)
ij | ≤ c|a(r+1)

ii a
(r+1)
jj | 12 , (4.49)
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are neglected, where a
(r+1)
ij is (i, j) element at the (r + 1)th elimination stage and 0 ≤ c ≤ 1.

A common choice of the sparsity set is to let

S = S0 = {(i, j) | aij �= 0}. (4.50)

According to Gustafsson [18], the sparsity set of order q is defined in the following way. Let Rq be

the sparsity set that is defined by the position of the fill-in entries of the incomplete factorization

based on the sparsity set Sq, and let Sq+1 = Sq ∩Rq (q = 0, 1, . . .).

Discretizing two-dimensional rectangular computational domain into n × n lexicographically

numbered grid by the standard five-point difference approximation, a block tridiagonal matrix A

arises from second-order elliptic partial differential equation, whose sparsity set is represented by

S = S0 = {(i, j) | i = j, j ± 1, j ± n}. (4.51)

The sparsity set of order 1 for A is denoted by

S1 = {(i, j) | i = j, j ± 1, j ± n, j ± n ∓ 1}. (4.52)

The CG method with this incomplete factorization is called the ICCG(1) or ICCG(1,2) method.

The incomplete factorization can be modified in various way: adding the deleted entries to the

diagonal entries in the same row, or modifying the pivot entry by adding a positive (small) number

to it. For further study, see Gustafsson [18, 17], Axelsson and Lindskog [4] and Axelsson [7].

The ICCG method needs the solution of lower and upper triangular matrices, which is not

readily vectorizable or parallelizable. Johnson and Paul [30] and van der Vorst [54] have proposed

some variants for vector machines. These variants have ample data parallelism, however these

variants have cheaper rate of convergence. The IC preconditioning can be vectorized by loop

restructuring, which is implemented using indirect index (or list vector) in FORTRAN, however

its vector length is short.

4.3.2 SCG method

The SCG method is a CG method with diagonal scaling preconditioner. Let D be a diagonal

matrix containing diagonal elements of A. This method is described by Figure 4.7. For efficient

implementation of the SCG method, r̄ in Figure 4.5 is not generally used since memory store

operation is more costly than the diagonal scaling, which is a merit of the SCG method, because

storage for r̄ is dispensable.

The diagonal scaling preconditioner does not need any communication, thus the SCG method

is 100% vectorizable and parallelizable, then the computational time for one iteration becomes
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i = 0;

while ( ! convergence ) {
αi = (D−1ri, ri)/(pi, Api);

xi+1 = xi + αipi;

ri+1 = ri − αiApi;

convergence test;

βi = (D−1ri+1, ri+1)/(D−1ri, ri);

pi+1 = D−1ri+1 + βipi;

i++;

}

Figure 4.7: The SCG method

shorter proportionally to the number of processors. Though the SCG method has cheaper rate of

convergence than that of the ICCG method, it has been reported that total convergence time of

the SCG method can be shorter than that of the ICCG method on vector machines, since the time

for one iteration of the ICCG method is not reduced so much [23].
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Chapter 5

MULTIGRID METHOD

The chapter explains the multigrid (MG) method. There are many good references; Stüben and

Trottenberg [51], Hackbusch [21] and Wesseling [59].

Section 5.3 shows the mesh-independent convergence property of the two-grid method and in

Section 5.4, a smoothing factor that shows a practical convergence factor of the multigrid method

is explained.

5.1 Two-grid Method

The simplest form of the MG method is two-grid method which exploits only two grids: a fine

grid Ω2 and a coarse grid Ω1. The subscript is referred to as the grid level or the grid number .

Usually, Ω1 ⊂ Ω2 and the mesh size h1 on Ω1 is double the mesh size h2 on Ω2, however, it is not

a necessary condition. Consider a system of linear equations on the find grid Ω2

L2x2 = f2. (5.1)

The subscript of A, x and b means the grid level. This subscript may be omitted in this thesis if

it is clear.

The two-grid method consists of a smoothing step and a coarse-grid correction step. In the

smoothing step, high-frequency (or rough) components of the residual decay by a smoother on the

fine grid. The smoother is generally ν1 iterations of an iterative method that has the smoothing

property [20]. The smoothing property is a sufficient condition of the smoother such that two-grid

(or MG) method converges independently of the mesh size, which will be explained in Section 5.3.

In the coarse-grid correction step, the residual after the smoothing on the fine grid, which is

expected to contain low-frequency (or smooth) components, is transfered to the coarse grid. This
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while (!convergence) {
x2 = pre smoother(L2, f2, x2, ν1); // pre-smoothing

r1 = restrict(f2 − L2x2); // coarse-grid correction

Solve L1d1 = r1;

x2 = x2 + prolongate(d1);

x2 = post smoother(L2, f2, x2, ν2); // post-smoothing

}

Figure 5.1: The two-grid method

operation is called the restriction. Then solve

L1d1 = r1 (5.2)

accurately enough, where r1 is the restricted residual. The solution d1 is interpolated to the fine

grid. This operation is called the prolongation or the interpolation. Then the approximation after

the smoothing is corrected by this interpolated solution.

One iteration of the two-grid method consists of ν1 iterations of the pre-smoother, the coarse-

grid correction and ν2 iterations of the post-smoother. The two-grid algorithm is depicted by

Figure 5.1. The smoothing before the coarse-grid correction is called the pre-smoothing and that

after the coarse-grid correction is called the post-smoothing. Pre smoother(L2, f2, x2, ν1) in

Figure 5.1 means ν1 iterations of the pre-smoother with x2 an initial approximation.

5.1.1 Restriction and prolongation

The domain of the partial differential equation to be solved is assumed to be a d-dimensional unit

cube for simplicity. This assumption is not a serious limitation, since the current main trend in

grid generation consists of decomposition of the physical domain in subdomains, each of which is

mapped onto a cubic computational domain. In one dimension, a computational grid in (0, 1) is

defined by

Ω2 = {x ∈ (0, 1) : x = jh2, j = 1, 2, . . . , N2 − 1, h2 =
1

N2
}, (5.3)

with N2 meshes, which is the fine grid. The coarse grid is usually defined by

Ω1 = {x ∈ (0, 1) : x = jh1, j = 1, 2, . . . , N1 − 1, h1 =
1

N1
}, (5.4)

where N1 = N2
2 . The two grids are depicted by Figure 5.2 for N2 = 8. For simplicity, N2 is
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2

1

Figure 5.2: The fine grid and the coarse grid in 1 dimension

assumed even. The standard prolongation p by linear interpolation is given by

pu1(x) =

{
u1(x), if x ∈ Ω1

u1(x−h2)+u1(x+h2)
2 , otherwise

(5.5)

where x ∈ Ω2. The prolongation is represented by a rectangular N2 × N1 matrix

p =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
1 1

2
. . .

2
1 1

2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.6)

The simplest choice of a restriction is trivial injection rinj defined by

rinju2(x) = u2(x), (5.7)

where x ∈ Ω1. This restriction is easily implemented, however it has some disadvantages. The

restriction r can be defined by adjoint of the prolongation,

ru2(x) =
u2(x − h2) + 2u2(x) + u2(x + h2)

4
, (5.8)

where x ∈ Ω1. The corresponding N1 × N2 matrix is

r =
1
4

⎛
⎜⎜⎜⎜⎜⎝

1 2 1
1 2 1

. . .
1 2 1

1 2 1

⎞
⎟⎟⎟⎟⎟⎠ =

1
2
pT . (5.9)

r does not equal to pT , but r = p∗ where p∗ is the adjoint with respect to the scaler products

〈vl, ul〉 = hd
l

∑
x∈Ωl

vl(x)ul(x), (5.10)

where l is the grid level. The prolongation and the restriction are usually represented by stencil

notation. The element of a matrix A on a d-dimensional computational grid Ω is represented by
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A(i, j) where i ∈ Ω and j ∈ {0, ±1, ±2, . . .}d, which represents (l, m)-element of A where l and

m are grid numbers of i and i + j respectively. SA = {j | ∃i ∈ Ω with A(i, j) �= 0} is called the

structure of A which denotes the set of locations of non-zero elements. The set of values A(i, j)

with j ∈ SA is called the stencil of A of grid point i, which is denoted by [A]i. For example, when

A has nine-point pattern in two dimensions,

[A]i =

⎡
⎢⎢⎢⎣

A(i, −e1 + e2) A(i, e2) A(i, e1 + e2)

A(i, −e1) A(i, 0) A(i, e1)

A(i, −e1 − e2) A(i, −e2) A(i, e1 − e2)

⎤
⎥⎥⎥⎦ , (5.11)

where e1 = (1, 0) and e2 = (0, 1). Using stencil notation, the restriction is denoted by

[r]i =
1
4
[1 2 1], (5.12)

where i ∈ Ω1. The prolongation p is not denoted by stencil notation, however a convenient way to

denote p is by specifying pT .

[pT ]i =
1
2
[1 2 1]. (5.13)

In two dimensions, the prolongation by bilinear interpolation is defined by

pv1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1(x, y), if (x, y) ∈ Ω1

{v1(x − h2, y) + v1(x + h2, y)}/2, if (x ± h2, y) ∈ Ω1

{v1(x, y − h2) + v1(x, y + h2)}/2, if (x, y ± h2) ∈ Ω1

{v1(x − h2, y − h2) + v1(x − h2, y + h2)

+v1(x + h2, y − h2) + v1(x + h2, y + h2)}/4, otherwise

(5.14)

where (x, y) ∈ Ω2. Using stencil notation, the prolongation by bilinear interpolation is defined by

[pT ]i =
1
4

⎡
⎣ 1 2 1

2 4 2
1 2 1

⎤
⎦, (5.15)

where i ∈ Ω2. Alternatively, the prolongation by linear interpolation is defined by

[pT ]i =
1
2

⎡
⎣ 1 1

1 2 1
1 1

⎤
⎦. (5.16)

Using linear interpolation, coarse grids constructed by Galerkin coarse-grid approximation de-

scribed in Subsection 5.1.3 have greater sparsity than these using bilinear interpolation, hence the

computation on coarse grids is cheaper. However, the approximation may be a loss of symmetry

because of rounding-off error, even though the solution of a problem has a certain symmetry, while

bilinear interpolation preserves symmetry exactly.
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When the partial differential equation to be solved has strongly discontinuous coefficients, linear

(or bilinear) interpolation across discontinuities is inaccurate. Instead of the standard interpola-

tion, operator-dependent prolongation has to be used. Operator-dependent prolongation aims to

approximate the correct jump condition using information from the discrete operator, which have

been proposed by Alcouffe et al. [1], Kettler and Meijerink [32], Dendy [11] and Kettler [33].

5.1.2 Accuracy condition for transfer operators

The proofs of mesh-size independent rate of convergence of the MG method assume that p and r

satisfy certain conditions (Brandt [10] and Hackbusch [21]). The last author gives the following

simple condition:

mp + mr > 2m (5.17)

The necessity of Eq. (5.17) has been shown by Hemker [24]. Here orders mp and mr are defined as

the highest degree plus one of polynomials that are interpolated exactly by p or sr∗, respectively,

with s a scaling factor that can be chosen free, and 2m is the order of the partial differential

equation to be solved.

5.1.3 Coarse-grid approximation

To construct a coarse grid matrix, there are basically two ways. Like the fine grid matrix, the

coarse grid matrix is obtained by discretizing the partial differential equation on the coarse grid.

This is called discretization coarse-grid approximation (DCA). The other is justified as follows. A

system of linear equation Ax = f is equivalent to

(Ax, v) = (f , v) (5.18)

where v is any vector on the fine grid. Let x̄ be the solution on the coarse grid such that

(Apx̄, p̃v̄) = (f , p̃v̄), (5.19)

where v̄ is any vector on the coarse grid and p and p̃ are prolongation operators. It follows

(p̃∗Apx̄, v̄) = (p̃∗f , v̄) (5.20)

on the coarse grid. Thus, a coarse grid matrix Ā can be defined by

Ā = p̃∗Ap. (5.21)

Replacing p̃∗ by r, the approximation

Ā = rAp (5.22)
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Vector MG(Ll, f , x, μ1, μ2)

{
if (l == 1)

Solve L1x = f ;

else {
x = pre smoother(Ll, f , x, μ1);

d = restrict(f − Llx);

ν = initial x;

repeat (γl−1) ν = MG(Ll−1, d, ν, μ1, μ2);

x = x + prolongate(ν);

x = post smoother(Ll, f , x, μ2);

}
return x;

}

Figure 5.3: The multigrid method

of the coarse grid matrix is called Galerkin coarse-grid approximation (GCA).

By DCA, the coarse grid matrix is easily constructed and has the same sparsity pattern as

the fine grid matrix. By GCA, the coarse grid matrix is automatically generated from the fine

grid matrix, however, sparsity of the coarse grid matrix may be worse. For example, let a fine

grid matrix be five-point pattern, the coarse grid matrix becomes nine-point pattern using bilinear

prolongation and its adjoint restriction.

5.2 Multigrid Method

Let a sequence {Ωi | i = 1, 2, . . . , K} of increasingly finer grids be given, the MG method that

exploits K grids is defined using the two-grid method recursively, which is represented by Figure 5.3.

The order in which the grids are visited is referred to as the MG schedule or the MG cycle, which

is determined by the parameter γl. When each γl is fixed in advance, the schedule is called the

fixed schedule; when γl depends on intermediate computational results, it is called the adaptive

schedule. Familiar MG schedules are the V-cycle and W-cycle for γl = 1 and γl = 2, l = 1, 2, 3,

respectively, which is depicted by Figure 5.4. A schedule intermediate between V- and W-cycles is

called the F-cycle which calls MG twice on each grid level l, first with γl = 2 later with γl = 1.

31



V-cycle

Ω1

Ω2

Ω3

Ω4

W-cycle F-cycle

Figure 5.4: V-, W- and F-cycle diagrams

u = Sν1
1 u+ R1 f // pre-smoothing

d = r (L2u− f ) // coarse-grid correction

v = L−1
1 d

u = u− p v

u = Sν2
2 u+ R2 f // post-smoothing

Figure 5.5: The two-grid iteration by matrix computation

5.3 Two-grid Analysis

5.3.1 Two-grid iteration matrix

The two-grid iteration of Figure 5.1 can be represented by matrix computation such as Figure 5.5.

In Figure 5.5, S1 and S2 are iteration matrices of pre- and post-smoothers, respectively. From

Figure 5.5, the two-grid iteration is denoted by

u = Sν2
2 (I − pL−1

1 rL2)Sν1
1 u+ {Sν2

2 R1 + R2 + Sν2
2 pL−1

1 r(I − L2R1)}f (5.23)

Hence the two-grid iteration matrix is

Q = Sν2
2 (I − pL−1

1 rL2)Sν1
1 (5.24)

or

Q = Sν2
2 (L−1

2 − pL−1
1 r)L2S

ν1
1 . (5.25)
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5.3.2 Two-grid rate of convergence

For simplicity, consider only for ν2 = 0. See Hackbusch [21] for ν2 �= 0. The iteration matrix of

the two-grid method is

T = (L−1
2 − pL−1

1 r)(LSν1
1 ), (5.26)

so that

‖T ‖ ≤ ‖L−1
2 − pL−1

1 r‖‖L2S
ν1
1 ‖. (5.27)

The separate study of the two factors in Eq. (5.27) leads to the following definitions [21].

Definition 5.3.1 (The smoothing property) S has the smoothing property if there exist a

constant CS and a function η(ν) independent of the mesh size such that

‖LSν‖ ≤ CSh−2mη(ν), η(ν) → 0 for ν → ∞, (5.28)

where 2m is the order of the partial differential equation to be solved.

Definition 5.3.2 (The approximation property) The approximation property holds if there

exists a constant CA independent of the mesh size such that

‖L−1 − pL̄−1r‖ ≤ CAh2m, (5.29)

where 2m is the order of the partial differential equation to be solved and L̄ is the coarse grid

matrix.

If these two properties hold, mesh-independent rate of convergence of the two-grid method (with

ν2 = 0) follows easily.

Theorem 5.3.1 Let the smoothing property and the approximation property hold. Then there

exists a number ν̄ independent of the mesh size such that

‖T ‖ ≤ CSCAη(ν) < 1, ∀ν ≥ ν̄ (5.30)

Proof. From Eq. (5.27), (5.28) and (5.29),

‖T ‖ ≤ CSCAη(ν). (5.31)

According to the smoothing property, ν̄ is chosen independent of the mesh size such that the

theorem holds.
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5.3.3 Smoothing property

When L is a discretization of a partial differential operator of order 2m, Gerschgorin’s theorem

gives in this case

‖P‖ ≤ CP h−2m (5.32)

with CP some constant.

Sufficient conditions for the smoothing property are given by the following theorem [60].

Theorem 5.3.2 (Wittum 1989) Let L and P be symmetric and positive definite, and let P

satisfy Eq. (5.32). Suppose furthermore that the eigenvalues of S(= I − P−1L) satisfy

λ(S) ≥ −θ > −1. (5.33)

Then, the smoothing property holds with CS = CP and

η(ν) = ηθ(ν) = max{νν/(ν + 1)ν+1, θν(1 + θ)} (5.34)

Proof. Since P
1
2 SP− 1

2 is symmetric, λ(S) is real. We can write LSν = P
1
2 (I − X)XνP

1
2 with

X = P− 1
2 TP− 1

2 , so that ‖LSν‖ ≤ ‖P‖‖(I − X)Xν‖. X is symmetric and has the same spectrum

as S. Hence Eq. (5.33) gives λ(X) ≥ −θ. Furthermore, X − I = −P− 1
2 LP− 1

2 , so that X − I is

negative definite. Hence, −θ ≤ λ(X) < 1, so that ‖(I −X)Xν‖ ≤ max−θ≤x≤1 |(1− x)xν | = ηθ(ν).

The proof is complete by using Eq. (5.32).

Not every convergent method satisfy Eq. (5.33). By introducing damping, every convergent

method can, however, be made to satisfy Eq. (5.33), as noted by Wittum [60]. This is easily

seen as follows. Let the conditions of Theorem 5.3.2 be satisfied, except Eq. (5.33), and let S be

convergent. λ(S) is real as seen in the preceding proof, and λ(P−1L) = 1 − λ(S); thus we have

λ(P−1L) < 2. Let

0 ≤ ω ≤ ωθ =
1 + θ

2
. (5.35)

Then we have for the smallest eigenvalue of Sω = I − ωP−1L:

λmin(Sω) = 1 − ωλmax(P−1L) ≥ 1 − (1 + θ) = −θ, (5.36)

so that Sω satisfies Eq. (5.33).

5.4 Smoothing Analysis

Using two-grid analysis described in the previous section, mesh-independent convergence rate of the

two-grid method can be proved. However, a practical convergence factor of the two-grid method
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is not obtained. To predict the practical factor, a smoothing factor that is a contraction number

of the smoothing method with respect to rough components is used.

Exploiting discrete Fourier components, smoothing factors of damped Jacobi, GS, ILU [59] and

RB-GS [61] has been obtained.

5.4.1 Discrete Fourier sine transform

For simplicity, consider only in one dimension, however, extension to multidimension is straight-

forward. Let I = {1, 2, . . . , n − 1}. Every grid function u | I → � is written as

u =
n−1∑
k=1

ckψ(θk), (5.37)

where

ψ(θk) = (sin θk, sin 2θk, . . . , sin(n − 1)θk)T , θk =
πk

n
(5.38)

with

ck =
2
n
uTψ(θk). (5.39)

This is shown by the orthogonality

ψ(θk)Tψ(θl) =

⎧⎨
⎩

n

2
, if k = l

0, otherwise
(5.40)

5.4.2 Fourier smoothing factor

Let a smoothing iteration matrix be S, the error eν after ν iterations is

eν = Sνe0, (5.41)

with e0 an initial error. If the operator S has a complete set of eigenfunctions or local modes

denoted by ψ(θ), θ ∈ Θ, with Θ some discrete index set. Hence,

Sνψ(θ) = λν(θ)ψ(θ) (5.42)

with λ(θ) the eigenvalue belonging to ψ(θ). The eigenvalue λ(θ) is also called the amplification

factor of the local mode ψ(θ).

Since on the coarse grid the rapidly varying function cannot be approximated, there is no hope

that the part of the error can be approximated on the coarse grid. The eigenfunctions ψ(θ) are

distinguished between smooth eigenfunctions (θ ∈ Θs) and rough eigenfunctions (θ ∈ Θr):

Θ = Θs ∪ Θr, Θs ∩ Θr = ∅. (5.43)
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In the case of the Fourier sine series, they are defined by

Θ = {θ | πk

n1
, k = 1, 2, . . . , n1 − 1}, Θr = Θ ∩ [

π

2
, π], Θs = Θ \ Θr. (5.44)

Definition 5.4.1 (Local mode smoothing factor) The local mode smoothing factor ρ of the

smoothing method is defined by

ρ = sup{|λ(θ)| | θ ∈ Θr}. (5.45)

Hence, after ν smoothings the amplitude of the rough components of the error are multiplied by

a factor ρν or smaller. Note that the local mode smoothing factor is defined by the amplification

factor in only rough part of the error. The local mode smoothing factor depends on the mesh size

because Θr depends on the mesh size. In order to obtain a mesh-independent condition, we define

a set Θ̄r = ∪Θr with Θ̄r independent of the mesh size, and define

ρ̄ = sup{|λ(θ)| | θ ∈ Θ̄r} (5.46)

so that

ρ ≤ ρ̄. (5.47)

In the case of the Fourier sine series, Θ̄r are defined by

Θ̄r =
[π

2
, π

)
. (5.48)

This type of Fourier analysis and definition Eq. (5.46) of the smoothing factor have been introduced

by Brandt [9].

36



Chapter 6

MULTIGRID PRECONDITIONED

CONJUGATE GRADIENT METHOD

This chapter gives a sufficient condition for the MG method that can be used as a preconditioner of

the CG method, and formulates the multigrid preconditioned conjugate gradient (MGCG) method

[52, 32]. Let us start with a two-grid preconditioner in Section 6.1, and investigate a sufficient

condition for the MG method in Section 6.2. In Section 6.3, the MGCG method is formulated.

Historical remarks are described in Section 6.4.

6.1 Two-grid Preconditioner

This section investigates two sufficient conditions of the two-grid method for a preconditioner of

the CG method. One is the two-grid method with pre-smoothing only (ν1 �= 0, ν2 = 0) and the

other is that with both smoothings (ν1 �= 0, ν2 �= 0).

Consider an n × n linear equation Llxl = f l. As described in Section 3.1, the approximation

after ν smoothing iterations is given by

u = Hνu+ Rf , (6.1)

where H = P−1Q, R =
∑ν−1

i=0 Hi P−1 and Ll = P − Q. One two-grid iteration is represented by

Figure 6.1 with u an initial approximation. r and p denote a restriction matrix and a prolongation

matrix respectively.

6.1.1 Two-grid preconditioner with pre-smoothing only

From Figure 6.1, for ν2 = 0 the two-grid preconditioning matrix M is represented by

M−1 = R + pL−1
l−1r(I − LlR). (6.2)

37



u = Hν1u+ Rf // pre-smoothing

d = r(Llu− f) // coarse-grid correction

v = L−1
l−1d

u = u− pv

u = Hν2u+ Rf // post-smoothing

Figure 6.1: The two-grid iteration

This means the approximation u after one two-grid iteration for Llx = f with zero initial approx-

imation is represented by

u = M−1f . (6.3)

As described in Section 4.3, to satisfy the condition of a preconditioner of the CG method, M

should be s.p.d.. The following theorem is useful to show the condition of the two-grid method.

Theorem 6.1.1 Let A = P − Q be symmetric and positive definite with P symmetric and non-

singular. R is symmetric and for any ν ≥ 1

1. If ν is odd, R is positive definite if and only if P is positive definite.

2. If ν is even, R is positive definite if and only if P + Q is positive definite.

Proof. See Ortega [42].

Let ν = ν1, the following theorem holds.

Theorem 6.1.2 (Tatebe 1993) Let L−1
l−1 be symmetric and positive definite, r = p∗ and N =

I − LlR = Hν . If H and P be symmetric and N be nonsingular, M is symmetric with respect to

the N-energy inner product.

1. If ν is odd and P and H are positive definite, M is positive definite with respect to the

N-energy inner product,

2. If ν is even and P +Q is positive definite, M is positive definite with respect to the N-energy

inner product,

provided that N-energy inner product (x, y)N = (x, Ny).

Proof. Since N = I − LlR = Hν ,

(x, M−1y)N = xT HνRy + xT HνpL−1
l−1rH

νy. (6.4)
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Since P is symmetric, R is also symmetric, and since (pL−1
l−1rH

ν)T = HνpL−1
l−1r,

(M−1x, y)N = xT RHνy + xT HνpL−1
l−1rH

νy. (6.5)

Because H = P−1Q is symmetric,

HνR = (P−1Q)ν
ν−1∑
i=0

(P−1Q)iP−1

=
ν−1∑
i=0

P−1(QP−1)i(QP−1)ν = RHν, (6.6)

therefore M−1 is symmetric with respect to N -energy inner product.

Next, since N = Hν ,

NM−1 = (I − LlR){R + pL−1
l−1r(I − LlR)}

= HνR + HνpL−1
l−1rH

ν . (6.7)

Assume ν is odd. From assumption, P is positive definite, thus R is s.p.d. by Theorem 6.1.1.

Because H is s.p.d., Hν is also s.p.d., thus HνR is positive definite (see [42]). Next, assume ν is

even. Since H is symmetric, H has real eigenvalues, so that Hν is positive definite. Since P + Q

is positive definite, then R is positive definite by Theorem 6.1.1, thus HνR is positive definite.

Since Hν is symmetric and pL−1
l−1r is semi-positive definite, HνpL−1

l−1rH
ν is semi-positive defi-

nite. Therefore NM−1 is positive definite, so that M−1 is positive definite with respect to N -energy

inner product. Thus, M is symmetric and positive definite w.r.t. N -energy inner product.

A smoothing method that satisfies the assumption of Theorem 6.1.2; H is symmetric and

nonsingular and P is symmetric, is the damped Richardson method. Thus if Q is positive definite,

the two-grid preconditioner with the damped Richardson pre-smoother is a valid preconditioner of

the CG method which uses the N-energy inner product instead of the usual inner product.

6.1.2 Two-grid preconditioner with both pre- and post-smoothings

Next consider the two-grid preconditioner with both pre- and post-smoothings. Let the iteration

matrices of pre- and post-smoothers be H1 = P−1
1 Q1 and H2 = P−1

2 Q2 respectively, the two-grid

preconditioning matrix M is represented by

M−1 = Hν2
2

{
(I − pL−1

l−1rLl)R1 + pL−1
l−1r

}
+ R2

= Hν2
2 R1 + R2 + Hν2

2 pL−1
l−1r(I − LlR1). (6.8)

Since R1 =
∑ν1−1

i=0 (P−1
1 Q1)iP−1

1 ,

I − LlR1 = (Q1P
−1
1 )ν1 . (6.9)
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Therefore Eq. (6.8) is rewritten as

M−1 = Hν2
2 R1 + R2 + Hν2

2 pL−1
l−1r(Q1P

−1
1 )ν1 . (6.10)

Theorem 6.1.3 (Tatebe 1993) Let L−1
l−1 be symmetric and positive definite and r = p∗. If

P1 = P2 = PT
1 , ρ(H1) < 1 and ν1 = ν2 = ν, M is symmetric and positive definite.

Proof. Let P = P1 = P2 and H = H1 = H2, we have

M−1 = HνR + R + HνpL−1
l−1r(H

T )ν , (6.11)

since Q1P
−1
1 = HT . Because R =

∑ν−1
i=0 Hi P−1,

HνR + R = Hν
ν−1∑
i=0

Hi P−1 +
ν−1∑
i=0

Hi P−1 =
2ν−1∑
i=0

Hi P−1, (6.12)

thus HνR + R is the inverse of the preconditioning matrix of 2ν smoothing iterations. From

Theorem 6.1.1, it is symmetric, so that M−1 is symmetric.

By Theorem 3.3.4, if P is s.p.d. and ρ(H) < 1, P + Q are positive definite, thus HνR +

R is positive definite. Since L−1
l−1 is positive definite, HνpL−1

l−1r(H
T )ν is semi-positive definite.

Therefore M−1 is positive definite, so that M is symmetric and positive definite.

Smoothing methods which satisfy the assumption of Theorem 6.1.3; P is symmetric, are the

damped Jacobi method, the Red-Black symmetric Gauss-Seidel (RB-SGS) method, the multicolor

SSOR method, the symmetric ADI method, the CG method and so on. From this theorem, the

two-grid preconditioner with one of these iterative methods as pre- and post-smoothers fulfills the

condition of preconditioner of the CG method.

For m1 = m2 = 1, the following theorem holds [32, 33].

Theorem 6.1.4 (Kettler 1981) Let L−1
l−1 be symmetric and positive definite and r = p∗. If

P1 = PT
2 , ρ(P−1

1 Q1) < 1 and ν1 = ν2 = 1, M is symmetric and positive definite.

Although I could not get their proof, it is proved as follows.

Proof. The two-grid preconditioning matrix for ν1 = ν2 = 1 is

M−1 = P−1
2 Q2P

−1
1 + P−1

2 + P−1
2 Q2pL−1

l−1rQ1P
−1
1 . (6.13)

Let P = P1 = PT
2 ,

M−1 = P−T QT P−1 + P−T + P−T QT pL−1
l−1rQP−1. (6.14)

Because QT = PT − Ll,

P−T QT P−1 + P−T = P−T (PT − Ll)P−1 + P−T = P−T LlP
−1 + P−1 + P−T . (6.15)
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Thus P−T QT P−1 + P−T is symmetric. Moreover, Eq. (6.15) follows

P−T QT P−1 + P−T = P−T (P + QT )P−1. (6.16)

Hence, this matrix is positive definite if P + QT is positive definite. However, since ρ(P−1Q) < 1,

P +Q is positive definite, thus P +QT is positive definite. Therefore P−T QT P−1+P−T is positive

definite. Thus P−1
2 Q2pL−1

l−1rQ1P
−1
1 is symmetric and semi-positive definite, so that M−1 and M

are symmetric and positive definite.

In fact, Theorem 6.1.4 holds for not only ν1 = ν2 = 1 but also ν1 = ν2 ≥ 1.

Theorem 6.1.5 Let L−1
l−1 be symmetric and positive definite and r = p∗. If P1 = PT

2 , ρ(P−1
1 Q1) <

1 and ν1 = ν2, M is symmetric and positive definite.

Proof. Let P = P1 = PT
2 and ν = ν1 = ν2, after ν pre-smoothing iterations,

u = (P−1Q)νu+
ν−1∑
i=0

(P−1Q)iP−1f , (6.17)

similarly, after ν post-smoothing iterations,

u = (P−T QT )νu+
ν−1∑
i=0

(P−T QT )iP−Tf . (6.18)

Hence, the preconditioning matrix of ν post-smoothing iterations is adjoint of that of ν pre-

smoothing iterations. Furthermore, since ρ(P−1
1 Q1) < 1,

ρ
(
(P−1

1 Q1)ν
)

= ρν(P−1
1 Q1) < ρ(P−1

1 Q1) < 1, (6.19)

thus the proof is complete using Theorem 6.1.4.

From Theorem 6.1.5, smoothers are not necessary to be symmetric, and furthermore, their

number of iterations is not necessary to be one. For example, we can use 2 RB-GS iterations for

pre-smoothing and 2 BR-GS iterations for post-smoothing.

6.2 Multigrid Preconditioner

In the previous section, two sufficient conditions of the two-grid preconditioner are considered.

In this section, they are extended for the MG preconditioner. In the V-cycle MG method, the

following theorem holds.

Theorem 6.2.1 If the assumption of Theorem 6.1.2 or 6.1.5 is satisfied on each grid, V-cycle

MG preconditioning matrix is symmetric and positive definite.
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Proof. When the assumption of Theorem 6.1.5 is satisfied, the V-cycle MG preconditioning

matrix Ml with l grid levels is recursively defined by

M−1
0 = L−1

0 or R

M−1
i = Hm

2 R1 + R2 + Hm
2 pM−1

i−1r(H
T
2 )m (i ≥ 1) (6.20)

M−1
0 is symmetric and positive definite. If M−1

i−1 is symmetric and positive definite, M−1
i is also

symmetric and positive definite because of Theorem 6.1.5. By mathematical induction, every

M−1
i (i ≥ 0) is symmetric and positive definite, so that every Mi is s.p.d.. Therefore the V-cycle

MG method satisfies the condition of the preconditioner of the CG method. For the assumption

of Theorem 6.1.2, the theorem is shown by the similar way.

Note that Theorem 6.2.1 requires only a convergent smoother on each grid, hence the smoothing

property and the approximation property are not always necessary for preconditioning. Further-

more, the V-cycle MG method is not necessary to be convergent.

For W-cycle and other MG cycles, the following theorem holds.

Theorem 6.2.2 Let the assumption of Theorem 6.1.2 or 6.1.5 be satisfied on each grid. If the

MG method called on each grid is convergent, all MG(n, m) methods satisfy conditions of the

preconditioner of the CG method, where n is a MG cycle and m is the number of smoothing

iterations.

Proof. When the assumption of Theorem 6.1.5 is satisfied, the MG preconditioning matrix

M
(n)
l with n MG calls as the approximate solution on the coarse grid is defined by

(
M

(n)
0

)−1 = L−1
0 or R

(
M

(n)
i

)−1 =
n−1∑
i=0

Hi
mg

{
Hm

2 R1 + R2 + Hm
2 p

(
M

(n)
i−1

)−1
r
(
HT

2

)m}
, (i ≥ 1) (6.21)

where Hmg = Hm
2

{
I − p

(
M

(n)
i−1

)−1
rLi

}
Hm

1 .
(
M

(n)
0

)−1 is symmetric and positive definite. If(
M

(n)
i−1

)−1 is symmetric and positive definite, Hm
2 R1 + R2 + Hm

2 p
(
M

(n)
i−1

)−1
r
(
HT

2

)m is symmetric

and positive definite by Theorem 6.1.5, so that
(
M

(n)
i

)−1 is symmetric.

From the assumption, ρ(Hmg) < 1, so that
(
M

(n)
i

)−1 is positive definite. Thus, M
(n)
i is

symmetric and positive definite. The W-cycle MG method is a special case with n = 2. Therefore

the W-cycle MG method and all MG(n, m) (n, m ≥ 1) satisfy the condition of the preconditioner

of the CG method. It is shown by the similar way when the assumption of Theorem 6.1.2 is

satisfied.

In the W-cycle MG preconditioner, the assumption ρ(Hmg) < 1 on each grid, which means

each (V-cycle) MG iteration is convergent, is required since the preconditioning matrix should be
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positive definite. Theorem 6.2.2 ensures not only MG(n, m) method but also the MG method

which calls any number of identical MG calls for the solution on the coarse grid, for example, we

can use two MG calls on the grid level 3 and one MG call on the grid level 2. However, the F-cycle

MG method is not a valid preconditioner for the CG method.

6.3 MGCG Method

In the previous sections, we have two sufficient conditions for the MG preconditioner; one is for

the MG method with pre-smoothing only and the other is for that with both smoothings. With

only pre-smoothing, the MG preconditioner with the damped Richardson smoother is a valid

preconditioner of the CG method with the N-energy inner product instead of the usual inner

product. If N is explicitly computed and stored to the memory, computational work of N-energy

inner product is quite expensive, since N is dense. Still if not, computational cost of N-energy

inner product is nearly same as that of the pre-smoothing method.

On the other hand, with both pre- and post-smoothings, the V-cycle MG method is a valid

preconditioner of the CG method if

r = p∗, μ1 = μ2 �= 0, (6.22)

and if post-smoother is convergent and adjoint of pre-smoother. Of course, pre- and post-smoothers

may be identical and symmetric.

We denote MGCG(l, m, n, g) for the MGCG method with n iterations of l smoother and g

grid level. m means a cycle of the MG preconditioner. l smoother is used as pre-smoother and

its adjoint is used as post-smoother. When g is omitted, the MGCG method uses all available

grid levels. For example, MGCG(RB-SGS, 1, 2) uses the V-cycle MG preconditioner with two

iterations of the symmetric RB-GS pre- and post-smoothers, and MGCG(RB-GS, 2, 1) uses the

W-cycle MG preconditioner with one RB-GS pre-smoothing and one BR-GS post-smoothing.

6.4 Historical Remark

In 1981, Kettler and Meijerink have proposed the MGCG method in [32, 33]. As described in

Section 6.1, they used Theorem 6.1.4 for a sufficient condition of the MG preconditioner. In 1991,

Wesseling wrote a sufficient condition of the MG preconditioner in his book [59], which is same as

Theorem 6.1.3, however the explanation of the condition is incorrect. Preconditioner of the CG

method should have a symmetric and positive definite preconditioning matrix not a symmetric

iteration matrix.
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Kettler and Meijerink performed numerical experiments in [32] on Stone’s test problem [50],

which is the anisotropic diffusion equation, and Kershaw’s test problem [31], which is a Helmholtz

equation. They used line Gauss-Seidel smoother, ILU smoother, alternative line Gauss-Seidel

smoother and incomplete line LU smoother as the smoother of the MG preconditioner. They

concluded that MG, MGCG and ICCG are equally efficient for Stone’s problem if the smoother

of MG and MGCG is ILLU. For Kershaw’s problem, MG is significantly slower than MGCG and

ICCG. ICCG suffers from a slow start and is rather inefficient for Poisson-type equation. Hence

MGCG is to be preferred.
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Chapter 7

RATE OF CONVERGENCE OF THE MGCG

METHOD

It is proved that the MGCG method is robust for the Poisson Equation. Fast rate of convergence

of the MGCG method is shown by the eigenvalue analysis of the preconditioned matrix. Exploiting

Fourier components on each grid level, all the eigenvalues of the MG preconditioned matrix are

analytically obtained. Specifically, the eigenvalues of the two-grid preconditioned matrix are in-

vestigated with damped Jacobi smoother or Red-Black Gauss-Seidel (RB-GS) smoother for 1- and

2-dimensional Poisson equations. For 1 dimension, it is shown the MG preconditioner with RB-

GS smoother is an exact solver. For 2 dimensions, the eigenvalues of the two-grid preconditioned

matrix lie in 3
4 ≤ λ ≤ 1.

7.1 Two-grid Preconditioner

We start with the simplest form of the MG preconditioner, which is the two-grid preconditioner

that exploits only two grid levels. Consider a linear equation L2u
(2) = f (2) on the grid Ω2,

which is the finest grid, such that L2 is symmetric and positive definite. Superscript or subscript

that denotes the grid level may be omitted when it is clear. Let an s.p.d. coefficient matrix on

a coarse grid Ω1 be L1, the prolongation and restriction operators be p and r, respectively. Let

iteration matrices of pre- and post-smoothers be P−1
1 Q1 and P−1

2 Q2, respectively, and the number

of iterations be m1 and m2. The two-grid preconditioner is shown by Tab. 7.1. In the following

investigation, L1 is constructed by discretization coarse-grid approximation. To satisfy a condition

of preconditioner of the CG method, r is adjoint of p, namely, p = r∗, and P2 = PT
1 = PT and
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Table 7.1: The two-grid iteration

u = (P−1
1 Q1)m1u+

∑m1−1
i=0 (P−1

1 Q1)iP−1
1 f // pre-smoothing

u = u− p L−1
l−1r (Llu− f) // coarse-grid correction

u = (P−1
2 Q2)m2u+

∑m2−1
i=0 (P−1

2 Q2)iP−1
2 f // post-smoothing

m1 = m2 = m(≥ 1). We obtain the two-grid preconditioned matrix

B = (P−T QT )m
m−1∑
i=0

(P−1Q)iP−1L2 +
m−1∑
i=0

(P−T QT )iP−T L2 + (P−T QT )mpL−1
1 r(QP−1)mL2.

(7.1)

When the smoothing method is symmetric,

B =
2m−1∑
i=0

(P−1Q)iP−1L2 + (P−1Q)mpL−1
1 r(QP−1)mL2. (7.2)

7.2 One-dimensional Poisson Equation

Consider the following one-dimensional Poisson equation:

−d2u(x)
dx2

= f(x) with u(0) = 0,
du(1)
dx

= 0. (7.3)

Note that the following analysis of Neumann-Dirichlet boundary condition can be easily extended

to that of Dirichlet-Dirichlet boundary condition. Discretizing the range (0, 1) into N sections,

Eq. (7.3) can be translated to a system of N equations,

1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2 −1

−1 2 −1
. . .

−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

...

uN−1

uN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

f3

...

fN−1

fN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.4)

where h = 1
N , ui = u( i

N ) and fi = f( i
N ). For simplicity, assume N is even.

7.2.1 Damped Jacobi smoother

Let a matrix P = 1
ω diag(L2), a damped Jacobi smoother iterates

Pxi+1 = Qxi + f , (7.5)
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where Q = P − L2, with x0 an initial approximation. Without difficulty, the eigenvalues of the

iteration matrix P−1Q are 1−ω+ω cosαi where α
(2)
i =(1

2 + i) π
N2

(i = 0, 1, 2, · · · , N2−1), and the

corresponding eigenvectors are

ν
(2)
i = (sin α

(2)
i sin 2α

(2)
i · · · sinNα

(2)
i )T .

Note that this also means that the damped Jacobi method is convergent if and only if 0 < ω ≤ 1.

For the Dirichlet boundary condition, let α
(2)
i = (1+ i) π

N2
(i = 0, 1, 2, · · · , N2−2), and replacing

N − i − 1 to N − i − 2, the following discussion is applicable.

Theorem 7.2.1 The eigenvalues of the two-grid preconditioned matrix with m iterations of

damped Jacobi smoother are 1 and

1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m − 1 + cosαi

2
(1 − ω − ω cosαi)2m

on the 1-dimensional Poisson equation.

Proof. Since P−1Ll = P−1(P − Q) = I − P−1Q, the eigenvalues and the corresponding

eigenvectors of P−1Ll are ω(1−cosαi) and νi, respectively. Thus, the eigenvalues of the first term

of Eq. (7.2) are

2m−1∑
i=0

(1 − ω + ω cosαi)iω(1 − cosαi) = 1 − (1 − ω + ω cosαi)2m. (7.6)

In the one-dimensional case, the stencils of r and p are

[r]k =
1
4
[1 2 1] and [pT ]k =

1
2
[1 2 1], (7.7)

where k ∈ Ω1, respectively. Thus,

rν
(2)
i =

1 + cosα
(2)
i

2
ν

(1)
i , (7.8)

where ν(1)
i = (sin α

(1)
i sin 2α

(1)
i · · · sin N1α

(1)
i )T , α

(1)
i = (1

2 + i) π
N1

(i = 0, 1, 2, · · · , N1 − 1) and

N1 = N2
2 on the grid level 1. Note that ν(1)

N−i−1 = −ν(1)
i . Thus,

P−1
1 rQ2ν

(2)
i = 2(1 − ω + ω cosαi)(1 + cosαi)ν

(1)
i (7.9)

Moreover, since α
(2)
N2−i−1 = −α

(2)
i + π,

sin jα
(2)
N−i−1 =

{
sin jα

(2)
i , if j is odd

− sin jα
(2)
i , otherwise.

(7.10)
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Thus, pν
(1)
i is represented using ν(2)

i and ν(2)
N−i−1,

pν
(1)
i =

cosα
(2)
i

2
(ν(2)

i + ν(2)
N−i−1) +

1
2
(ν(2)

i − ν(2)
N−i−1)

=
1 + cosαi

2
ν

(2)
i − 1 − cosαi

2
ν

(2)
N−i−1. (7.11)

On the other hand, the second term of Eq. (7.2) is rewritten as

(P−1Q)mpL−1
1 r(QP−1)mL2 = (P−1

2 Q2)mp(P−1
1 L1)−1P−1

1 rQ2(P−1
2 Q2)m−1P−1

2 L2.

Subscripts denote the grid level. Therefore,

Bνi =
(

1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m

)
ν

(2)
i

−1 − cosαi

2
(1 − ω + ω cosαi)m(1 − ω − ω cosαi)mν

(2)
N−i−1 (7.12)

Similarly, since cosαN−i−1 = − cosαi,

BνN−i−1 = −1 + cosαi

2
(1 − ω − ω cosαi)m(1 − ω + ω cosαi)mν

(2)
i

+
(

1 − 1 + cosαi

2
(1 − ω − ω cosαi)2m

)
ν

(2)
N−i−1, (7.13)

thus, there are two eigenvectors of B in Span{νi, νN−i−1}. Let k1νi+k2νN−i−1 be the eigenvectors

and λ be the corresponding eigenvalues,

B(k1νi + k2νN−i−1) = λ(k1νi + k2νN−i−1). (7.14)

From Eq. (7.12), (7.13) and (7.14), the following equation

λ2 −
(

2 − 1 − cosαi

2
(1 − ω + ω cosαi)2m − 1 + cosαi

2
(1 − ω − ω cosαi)2m

)
λ

+1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m − 1 + cosαi

2
(1 − ω − ω cosαi)2m = 0(7.15)

holds. Thus,

λ = 1, 1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m − 1 + cosαi

2
(1 − ω − ω cosαi)2m (7.16)

Therefore, half of eigenvalues are unity. Note that the two-grid method with ω = 1 is not

robust, since the minimum eigenvalue (1 − cos2m α0) approaches to 0 as N → ∞. For m = 1, the

next lemma is shown.

Lemma 7.2.2 For m = 1, optimal condition number of the preconditioned matrix is 9
8 when

ω = 2
3 .
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Proof. From Eq. (7.16), the maximum eigenvalue is 1. Thus, the condition number is minimum

when the minimum eigenvalue is maximum.

max
ω

min
αi

1 − 1 − cosαi

2
(1 − ω + ω cosαi)2 − 1 + cosαi

2
(1 − ω − ω cosαi)2

= max
ω

min
αi

1 − (1 − ω)2 − ω(3ω − 2) cos2 αi

=
8
9
,

when ω = 2
3 .

Corollary 7.2.3 For m = 1 and ω = 2
3 , the MGCG method with two grid levels converges at two

iterations.

Proof. For ω = 2
3 , λ = 8

9 , 1.

Note that the optimal smoothing factor is 1
9 when ω = 2

3 , which is equivalent to the maximum

eigenvalue of the two-grid iteration matrix obtained here.

For the Dirichlet boundary condition, the following theorem holds:

Theorem 7.2.4 For one-dimensional Poisson equation with the Dirichlet boundary condition,

the eigenvalues of the two-grid preconditioned matrix with m damped Jacobi iterations are unity,

1 − (1 − ω)2m and

1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m − 1 + cosαi

2
(1 − ω − ω cosαi)2m,

where αi = (i + 1) π
N , i = 0, 1, . . . , N

2 − 2.

Proof. Let

νi = (sin αi sin 2αi · · · sin(N − 1)αi)T , (7.17)

for i = 0, 1, . . . , N
2 − 2, it is shown that eigenvalues are unity and

1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m − 1 + cosαi

2
(1 − ω − ω cosαi)2m

by the similar way as the proof of Theorem 7.2.1. For i = N
2 − 1, then αi = π

2 and

rνi = 0. (7.18)

Hence

Bνi =
{
1 − (1 − ω)2m

}
νi (7.19)

Then the theorem holds.

In this case, Corollary 7.2.3 also holds.
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7.2.2 Red-Black Gauss-Seidel smoother

Let a matrix

P =
1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

2

−1 2 −1
. . .

−1 2 −1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.20)

The RB-GS iterates

Pxi+1 = Qxi + f , (7.21)

where Q = P − L. Since P is not symmetric, it’s adjoint smoother; the Black-Red Gauss-Seidel

(BR-GS) iteration,

PTxi+1 = QTxi + f , (7.22)

is used as post-smoother.

Theorem 7.2.5 The eigenvalues of the two-grid preconditioned matrix with the RB-GS smoother

are unity.

Proof. Let vectors νi = (sin αi sin 2αi · · · sin Nαi)T , the following equations hold:

P−1Qνi =
cosαi(1 + cosαi)

2
νi − cosαi(1 − cosαi)

2
νN−i−1 (7.23)

P−T QTνi =
cosαi(1 + cosαi)

2
νi +

cosαi(1 − cosαi)
2

νN−i−1 (7.24)

And,

(P−1L)−1νi =
2 − cosαi

2(1 − cosαi)
νi − cosαi

2(1 + cosαi)
νN−i−1 (7.25)

Moreover,

P−1
l−1rQlν

(2)
i = cosαi(1 + 2 cos2 αi)ν

(1)
i − cosαi(1 − 2 cos2 αi)ν

(1)
N
2 −i−1

(7.26)

Therefore,

Bνi =
(

1 − cos3 αi

2

)
νi − cos3 αi(1 − cosαi)

2(1 + cosαi)
νN−i−1 (7.27)

BνN−i−1 =
cos3 αi(1 + cosαi)

2(1 − cosαi)
νN−i−1

(
1 +

cos3 αi

2

)
νi (7.28)

Now, let k1νi + k2νN−i−1 be the eigenvectors of the matrix B and λ be the corresponding eigen-

values. The following equation

λ2 − 2λ + 1 = 0 (7.29)

holds. Thus λ = 1.
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Corollary 7.2.6 The MG preconditioner with the RB-GS smoother is an exact Poisson solver.

Proof. By Theorem 7.2.5, the two-grid preconditioner is an exact solver. If the MG precondi-

tioner with i grid levels is an exact solver, the MG preconditioner with i + 1 grid levels is also an

exact solver by Theorem 7.2.5. By mathematical induction, the corollary holds.

Note that the black points updated first by the BR-GS post-smoother are included in Ω2 \Ω1.

7.3 Two-dimensional Poisson Equation

In this section, we treat the two-dimensional Poisson equation:

−
(

∂2

∂x2
+

∂2

∂y2

)
u(x, y) = f(x, y) in Ω = (0, 1) × (0, 1)

with

{
u = 0 on x = 0 or y = 0
∂u
∂n = 0 on x = 1 or y = 1

(7.30)

where ∂
∂n denotes the partial derivative with respect to outward direction of boundary. When

this two-dimensional equation is discretized into N ×N meshes, we get a block-tridiagonal matrix

whose stencil is

1
h2

⎡
⎢⎢⎢⎣

−1

−1 4 −1

−1

⎤
⎥⎥⎥⎦ , (7.31)

where h = 1
N . For simplicity, assume N is even.

7.3.1 Damped Jacobi smoother

Let P = 1
ω diag(Ll), eigenvectors of the damped Jacobi iteration matrix P−1Q are

νij = (sin αi sinβj sin 2αi sinβj · · · sin Nαi sin Nβj)T , (7.32)

and the corresponding eigenvalues are 1−ω+ ω(cosαi+cos βj)
2 , where αi = (1

2 +i) π
N and βj = (1

2 +j) π
N

(i, j = 0, 1, · · · , N−1). Thus, the eigenvalues of P−1L are ω
(
1 − cos αi+cos βj

2

)
.

7.3.1.1 Semicoarsening

In semicoarsening, while mesh size of coarse grid is the same in at least one direction, that of coarse

grid is double that of fine grid in other directions. In the semicoarsening case in the x-direction,

the coefficient matrix on Ω1 is

[L1]k =
1

4h2

⎡
⎢⎢⎢⎣

−4

−1 10 −1

−4

⎤
⎥⎥⎥⎦ , (7.33)
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where k ∈ Ω1. Hence

[P−1
1 Q1]k = ω

⎡
⎢⎢⎢⎣

2
5

1
10

1
ω − 1 1

10

2
5

⎤
⎥⎥⎥⎦ . (7.34)

Let

ν
(1)
ij = (sin α

(1)
i sinβ

(1)
j sin 2α

(1)
i sinβ

(1)
j · · · sin(

N

2
−1)α(1)

i sin(N−1)β(1)
j )T , (7.35)

eigenvectors of the iteration matrix P−1
1 Q1 are ν(1)

ij and the corresponding eigenvalues are 1 −
ω +

ω(cos α
(1)
i

+4 cos β
(1)
j

)

5 , where α
(1)
i = (1

2 + i)2π
N = 2α

(2)
i and β

(1)
j = β

(2)
j . Thus, the eigenvalues of

P−1Ll−1 are ω

(
1 − cos α

(1)
i

+4 cos β
(1)
j

5

)
.

The stencils of r and p are same in the one-dimensional case,

[r]k =
1
4
[1 2 1] and [pT ]k =

1
2
[1 2 1], (7.36)

where k ∈ Ω1, respectively.

Theorem 7.3.1 Let A = 1−ω+ω
2 cosβj and B = ω

2 cosαi. The eigenvalues of the two-grid precon-

ditioned matrix with damped Jacobi smoother and semicoarsening are equivalent to the eigenvalues

of the following 2 × 2 matrices:

Cij =

⎛
⎝ c00 c01

c10 c11

⎞
⎠ , (7.37)

where i = 0, 1, · · · , N
2 −1, j = 0, 1, · · · , N−1 and

c00 = 1 − (A + B)2m +
2
5

(
1 − cos αi+cos βj

2

)
(1 + cosαi)2

1 − cos 2αi+4 cos βj

5

(A + B)2m

c01 = − 2
5

(
1 − cos αi+cos βj

2

)
(1 − cos2 αi)

1 − cos 2αi+4 cos βj

5

(A + B)m(A − B)m

c10 = − 2
5

(
1 − − cos αi+cos βj

2

)
(1 − cos2 αi)

1 − cos 2αi+4 cos βj

5

(A + B)m(A − B)m

c11 = 1 − (A − B)2m +
2
5

(
1 − − cos αi+cos βj

2

)
(1 − cosαi)2

1 − cos 2αi+4 cos βj

5

(A − B)2m.

Proof. From Eq. (7.36),

rν
(2)
ij =

1 + cosαi

2
ν

(1)
ij , (7.38)

where i = 0, 1, · · · , N
2 −1 and j = 0, 1, · · · , N−1. Thus,

P−1
1 rQ2ν

(2)
ij =

4
5
(1 − ω +

ω(cosαi + cosβj)
2

)(1 + cosαi)ν
(1)
ij (7.39)
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Moreover, since αN−i−1 = −αi + π,

sinkαN−i−1 sin lβj =

{
sinkαi sin lβj, if k is odd

− sinkαi sin lβj, otherwise.
(7.40)

Thus,

pν
(1)
ij = cosαi

ν
(2)
ij + ν(2)

N−i−1,j

2
+
ν

(2)
ij − ν(2)

N−i−1,j

2

=
1 + cosαi

2
ν

(2)
ij − 1 − cosαi

2
ν

(2)
N−i−1,j (7.41)

Therefore,

Bνij =
2m−1∑
k=0

{
1−ω+

ω(cosαi+cosβj)
2

}k

ω

(
1−cosαi+cosβj

2

)
νij

+ ω

(
1−cosαi+cosβj

2

)(
1−ω+

ω(cosαi+cosβj)
2

)m 4
5
(1+ cosαi)

× 1

ω
(
1− cos 2αi+4 cos βj

5

) {
1+cosαi

2

(
1−ω+

ω(cosαi+cosβj)
2

)m

νij

−1− cosαi

2

(
1−ω+

ω(− cosαi+cosβj)
2

)m

νN−i−1,j

}

=

⎧⎨
⎩1−(A+B)2m+

2
5

(
1− cos αi+cos βj

2

)
(1+ cosαi)2

1− cos 2αi+4 cos βj

5

(A+B)2m

⎫⎬
⎭νij

− 2
5

(
1− cos αi+cos βj

2

)
(1− cos2 αi)

1− cos 2αi+4 cos βj

5

(A+B)m(A−B)mνN−i−1,j .

Therefore, the theorem holds.

The eigenvalues are calculated by the similar way as the one-dimensional case. Fig. 7.1 shows

the eigenvalues solved in several ω, while optimal smoothing factor is 9
25 for ω = 4

5 . The minimum

eigenvalue calculated here is closely to 1 − 9
25 (= 16

25 ) for ω = 4
5 .

7.3.1.2 Standard coarsening

The stencils of r and p in the two-dimensional case are

[r]k =
1
16

⎡
⎢⎢⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎥⎥⎦ and [pT ]k =

⎡
⎢⎢⎢⎣

1
4

1
2

1
4

1
2 1 1

2

1
4

1
2

1
4

⎤
⎥⎥⎥⎦ , (7.42)

where k ∈ Ω1, respectively. Thus,

rν
(2)
ij =

1 + cosαi + cosβj + cosαi cosβj

4
ν

(1)
ij , (7.43)
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Figure 7.1: The distribution of eigenvalues of the two-grid preconditioned matrix with the damped

Jacobi smoother and semicoarsening. Several curves mean different ω.

where i, j = 0, 1, · · · , N
2 −1. Thus,

P−1
1 rQ2ν

(2)
ij =

(
1 − ω +

ω(cosαi + cosβj)
2

)
(1 + cosαi)(1 + cosβj)ν

(1)
ij (7.44)

Moreover, pν
(1)
ij is represented by ν(2)

ij , ν
(2)
N−i−1,j , ν

(2)
i,N−j−1 and ν(2)

N−i−1,N−j−1,

pν
(1)
ij =

1
4
(ν(2)

ij − ν(2)
N−i−1,j − ν(2)

i,N−j−1 + ν(2)
N−i−1,N−j−1)

+
cosαi

4
(ν(2)

ij + ν(2)
N−i−1,j − ν(2)

i,N−j−1 − ν(2)
N−i−1,N−j−1)

+
cosβj

4
(ν(2)

ij − ν(2)
N−i−1,j + ν(2)

i,N−j−1 − ν(2)
N−i−1,N−j−1)

+
cosαi cosβj

4
(ν(2)

ij + ν(2)
N−i−1,j + ν(2)

i,N−j−1 + ν(2)
N−i−1,N−j−1)

=
1 + cosαi

2
1 + cosβj

2
ν

(2)
ij − 1 − cosαi

2
1 + cosβj

2
ν

(2)
N−i−1,j

−1 + cosαi

2
1 − cosβj

2
ν

(2)
i,N−j−1 +

1 − cosαi

2
1 − cosβj

2
ν

(2)
N−i−1,N−j−1

Therefore,

Bνij =

{
1 −

(
1 − ω +

ω(cosαi + cosβj)
2

)2m
}
νij +

(
1 − cos αi+cos βj

2

)(
1 − ω + ω(cos αi+cos βj)

2

)m

(1 + cosαi)(1 + cosβj)

1 − cos 2αi+cos 2βj

2
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×
{

1 + cosαi

2
1 + cosβj

2

(
1 − ω +

ω(cosαi + cosβj)
2

)m

νij

−1 − cosαi

2
1 + cosβj

2

(
1 − ω +

ω(− cosαi + cosβj)
2

)m

νN−i−1,j

−1 + cosαi

2
1 − cosβj

2

(
1 − ω +

ω(cosαi − cosβj)
2

)m

νi,N−j−1

+
1 − cosαi

2
1 − cosβj

2

(
1 − ω +

ω(− cosαi − cosβj)
2

)m

νN−i−1,N−j−1

}
(7.45)

Let k1νij + k2νN−i−1,j + k3νi,N−j−1 + k4νN−i−1,N−j−1 be eigenvectors of the matrix B and λ be

the corresponding eigenvalues. That is,

B(k1νij + k2νN−i−1,j + k3νi,N−j−1 + k4νN−i−1,N−j−1) =

λ(k1νij + k2νN−i−1,j + k3νi,N−j−1 + k4νN−i−1,N−j−1). (7.46)

From Eq. (7.45) and (7.46),⎛
⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

k1

k2

k3

k4

⎞
⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎝

k1

k2

k3

k4

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7.47)

where cij , (i, j = 1, 2, 3, 4) is the corresponding coefficient. Thus λ is equivalent to the eigenvalues

of the 4 by 4 matrix of Eq. (7.47). This means we should solve the eigenvalue problem of 4 by 4

matrix or the characteristic equation of degree 4. Fig. 7.2 shows the distribution of eigenvalues

solved numerically for several ω.

7.3.2 Red-black Gauss-Seidel smoother

For RB-GS smoother, we have the following theorem:

Theorem 7.3.2 The eigenvalues of the two-grid preconditioned matrix with the RB-GS smoother

are unity and roots of the following equation:

λ2+
(
−2+A2+B2−A2(1−A2)(1+A2−B2)2

4(1−A2−B2)
−B2(1−B2)(1−A2+B2)2

4(1−A2−B2)

)
λ

+(1−A2)(1−B2)
{

1+
A2(1+A2−B2)2

4(1−A2−B2)
+

B2(1−A2+B2)2

4(1−A2−B2)

}
= 0, (7.48)

where A = cos αi+cos βi

2 , B = − cos αi+cos βi

2 and i, j = 0, · · · , N
2 − 1.

Proof. Let P−1Q be the iteration matrix of the RB-GS smoother. We have

P−1Qνij =
cosαi+cosβj

2
νij+νN−i−1,N−j−1

2
+

(
cosαi+ cosβj

2

)2
νij−νN−i−1,N−j−1

2
(7.49)
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Figure 7.2: The distribution of eigenvalues of the two-grid preconditioned matrix with the damped

Jacobi smoother and standard coarsening

Similarly,

P−1
1 rQ2νij =

A(1 + A2 − B2)
2

(
2 +

cos 2αi + cos 2βj

2

)
ν

(1)
ij

−A(1 + A2 − B2)
2

cos 2αi + cos 2βj

2
ν

(1)
N
2 −i−1, N

2 −j−1
, (7.50)

where A = cos αi+cos βi

2 , B = − cos αi+cos βi

2 . Thus,

Bνij =
{

1 − A2(1 + A)
2

+
A2(1 − A2)(1 + A)(1 + A2 − B2)2

8(1 − A2 − B2)

}
νij

−AB(1 − A2)(1 + B)(1 + A2 − B2)(1 − A2 + B2)
8(1 − A2 − B2)

νN−i−1,j

+
AB(1 − A2)(1 − B)(1 + A2 − B2)(1 − A2 + B2)

8(1 − A2 − B2)
νi,N−j−1

+
{

A2(1 − A)
2

− A2(1 − A2)(1 − A)(1 + A2 − B2)2

8(1 − A2 − B2)

}
νN−i−1,N−j−1 (7.51)

Here, again, we should solve 4 by 4 eigenvalue problem. Let C be the coefficient matrix similar to

Eq. (7.47). Fortunately, two eigenvalues of the matrix C are unity, since rank(C − I4) = 2 where

I4 is the identity matrix. Thus eigenvalues of C are roots of the following equation:

(λ−1)2
{

λ2+
(
−2+A2+B2−A2(1−A2)(1+A2−B2)2

4(1−A2−B2)
−B2(1−B2)(1−A2+B2)2

4(1−A2−B2)

)
λ
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Figure 7.3: The distribution of eigenvalues of the two-grid preconditioned matrix with the Red-

Black Gauss-Seidel smoother

+(1−A2)(1−B2)
{

1+
A2(1+A2−B2)2

4(1−A2−B2)
+

B2(1−A2+B2)2

4(1−A2−B2)

}}
= 0,

where i, j = 0, · · · , N
2 − 1. Therefore the theorem holds.

Fig. 7.3 shows the eigenvalues of the two-grid preconditioned matrix with RB-GS smoother for

N = 40.

Lemma 7.3.3 Let λ be eigenvalues of the two-grid preconditioned matrix with RB-GS smoother,

3
4
≤ λ ≤ 1. (7.52)

Proof. Since B is s.p.d., λ is real and positive. Let the left-hand term of Eq. (7.48) be f(λ).

From Fig. 7.4, the axis of the quadratic function f(λ) is between 0.85 and 1. From Fig. 7.5,

f(1) ≥ 0 and f(3
4 ) ≥ 0. Thus 3

4 ≤ λ ≤ 1.

As described before, the Poisson equation with the Dirichlet boundary condition is similarly

considered.

Theorem 7.3.4 For 2-dimensional Poisson equation with the Dirichlet boundary condition, eigen-

values of the two-grid preconditioned matrix with RB-GS smoother are unity, 1− cos2 αi

4 , 1− cos2 βi

4

and roots of Eq. (7.48), where αi = (i + 1) π
N and βi = (i + 1) π

N (i, j = 0, 1, . . . , N
2 − 2).
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Proof. Let

νij = (sin αi sin βj sin 2αi sin βj · · · sin(N − 1)αi sin(N − 1)βj)T , (7.53)

it is shown by the similar way of Theorem 7.3.2 that the eigenvalues are roots of Eq. (7.48) for

i, j = 0, 1, . . . , N
2 −2 replacing N−i−1 to N−i−2 and so on. When i = N

2 −1, αi = αN−i−2 = π
2 ,

so that cosαi = cosαN−i−2 = 0. Thus

Bνij =
(

1 − A2(1 + A)
2

)
νij +

A2(1 − A)
2

νi,N−j−2, (7.54)

where A = cos βj

2 (j = 0, 1, . . . , N
2 − 2). Therefore, eigenvalues of B whose corresponding

eigenvectors span a subspace Span{νij , νi,N−j−2}, are unity and 1−A2. Similarly, when j = N
2 −1,

the eigenvalues are unity and 1−A2, where A = cos αi

2 . Finally, when i = j = N
2 −1, the eigenvalue

is unity.

For the Dirichlet boundary problem, Lemma 7.3.3 also holds, hence the condition number of

the preconditioned matrix is unchanged and 4
3 .

7.4 Convergence Rate of the MGCG Method

As described in Section 4.2, the convergence factor of k CG iterations for Llx = b is estimated by

2ck

1 + c2k
, (7.55)
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Table 7.2: Asymptotic rate of convergence for 2-dimensional Poisson equation

Jacobi RB-GS

MG 0.444 0.602

MGCG 0.954 1.14

where c =
√

σ−1√
σ+1

, σ = ‖Ll‖ ‖L−1
l ‖, when Ll does not have isolated eigenvalues. Because the

average convergence factor c
(

2
1+c2k

) 1
k approaches to c as k → ∞, asymptotic rate of convergence

is estimated by (− log10 c).

As described before, the MGCG method and the MG method with the RB-GS smoother con-

verge at one iteration for one-dimensional Poisson equation. For two-dimensional Poisson equation,

the condition number of the two-grid preconditioned matrix with damped Jacobi smoother and

RB-GS smoother are 25
16 and 4

3 respectively. The rate of convergence is independent of the num-

ber of unknowns, which is shown by Table. 7.2. In two dimensions, the rate of convergence of

the MGCG method is 1.14, hence the convergence factor is less than 10−16 after 14 iterations.

While this estimate is based on the condition number, it is shown that it is quite a practical esti-

mate by numerical experiments in Appendix A. This estimate is also enough to show the MGCG

method is superior to the MG method since the MGCG method needs only one more matrix-vector

multiplication than the MG method in one iteration.
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7.5 Multigrid Preconditioner

The multigrid preconditioned matrix is obtained by the two-grid preconditioned matrix replacing

the coarse grid matrix with the multigrid preconditioning matrix on the coarse grid. The multigrid

preconditioning matrix with l grid level is recursively defined by

M1 = L−1
1

Mi = (P−T QT )m
m−1∑
i=0

(P−1Q)iP−1

+
m−1∑
i=0

(P−T QT )iP−T + (P−T QT )mpMi−1r(QP−1)m (2 ≤ i ≤ l) (7.56)

The multigrid preconditioned matrix is defined by

Bl = MlLl. (7.57)

Eigenvalues of Bl are expected to be analytically obtained by the similar way in the case of the

two-grid preconditioned matrix, however it is quite complicated. Thus numerical solution for

eigenvalues is used in the following analysis.

7.5.1 MG preconditioned matrix

In general, the multigrid preconditioned matrix Bl of Eq. (7.57) is nonsymmetric, hence using

the Cholesky decomposition of the multigrid preconditioning matrix Ml = UT U , consider an

eigenvalue problem of the symmetric matrix ULlU
T which is similar to MlLl and is the multigrid

preconditioned matrix for the MGCG method. ULlU
T is computed explicitly by an original matrix

class library in C++.

In one dimension, MG preconditioner is proved as an exact solver for the Poisson equation,

so it is not necessary to analyze numerically any more. In two dimensions, for the restriction of

memory size, the computational domain is discretized into 32 × 32 meshes. Here we consider the

eigenvalue problem of a 961 × 961 symmetric matrix, which occupies about 7 MB.

7.5.2 Eigenvalue analysis of MG preconditioned matrix by DCA

Fig. 7.6 shows the eigenvalue distribution of the MG preconditioned matrices whose coarse grid

matrices are approximated by DCA. The top curve represents eigenvalues of the MG(2) precon-

ditioned, that is, the two-grid preconditioned, matrix and the bottom one is that of the MG(5)

preconditioned matrix which utilizes 5 grid levels. Since the computational domain is discretized

into 32×32 meshes, the number of meshes on the coarsest grid of MG(5) are 2×2. The MGCG(2)
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Figure 7.6: Eigenvalue distributions of multigrid preconditioned matrices by DCA with RB-GS

smoother

curve seems to be one line but, in fact, two lines are overlapped: one is analytically calculated by

Theorem 7.3.4 described in Subsection 7.3.2 and the other is obtained by the numerical computa-

tion of eigenvalues of a dense MG preconditioned matrix described in Subsection 7.5.1. Maximum

error between these eigenvalues is less than 10−6, which indicates the computation is quite reli-

able. The condition number of the MG(5) preconditioned matrix is slightly worse than that of the

MG(2) preconditioned matrix, however, it is expected that the rate of convergence of MGCG(5)

method is quite good and independent of the mesh size.

7.5.3 Eigenvalue analysis of MG preconditioned matrix by GCA

Eigenvalues and eigenvectors of the coarse grid matrix by DCA can be analyzed similarly as the fine

grid matrix, while that of the coarse grid matrix by GCA cannot be. However, GCA automatically

generates the coarse grid matrix from the fine grid matrix, so that it is indispensable for an algebraic

MG method or a black box MG method that solves a system of linear equations using only given

matrix not partial differential equation.

As described in Subsection 5.1.3, GCA generates the coarse grid matrix with nine-point pattern

from the fine grid with five-point pattern in two dimensions. Thus, the smoother needs four-color
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Figure 7.7: Eigenvalue distributions of multigrid preconditioned matrices by DCA with four-color

GS smoother

ordering for high parallelism.

Fig. 7.7 and Fig. 7.8 show eigenvalues of the MG preconditioned matrices with four-color GS (fc-

GS) smoother by DCA and GCA, respectively. In both figures, the top line represents eigenvalues

of the MG(2) preconditioned matrix. By DCA, the condition number of MG(5) preconditioned

matrix is slightly worse than that of MG(2), however, it is better than that of MG(5) preconditioned

matrix with RB-GS. By GCA, the distribution of eigenvalues of MG(2) and MG(5) preconditioned

matrix is changed, however, the condition numbers of these two matrices are nearly equal. Hence,

upper bound of the rate of convergence of MGCG(5) method is nearly same as that of MGCG(2)

method.

7.6 Related Works

Rate of Convergence of the two-grid method for two-dimensional model problem, which is Poisson

equation in the unit square with the Dirichlet boundary condition, has been studied in early 1980s.

Stüben and Trottenberg [51] have obtained the rate of convergence of the two-grid method with

damped Jacobi smoother or RB-GS for the two-dimensional model problem. Using local Fourier

modes, eigenvalues of the two-grid iteration matrix with the RB-GS smoother are obtained as roots
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of quadratic equations similarly to my thesis, because half of eigenvalues are zero. They uses RB-

GS smoother for both pre- and post-smoothings, and showed the spectrum radius of the two-grid

iteration matrix is 1/4 with one RB-GS iteration for either pre-smoothing or post-smoothing and
1
2ν

(
ν

ν+1

)ν+1 with ν(= ν1 + ν2) RB-GS iterations, however, they assumed νi is an eigenvector of

L, which is not satisfied in the model problem of my thesis with the Neumann-Dirichlet boundary

condition. Ries et al. [45] analyzed the rate of convergence of MGR method that uses a rotated grid

of mesh size
√

2h between h and 2h. They showed the spectral radius of the MGR-CH[ν] iteration

matrix, which uses ν RB-GS pre-smoothing iterations and operator-dependent prolongation, is
1
2

(2ν)2ν

(2ν+1)2ν+1 for the two-dimensional model problem.

Fourier analysis is quite a useful tool for obtaining spectral radii of MG iteration matrices, how-

ever it is too complicated for MG method with three and more grids or three and more dimensional

problems, thus the smoothing factor is analyzed in order to estimate the practical convergence fac-

tor. Brief explanation of the smoothing factor is described in Subsection 5.4.2. Wesseling [59]

summarized smoothing factors of damped Jacobi, line Jacobi, point GS, line GS, ILU, RB-GS

and zebra GS for rotated anisotropic diffusion equation and convection-diffusion equation. Yavneh

[61] showed the smoothing factor of the RB-GS smoother for a class of elliptic operators has no
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dependency on the dimension.
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Chapter 8

MGCG METHOD FOR POISSON EQUATION

WITH SEVERE COEFFICIENT JUMPS

In the previous chapter, the rate of convergence of the MGCG method is investigated for Poisson

equation with constant diffusion coefficient. For strongly discontinuous coefficient, no theoretical

result except a special case has been obtained. First, the special case is considered, and then

complex case is analyzed numerically by eigenvalue analysis.

8.1 Special Problem

This section investigates a special problem whose MG preconditioned matrix has the same spectrum

as that of the Poisson equation with constant diffusion coefficient.

8.1.1 One-dimensional problem

Consider one-dimensional Poisson equation

− d

dx
k(x)

du(x)
dx

= f(x) with u(0) = u(1) = 0, (8.1)

where

k(x) =

{
k1, if x ∈ (0, 1

2 )

k2, otherwise
(8.2)
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Discretizing the range (0, 1) into N sections, a tridiagonal matrix appears, for example, the follow-

ing matrix appears for N = 6.

1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k1 −k1

−k1 2k1 −k1

−k1 k1 + k2 −k2

−k2 2k2 −k2

−k2 2k2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8.3)

where h = 1
N . Since this matrix is splitted by

1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k1 −k1

−k1 2k1 −k1

−k1 k1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k2 −k2

−k2 2k2 −k2

−k2 2k2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8.4)

eigenvalues of the Jacobi iteration matrix P−1Q of the matrix are

cosαi, (8.5)

where αi = (i + 1) π
N (i = 0, 2, 4), considering additional Neumann condition d

dxu(1
2 ) = 0. There-

fore three in five eigenvalues of the Jacobi iteration matrix are obtained. The rest of eigenvalues

are obtained by the following analysis. Let

νi = (sin αi sin 2αi · · · sin(N − 1)αi)T , (8.6)

where αi = (i + 1) π
N , for i = 1, 3,

P−1Qνi = cosαiνi +
k1 − k2

k1 + k2
sinαie3, (8.7)

where e3 = (0 0 1 0 0)T . Because of orthogonality of νi,

e3 =
4∑

i=0

eT
3 νi νi = ν0 − ν2 + ν4. (8.8)

Since ν0, ν2 and ν4 are eigenvectors of P−1Q, the rest of eigenvalues are

cosαi, (8.9)

where αi = (i + 1) π
N (i = 1, 3).

This discussion is applicable for general even N , and eigenvalues of the Jacobi iteration matrix

are

cosαi, (8.10)
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where αi = (i + 1) π
N , which are equivalent to eigenvalues of the Jacobi iteration matrix for the

Poisson equation with constant diffusion coefficient. Hence, the Jacobi method has the same rate

of convergence.

For this special problem, we can obtain the spectrum of the two-grid preconditioned matrix.

Because νi (i = 0, 2, . . . , N − 2) are eigenvectors of the Jacobi iteration matrix, after the same

discussion of the proof of Theorem 7.2.4, eigenvalues of the two-grid preconditioned matrix are

unity and

1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m − 1 + cosαi

2
(1 − ω − ω cosαi)2m.

From Eq. (8.7) and (8.8), for i = 1, 3, . . . , N − 3,

Bνi =
(

1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m

)
νi

−1 − cosαi

2
(1 − ω + ω cosαi)m(1 − ω − ω cosαi)mνN−i−2

+
∑

0≤2j<N−1

c2jν2j . (8.11)

Since there are N
2 eigenvectors of B in Span{ν0, ν2, . . . , νN−2}, let two eigenvectors of B in

Span{νi, νN−i−2} be k1νi + k2νN−i−2, then the corresponding eigenvalues are unity and

1 − 1 − cosαi

2
(1 − ω + ω cosαi)2m − 1 + cosαi

2
(1 − ω − ω cosαi)2m.

Therefore, the two-grid preconditioned matrix for the special problem has same spectrum of the

two-grid preconditioned matrix for Eq. (7.3).

For RB-GS smoother, it is shown that eigenvalues of the two-grid preconditioned matrix are

unity by the similar discussion. Hence, the following theorem holds.

Theorem 8.1.1 For the special problem described in this section, the MG and MGCG method with

the RB-GS smoother converges in one iteration for any x0, and the MGCG method with damped

Jacobi smoother converges in two iterations for any x0.

Proof. Because the MG preconditioned matrix has the same spectrum of the MG preconditioned

matrix for the Poisson equation with uniform diffusion constant, the proof is complete.

Note that this analysis holds for any k1 and k2 if ignoring rounding-off error.

8.1.2 Two-dimensional problem

Consider two-dimensional Poisson equation

−∇ (k∇u) = f in D = (0, 1) × (0, 1) (8.12)
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Figure 8.1: Diffusion constant of special problems

with k a diffusion coefficient. From the previous section, spectrum of the Jacobi iteration matrix

is not changed even if diffusion coefficient of right half of the domain is different from that of left

half. If let

νij = (sin αi sin βj sin 2αi sin βj · · · sin(N − 1)αi sin(N − 1)βj)T , (8.13)

where αi = (i + 1) π
N and βi = (i + 1) π

N (i, j = 0, 1, . . . , N − 2), then it is shown the spectrum of

the MG preconditioned matrix is equivalent to that in the Poisson problem with uniform diffusion

coefficient even if diffusion coefficient of the two-dimensional Poisson equation is given by Fig. 8.1.

Therefore the MGCG method has the same rate of convergence for the Poisson equation with

uniform diffusion coefficient.

8.2 More Complex Problem

The special problem described in the previous section can be investigated analytically, however,

for more complex diffusion constant, it is quite costly to solve eigenvalues of the iteration matrix

by the similar way. Consider the following, not too complex, model problem

−∇ (k∇u) = f in D = (0, 1) × (0, 1) (8.14)

with k a diffusion coefficient depicted by Figure 8.2. The boundary condition is given by

u = 0 on ∂D, (8.15)

where ∂D denotes the boundary of the domain D.
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8.2.1 Eigenvalue Distribution

The multigrid preconditioned matrix is computed by the same way described in Subsection 7.5.1.

The eigenvalue distributions preconditioned by MG(2) and MG(5) are shown by Fig. 8.3. The

MG(2) preconditioned matrix has nearly same distribution of eigenvalues as that of MG(2) pre-

conditioned matrix for uniform diffusion constant problem. The MG(5) preconditioned matrix

has three isolated eigenvalues except between 3
4 and 1. The smallest eigenvalue is near zero, thus

it degenerates the rate of convergence of the MG(5) method. However, MGCG(5) is expected to

converge at three more iterations than that of MGCG(2). In fact, because the minimum eigenvalue

is too close to zero, a few more iterations are necessary to converge [29, 5].

From these numerical results, the spectrum of the MG preconditioned matrix is nearly same

as that for uniform diffusion constant problem, unless the problem cannot be discretized or ap-

proximated correctly on the coarsest grid. Otherwise, the MG preconditioned matrix has a few

isolated eigenvalues like the MG(5) preconditioned matrix of the model problem, and the number

of isolated eigenvalues is expected to depend on the mese size of the coarsest grid that can approx-

imate correctly the problem. This proposition does not have a proof, however, it is supported by

several numerical experiments and the special case on whose coarsest grid the problem is correctly

approximated.
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Figure 8.3: Eigenvalue distributions of two-grid preconditioned matrix and multigrid precondi-

tioned matrix. The multigrid preconditioned matrix has three isolated eigenvalues.
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Chapter 9

PARALLELIZATION OF THE MGCG

METHOD

This chapter studies a parallelization of the MGCG method and its efficient implementation on

distributed memory machines.

9.1 Parallelization of the MGCG Method

The MGCG method combines the CG method and the MG method, so it is necessary that both

methods are efficiently parallelized and implemented for achieving high performance on parallel

machines. The CG method consists of matrix-vector multiply, inner product and vector addition

with multiplying by a scalar called daxpy in BLAS [36, 13]. The MG method consists of smoothing

method, matrix-vector multiply, restriction and prolongation. Vector addition has O(n) data-

parallelism for n dimensional vector, and inner product has O(n/ log n) data-parallelism, thus

parallel steps are O(n/p) and O(n/p + log p) respectively with p processors.

Restriction and prolongation have O(n) data-parallelism similar to vector addition, and O(n/p)

parallel steps, however they need nearest-neighbor communication in computational domain,

which interchanges boundary data between adjacent processors. Matrix-vector multiplication and

smoothing method (damped Jacobi method, RB-GS, four-color GS and so on) have also O(n)

data-parallelism, and O(n/p) parallel steps with nearest-neighbor communication.

9.1.1 Data distribution

Since required communication patterns are reduction and nearest-neighbor communication, a block

(or tiling) data distribution is desirable to reduce communication. For simplicity, we only discuss

the two-dimensional case, however, a similar argument is possible in three or more dimensions.
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With p processors, consider the following (A) and (B) distributions:

(A) Vector (or computational domain) is distributed logically to p×1. This distribution is specified

by the following directive in High Performance Fortran (HPF) [27].

!HPF$ DISTRIBUTE (BLOCK, *)

(B) Vector is distributed logically to
√

p ×√
p. In HPF,

!HPF$ DISTRIBUTE (BLOCK, BLOCK)

In both distributions, the computational complexity is O(n/p) with n the problem size, since it is

proportional to the number of grid points in each processor. For nearest-neighbor communication,

since the number of communication data is proportional to the number of grid points on the

boundary between adjacent processors, that of the method (A) is O(
√

n) and that of the method

(B) is O(
√

n/
√

p), while the number of communications of (A) is smaller than that of (B) since

(A) only communicates both sides of the processor. Thus for fairly small p, (A) is advantageous,

while (B) is preferable in the other case.

Ratio of communication to the computation of (A) and (B) are O( p√
n
) and O(

√
p√
n
) respectively,

thus there is less communication overhead for n large.

9.1.2 Reducing the communication overhead

The communication overhead consists of network latency and message-handling overhead including

the setup time and copy overhead between communication buffers. The message-handling overhead

can not be avoided, however the network latency can be hidden by overlapping communication

with computation. Figure 9.1 is an example of a fragment of block tri-diagonal matrix-vector

multiplication. The computation can be separated into two parts: local computation that com-

putes inner points in the subdomain and non-local computation that computes boundary points,

since the communication pattern is described only by constant distance vector [2, 34]. The local

computation does not need data owned by other processors, so can be performed locally. The

non-local computation needs remote data, and is therefore not completed until receiving them. If

remote data reach this processor during the local computation, the network latency can be hid-

den. The nodal code of Figure 9.1 in two processors is illustrated by Figure 9.2. For example, if

b[i][j], a[i][j] and dd[i][j][0..4] are allocated to the same processor, a block tri-diagonal

matrix-vector multiplication needs the data a[i - 1][j], a[i][j - 1], a[i][j + 1] and a[i

+ 1][j]. In this case, the number of the inner points is O(n) and the number of the boundary
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for (i = 1; i < N - 1; i++)

for (j = 1; j < M - 1; j++)

b[i][j] = dd[i][j][0] * a[i - 1][j] +

dd[i][j][1] * a[i][j - 1] +

dd[i][j][2] * a[i][j] +

dd[i][j][3] * a[i][j + 1] +

dd[i][j][4] * a[i + 1][j];

Figure 9.1: Fragment of pentadiagonal matrix-vector multiplication

 compute inner points

 send data

 receive data

 compute edge points

 Node ID 0

 network latency  compute inner points

 send data

 receive data

 compute edge points

 Node ID 1

Figure 9.2: Nodal code for overlapping communication with computation

points is O(
√

n), where the allocated subdomain is discretized into n meshes. Thus the network

latency is better hidden for n large. This technique is a popular and efficient optimizing technique

for data-parallel compilers (for example [22, 34]).

9.1.3 Difficulties of parallelization

As described in Subsection 9.1.2, the network latency is hidden for n large. In this case, the ratio

of communication to the total time is low, since the message-handling overhead is negligible to

the total time. However, for n small, the network latency appears, i. e. the execution should wait

to receive messages from other processors, and the ratio of communication becomes high, so the

communication overhead is critical. Moreover, on quite coarse grid, the number of data-parallelism

is smaller than the number of processors, so there are idle processors, while the computation on

these coarse grids is necessary to gain the mesh-independent convergence property. Thus, in order

that the parallel MGCG method achieves high performance, the following choices are promising.

1. The MG preconditioner exploits moderately coarse grid on which parallel efficiency is not

lost. In this case, because it takes heavy cost to solve linear equations accurately on the

coarsest grid, some approximate solution should be used.
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Figure 9.3: Eigenvalue distribution of two-grid preconditioned matrix with 1 iteration of RB-SGS

on the coarsest grid

2. At the sacrifice of parallel efficiency, the MG preconditioner exploits very coarse grid.

In the first case, it is necessary to investigate the rate of convergence of the MGCG method with

approximate solution on the coarsest grid because the MGCG method may need a lot of iterations

until convergence. In the second case, though there is little parallelism on very coarse grid, the

MGCG method converges quite fast independently of the mesh size as described in Chapters 7 and

8.

Fig. 9.3 shows the eigenvalue distribution of the MG(2) preconditioned matrix with one iteration

of Red-Black symmetric GS (RB-SGS) as the approximate solution on the coarsest grid. Comparing

with Fig. 7.6, there are 28 scattered eigenvalues, thus it is strongly desirable to solve more accurately

for the two-grid preconditioner.

9.2 Evaluation of Trade-off

As described in the previous section, we have two promising choices that is a trade-off depending

on the target parallel machines. This section evaluates the trade-off on Fujitsu highly parallel

multicomputer AP1000 [28] and AP1000+ (AP+) [47]. The AP1000 is a distributed memory

parallel machine with three kinds of networks: a two-dimensional torus network for communicating
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among node processors which is called T-net, a ring network for mainly loading programs from

a host to node processors called B-net and a tree network for fast synchronization called S-net.

Each node has a 25MHz SPARC chip, a FPU whose peak speed is 5.56 MFlops in IEEE double

precision, a 128 KB direct cache memory and a 64 MB local memory. Each port of the T-net

has 25MB/s data transfer rate. AP+ is a successor of the AP1000 and its node processor is a

50MHz SuperSPARC chip. The AP+ uses the same networks as the AP1000, however it has a

special hardware for useful active messages; PUT/GET active messages [57], which support direct

remote-memory access.

To evaluate the trade-off, I have implemented a parallel MGCG method in C and message-

passing library produced by Fujitsu. This program implements several optimizations: overlapping

computation and communication as described in Subsection 9.1.2 and receiving messages out of

order, for example, the matrix-vector multiply should receive messages from four processors in

two-dimensional domain, however the order of arrival is non-determined, thus the message can

be received in the arrival order not in the predetermined order. On quite coarse grid, the data-

parallelism is less than the number of processors. I select a simple solution; all data is gathered

into one processor, then the rest of computation is executed by the one processor, and then the

computed data is spread to all processors. This strategy seems to be inefficient, however, it can

be implemented simply and does not communicate any data on quite coarse grid, moreover, since

there are small computation, computational time on quite coarse grid is expected to be negligible

to the total computational time. The MGCG program is also tuned for fast execution; replacing

floating-point division by multiplication of the inverse, eliminating unnecessary load/store and

efficient cache utilization. Floating-point division is quite costly, so it should be avoided possibly.

To investigate the trade-off on AP1000 and AP+, consider the two-dimensional Poisson equa-

tion with Dirichlet boundary condition. Source term is randomly chosen. Stopping criteria is

‖rm‖2

‖r0‖2
< 10−16, (9.1)

where rm is the residual after m iterations. The following experiments are performed on 64

processors of AP1000 and 256 processors of AP+. The computational domain is discretized into

n × n meshes, n = 256 for AP1000 and n = 1024 for AP+. Parallel MGCG method uses highly

parallel RB-GS smoother.

9.2.1 Optimal grid level

First, we investigate optimal grid level of parallel V-cycle MGCG method with approximate solu-

tion on the coarsest grid. Table 9.1 shows the results on AP1000 and AP+ by the MGCG method
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AP1000 (64 procs.; n = 256)

grids #iter. time (sec.) MFlops

1 569 10.599 120.5

2 233 7.658 114.0

3 113 4.414 105.5

4 57 2.414 99.63

5 30 1.342 95.08

6 19 0.891 91.11

7* 16 0.778 88.03

8* 15 0.735 87.42

AP+ (256 procs.; n = 1024)

grids #iter. time (sec.) MFlops

1 2260 64.628 1262.8

2 924 44.670 1247.5

3 445 23.856 1237.8

4 222 12.297 1225.5

5 112 6.316 1211.3

6 57 3.268 1194.8

7 30 1.747 1179.6

8* 19 1.128 1161.1

9* 16 0.953 1159.0

10* 15 0.894 1159.3

Table 9.1: The V-cycle MGCG method with various # of grid levels

with one RB-SGS iteration as the approximate solution on the coarsest grid, whose pre/post-

smoother is one RB/BR-GS iteration. At the grid level with asterisk the computation is executed

by one processor on very coarse grids.

As already shown by the eigenvalue analysis of Fig. 9.3, when the approximate solution on the

coarsest grid is poor, many iterations are necessary for the MGCG method with small grid levels to

converge. From this result, the MGCG method with many grid levels converges fast, while MFlops

decreases by communication overhead and load imbalance. On AP1000, MFlops deteriorates 26%

comparing 8 grid levels with one grid level, however the MGCG method with 8 grid levels whose

coarsest grid is 2×2 converges fastest. On AP+, deterioration of MFlops is only 8%, so the MGCG

method with 10 grid levels converges quite fast.

9.2.2 Optimal number of smoothing iterations

Next, we investigate the optimal number of iterations of the smoothing method. The results on

AP1000 and AP+ are shown by Table 9.2. Greater number of smoothing iterations decreases the

number of iterations until convergence, while MFlops decreases. That is because ratio of the MG

preconditioner to the total computation becomes high.

Let ρ be the convergence factor of the MG with one smoothing iteration. When MG has

two smoothing iterations, its convergence factor is expected to be ρ2. Thus MG is expected to

converge at half number of iterations. However, to use MG as a preconditioner of the CG method,

the convergence factor of the MGCG method with one smoothing iteration and two smoothing
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AP1000 (64 procs.; n = 256)

grids 6 7* 8*

#sm. #it. time MFlops #it. time MFlops #it. time MFlops

1 19 0.891 91.11 16 0.778 88.03 15 0.735 87.42

2 15 0.983 89.02 12 0.821 85.50 12 0.827 84.95

3 13 1.093 87.96 11 0.967 84.29 10 0.886 83.68

4 12 1.231 87.31 10 1.074 83.55 10 1.082 82.90

AP+ (256 procs.; n = 1024)

grids 8* 9* 10*

#sm. #it. time MFlops #it. time MFlops #it. time MFlops

1 19 1.128 1161.1 16 0.953 1159.0 15 0.894 1159.3

2 15 1.293 1092.6 12 1.038 1090.8 12 1.039 1089.9

3 14 1.581 1057.1 11 1.246 1055.3 10 1.135 1054.3

4 12 1.676 1034.9 10 1.402 1033.0 10 1.403 1031.7

Table 9.2: The V-cycle MGCG method with various # of smoothing iterations

iterations are given by √
1

1−ρ − 1√
1

1−ρ + 1
and

√
1

1−ρ2 − 1√
1

1−ρ2 + 1
, (9.2)

respectively. However, the following inequality holds for −1 < ρ < 1:

(√
1

1−ρ − 1√
1

1−ρ + 1

)2

≤
√

1
1−ρ2 − 1√

1
1−ρ2 + 1

, (9.3)

equality holds if and only if ρ = 0. Therefore, the MGCG method does not converge at half number

of iterations. In consequence, the MGCG method with one smoothing iteration converges faster

than the MGCG method with two or more smoothing iterations.

9.2.3 Optimal MG schedule

This subsection investigates the W-cycle MGCG method that has much more coarse-grid correc-

tions. From Table 9.3, for small grid levels, the W-cycle MGCG method converges faster than the

V-cycle MGCG method with the same grid levels, however, for greater grid levels, the W-cycle

MGCG method converges slower. That is because the W-cycle exploits coarser grids more fre-

quently than finer grids, that is, the W-cycle exploits the coarsest grid most frequently in all the
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AP1000 (64 procs.; n = 256)

grids #iter. time (sec.) MFlops

1 569 10.599 120.5

2 181 6.495 110.5

3 64 3.318 93.04

4 24 1.660 76.03

5 15 1.420 57.84

6 15 2.094 39.89

7* 15 2.784 30.20

8* 15 2.879 29.26

AP+ (256 procs.; n = 1024)

grids #iter. time (sec.) MFlops

1 2260 64.628 1262.8

2 716 37.438 1220.9

3 251 16.225 1201.8

4 90 6.612 1152.2

5 32 2.702 1045.6

6 16 1.644 879.2

7 15 2.054 665.9

8* 15 3.144 436.7

9* 15 3.372 407.8

10* 15 3.439 400.1

Table 9.3: The W-cycle MGCG method with various # of grid levels

AP1000 (64 procs.; n = 256)

grids #it. (Ω1) #iter. time MFlops

5 13 16 0.833 82.55

6 8 15 0.764 84.11

7* 2 15 0.731 87.94

8* 1 15 0.735 87.42

AP+ (256 procs.; n = 1024)

grids #it. (Ω1) #iter. time MFlops

7 13 16 0.977 1130.9

8* 9 15 0.896 1156.8

9* 3 15 0.8945 1158.9

10* 1 15 0.8942 1159.5

Table 9.4: The fastest MGCG method in each grid level

other (fine) grids, which has critical communication overhead and load imbalance.

9.2.4 More evaluation of trade-off

From the previous evaluation, it is shown that the V-cycle MGCG method with more accurate

approximate solution, i. e. more iterations of a symmetric iterative method, on the coarsest grid

is efficient. Table 9.4 shows calculation time and MFlops of the fastest MGCG method in each

grid level on AP1000 and AP+. In the same grid level, the MGCG method converges fast by

solving more accurately on the coarsest grid, however MFlops degenerates. That is because the

computation on the coarsest grid has poor performance.

Consequently, when n = 1024, the MGCG method of ten grid levels is fastest on AP+, and

when n = 256, that of seven grid levels with two RB-SGS iterations on the coarsest grid is fastest

on AP1000. Because the MGCG method is an iterative method, the fastest MG schedule is slightly

changed depending on stopping criteria, however, it is generally V-cycle of d grid levels for n = 2d.
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AP1000 (n = 256)

#procs. 1 4 16 64

#iter. 15

time (s.) 51.5 14.6 3.27 0.73

MFlops 1.25 4.42 19.6 87.9

speedup - 3.54 15.7 70.4

effic. - .88 .98 1.10

AP+ (n = 256)

#procs. 1 4 16 64 256

#iter. 15

time (s.) 11.7 3.07 0.88 0.27 0.12

MFlops 5.48 20.9 73.4 235.8 547.7

speedup - 3.83 13.4 43.1 100.0

effic. - .96 .84 .67 .39

Table 9.5: Performance of the parallel MGCG method in fixing n

9.3 Performance Evaluation

Performance of the parallel MGCG method is measured by speedup based on calculation time and

million floating-point operations per second (MFlops). With p processors, time speedup Stime
p and

MFlops speedup SMFlops
p are calculated by

Stime
p =

T1

Tp
and SMFlops

p =
Mp

M1
,

respectively, where Ti is the calculation time and Mi is MFlops with i processors. Parallel efficiency

is defined by

Ep =
Sp

p

in calculation time or MFlops.

The result of MGCG(8) for n = 256 is presented by Table 9.5 on AP1000 and AP+. On the

AP1000, superlinear speedup is observed in 64 processors. That is because size of cache memory

is 64 times larger than that in one processor. However, on the AP+, only 40% parallel efficiency

is achieved in 256 processors. Since AP+ has 4 times faster processor than that of AP1000,

communication overhead is critical for n small. For n large, the same superlinear speedup is also

expected to be observed on AP+, however, because each node of AP+ has a very small 36K cache

memory, it is not unfortunately observed.

When fixing n, the cache memory is larger as the number of processors is larger, thus superlinear

speedup can be observed if the communication overhead is surpassed. However, in this case, as

the number of processors increases, several factors relating the performance is changed: the data

size allocated in each processor is smaller, and the data size to be communicated is also smaller.

Thus the performance analysis is complicated. All we can know is how fast a problem is solved!

To make the performance analysis easier, fix n2/p, that is, memory size in each processor. In

this case, since the problem size increases proportionally to the number of processors, the speedup
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AP1000 (n2/p = 642)

#procs. 1 4 16 64

n 64 128 256 512

#iter. 15 15 15 15

time (s.) 2.68 3.08 3.28 3.30

MFlops 1.45 5.17 19.6 78.4

speedup - 3.56 13.5 54.1

effic. - .89 .85 .85

AP+ (n2/p = 1282)

#procs. 1 4 16 64 256

n 128 256 512 1024 2048

#iter. 15 15 15 15 15

time (s.) 2.83 3.07 3.21 3.22 3.23

MFlops 5.61 20.9 80.5 321.8 1284.9

speedup - 3.74 14.4 57.4 229.2

effic. - .93 .90 .90 .90

Table 9.6: Performance of the parallel MGCG method in fixing n2 in each processor

size #iter. time (sec.) MFlops SCG/MGCG

5122 2271 8.118 1680.3 28.6 times

10242 4521 63.85 1704.6 71.4 times

Table 9.7: Parallel performance of the SCG method

and the parallel efficiency are measured in MFlops. The results on AP1000 and AP+ are shown by

Table 9.6. Though the cache effect is not expected, the parallel efficiency is achieved 90% and 85%

on AP+ and AP1000 respectively. Though AP+ has the same network as the AP1000, AP+ has

quite small message handling overhead [47], higher parallel efficiency is achieved. For p = 4, the

parallel efficiency is slightly better, because all processors has the boundary of the computational

domain where the communication is not necessary.

9.4 Comparison with the SCG Method

The SCG method is a CG method with diagonal scaling preconditioner that needs no communi-

cation, thus this is 100% vectorizable and parallelizable and is expected to be complete scalable.

It has been reported that total convergence time on vector machines is shorter than that of the

(M)ICCG method, though the SCG method needs many more iterations [23]. That is because the

(M)ICCG method requires the solution of triangular systems, which is quite expensive on vector

machines. Table 9.7 is the result comparing with the MGCG method on AP+. The SCG method

has high parallelism, and it gains high parallel efficiency, however, its rate of convergence is too

cheap and depends on the mesh size. For n = 512, the MGCG method converges 29 times faster

than the SCG method, and for n = 1024, 71 times faster. Although the SCG method is perfectly

parallelizable, a poor convergence rate is critical.
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9.5 Comments about Computational Complexity and Parallelism

In Chapters 7 and 8, the MGCG method is shown to converge at a constant number of iterations,

thus the complexity of the MGCG method is O(n) with n unknowns. Note that the MG method

does not converge independently of the mesh size for Poisson equation with severe coefficient jumps.

This complexity is superior to the nested dissection [16] and MICCG [18], whose complexities are

O(n
3
2 ) for two-dimensional problems. Moreover, in Section 9.3, the MGCG method achieves 90%

parallel efficiency, thus the comparison of other methods: SCG, MICCG and so on, is not fair

as described in Section 9.4. The MGCG method is quite a promising method with both good

complexity and high parallelism.

9.6 Related Works

Parallelization of the multigrid method has been studied and several parallel multigrid methods

have been implemented. One natural parallelization approach is governed by the grid partitioning

principles. Sbosny [46] analyzed and implemented a parallel multigrid method using the domain

decomposition ideas. This algorithm is mathematically equivalent to the sequential multigrid

algorithm. Besides the domain decomposition, the standard multigrid method with a highly parallel

smoother is easy to be parallelized, however, the convergence rate of this method degenerates on

Poisson problems with severe coefficient jumps. For efficient convergence on such equations, it has

been reported that line (or plane) relaxation and semicoarsening are effective [1, 11]. Unfortunately,

since these techniques have poor and awkward parallelism, they are inefficient on distributed

memory machines. Hempel and Lemke [25] reported the most robust version of parallel black box

multigrid, which has alternating zebra plane relaxation, gains about 60% on Intel iPSC/2 with 32

nodes. Dendy [12] implemented a semicoarsening multigrid algorithm suitable for SIMD machines

on the CM-2. His method requires half the amount of relaxation computation as that required in

the full coarsening multigrid case, while it requires line or plane relaxation. An alternative way of

achieving robustness is to use multiple coarse grids. Mulder [38] and Naik [39] proposed a multiple

semicoarsed grid (MSG) algorithm and Overman [44] implemented this algorithm on distributed

memory machines. This method has ample parallelism and relative robustness. However, the MSG

algorithm needs a larger amount of computation than the ordinary multigrid method.

Ashby et al. [3] implemented parallel MGCG method with damped Jacobi smoother and semi-

coarsening for groundwater flow problem on Cray T3D, whose parallel efficiency achieved about

80%. Washio and Oosterlee [58] proposed two MG preconditioners; SMG-S (semicoarsened multi-

grid as smoother) and MG-S (multigrid as smoother) [40], to gain robustness for rotated anisotropic

81



diffusion equation, curvilinear stretched grids and so on, and applied these preconditioners to Bi-

CGSTAB [55]. From several numerical experiments on NEC Cenju-3 multicomputer, Bi-CGSTAB

methods with these MG preconditioners converge faster than that with standard MG precondi-

tioner, however their performances are lower because of using many coarse grids on which commu-

nication overhead is critical.
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Chapter 10

CONCLUDING REMARKS

This thesis has investigated the MGCG method. In Chapter 6, sufficient conditions of the MG

preconditioner are given such that the MG preconditioning (or preconditioned) matrix is symmetric

and positive definite. It is shown that the V-cycle MG preconditioning matrix is s.p.d. if a post-

smoother is adjoint of a pre-smoother and convergent on each grid level. For the W-cycle or much

more cycles, it is shown that an additional condition; the V-cycle MG is convergent, is necessary.

To investigate the rate of convergence, Chapter 7 analyzes the distribution of eigenvalues of

the two-grid preconditioned matrix with damped Jacobi smoother and RB-GS smoother for 1-

and 2-dimensional Poisson equations. For 1 dimension, the MGCG method with damped Jacobi

smoother converges at two iterations and that with RB-GS smoother converges at one iteration.

For 2 dimension, asymptotic rate of convergence of the MGCG method is 1.14 independently of the

mesh size, which is pessimistic estimate based on the condition number. While estimation by the

eigenvalue distribution is necessary for a sharp estimate of the rate of convergence, it is enough to

show the MGCG method is superior to the MG method since the MGCG method needs only one

more matrix-vector multiplication than the MG method in one iteration. For MG preconditioner,

though analytical result can be obtained by the similar way to the two-grid preconditioner, it

is quite complicated, thus the eigenvalue distribution is obtained numerically. When coarse grid

matrices are approximated by DCA, the condition number of the MG preconditioned matrix is

slightly worse as the grid level increases. In the case of GCA, the distribution is changed, however

the condition number is not changed, thus upper bound of rate of convergence is same as that of

the two-grid preconditioner.

In Chapter 8, the rate of convergence is investigated for the Poisson equation with severe

coefficient jumps. For special cases, it is shown that the MG preconditioned matrix has the

same spectrum as that of the Poisson equation with uniform diffusion coefficient, however, for a
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more complex problem, though it is expected to be able to be obtained in a similar way, it is

too complicated, thus another analysis tool is necessary to estimate the rate of convergence. From

numerical experiments of a model problem, the spectrum of the MG preconditioned matrix is nearly

same as that for uniform diffusion constant problem, unless the problem cannot be discretized or

approximated correctly on the coarsest grid. Otherwise, the MG preconditioned matrix has a few

isolated eigenvalues and the number of isolated eigenvalues is expected to depend on the mese size

of the coarsest grid that can approximate correctly the problem. This proposition does not have

a proof, however, it is supported by several numerical experiments and the special cases on whose

coarsest grid the problem is correctly approximated. If this assumption is true, the MGCG method

converges at a few more iterations dependently on problems than that for the model problem.

Chapter 9 investigates a parallelization of the MGCG method and its efficient implementation

on distributed memory machines. On quite coarse grids, parallel efficiency is low due to the com-

munication overhead and load imbalance, while the computation on these coarse grids is necessary

to gain the mesh-independent convergence property. Evaluating the parallel MGCG method on

AP1000 and AP+, it is shown the MGCG method using very coarse grids is efficient in spite of

losing parallel efficiency on such coarse grids. Moreover, parallel efficiency of the MGCG method

gains 90% on 256 processors of AP+.

Since the MGCG method has high parallelism and fast convergence, this method is a very

promising method as the solution of a large-scale, sparse, symmetric and positive definite matrix

on not only serial machines but on distributed memory machines. For widespread use, it is desirable

to build software libraries of scalable MGCG method.
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Appendix A

CONVERGENCE FACTOR

In Chapter 7, the rate of convergence of the MGCG method is analytically obtained. Figure A.1

shows the numerical results of the Poisson equation with the uniform diffusion coefficient and

a random source factor, which includes asymptotic convergence factor and upper bound of the

average convergence factor based on Eq. (7.55). MGCG(2) has the two-grid preconditioner with

one RB/BR-GS smoothing iteration. Three curves denoted by 64, 128 and 256 indicate average

convergence factors for 64× 64, 128× 128 and 256× 256 unknowns, respectively. From this figure,

it is also shown numerically that the MGCG method converges independently of the mesh size,

and that its average convergence factor is almost equal to or below the asymptotic convergence

factor.
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